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Abstract

Non intrusive activity recognition systems typically
read values from sensors deployed in an environment
and combine them with user annotated activities to build
a probabilistic model. Recently, features constructed
from activity specific conjunctions of binary sensor val-
ues have been shown to improve the classification ac-
curacy. Such systems employ greedy feature induction
techniques to find the observation features and com-
bine them with state transition distribution in a Hid-
den Markov Model or a Conditional Random Field.
An exhaustive search for optimum features is infeasi-
ble in this exponential feature space. We have recently
extended the rule ensemble learning using hierarchi-
cal kernels (RELHKL) framework, that learns a sparse
set of simple features and their optimum weights, to
structured output spaces for learning optimum obser-
vation features along with the transition features and
their weights. The exponentially large space of con-
junctions is handled efficiently by exploiting its hier-
archical structure. Our experiments have shown good
improvement over other approaches. Although such ap-
proaches solve propositional classification problems op-
timally, their first-order extension is non-trivial and is a
challenging problem. In this paper, we discuss about
the challenges involved in leveraging the RELHKL in
structured output spaces approach to learn optimum fea-
tures in complex first order activity recognition settings.
Keywords: activity recognition, first order logic, hid-
den markov models, hierarchical kernels, rule learning,
structured output spaces, support vector machines.

1 Introduction
Activity recognition systems in home environments typi-
cally recognize activities performed by inhabitants and help
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other components of smart homes to perform functionalities
such as optimization of house hold equipment usage or mon-
itoring of health condition of elderly people living alone (as
activities of daily living are indicators of health condition
of old age people (Wilson 2005; van Kasteren et al. 2008;
Gibson, van Kasteren, and Krose 2008)). Such non-intrusive
settings typically have sensors installed at various locations
in a home. A probabilistic model is learned during the train-
ing period from the sensor values and the activities annotated
by the user. During the inference phase, the user activities
are estimated by the probabilistic model, based on the ob-
served sensor values. Many of the existing systems pose and
solve this and similar problems in propositional settings (van
Kasteren et al. 2008; Gibson, van Kasteren, and Krose 2008;
Tsochantaridis et al. 2004; Tsochantaridis 2006; McCal-
lum 2003; Nair, Ramakrishnan, and Krishnaswamy 2011;
Nair et al. 2012). In settings that have complex first or-
der relations (first order predicates and relations represent
common properties of groups of objects and the interactions
between these predicates respectively), systems that solve
the problem in propositional space may not lead to a good
model. We first briefly discuss propositional activity recog-
nition settings followed by discussion on first order settings
and finally the challenges involved in learning optimum first
order models.

In typical deployments, sensor values are recorded at reg-
ular time intervals. The joint state of these sensor values
at each time t form our observations and we will repre-
sent them as xt. The user activity at time t forms the
hidden state, which we represent by yt. The history of
sensor readings and the corresponding activities (as manu-
ally identified later) can be used to train prediction mod-
els such as the Hidden Markov Model (HMM) (Rabiner
1989), the Conditional Random Field (CRF) (Lafferty, Mc-
Callum, and Pereira 2001) or SVM on Structured Output
Spaces (StructSVM) (Tsochantaridis 2006; Tsochantaridis
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et al. 2004), which could be later used to predict activities
based on sensor observations. These approaches typically
assume that yt at time t is independent of all previous activ-
ities given yt−1 at time t− 1 and xt at time t is independent
of all other variables given yt. Prediction involves deter-
mining the label (activity) sequence that best explains the
observation (joint state of sensors) sequence using dynamic
programming (Forney 1973). In the rest of this paper, we
assume sensor values as binary values. In other types of de-
ployments, such as discrete and continuous value sensors,
one or more binary values can be constructed from a single
discrete/continuous valued output.

Activity recognition datasets tend to be sparse; that is, one
could expect very few sensors to be on at any given time in-
stance. Moreover, in a setting such as activity recognition,
one can expect certain combinations of (sensor) readings to
be directly indicative of certain activities. While HMMs,
CRFs and StructSVM attempt to capture these relations in-
directly, we have illustrated that discovering activity spe-
cific conjunctions of sensor readings (as features) can im-
prove the accuracy of prediction (Nair, Ramakrishnan, and
Krishnaswamy 2011). Earlier, McCallum (2003) followed
a similar approach for inducing features for a CRF model.
However, both these approaches greedily search the space of
conjunctions, since an exhaustive search for the optimal fea-
tures is exponential in the number of basic features (sensors
in the case of activity recognition). Rule Ensemble Learning
using Hierarchical Kernels (RELHKL) is one existing ap-
proach that can handle exponential feature space. However,
RELHKL is specific to single variable binary classification
problems and is not applicable to multi class structured out-
put space classification problems. We have recently pro-
posed a generalization of RELHKL to multi class structured
output spaces such as sequence prediction problems (Nair
et al. 2012). We refer to this approach as StructRELHKL.
StructRELHKL builds on the StructSVM (Tsochantaridis et
al. 2004; Tsochantaridis 2006) framework, where emission
(observation-activity relationship) and transition (activity-
activity relationships in successive time steps) relations are
modeled as features of SVM, and use a hierarchical regu-
larizer on emission features to select a small set of sim-
ple conjunctions. The loss function used is same as that
of StructSVM. We have demonstrated through experiments
that StructRELHKL selects a small set of simple features
and outperform other existing approaches in terms of pre-
diction accuracy. Please refer (Nair et al. 2012) for a com-
parison of StructRELHKL and other approaches.

The above approaches have limitations that they are spe-
cific to propositional feature settings and are unable to han-
dle first order structures. We now give a brief introduction
to first order settings and the limitations of the above ap-
proaches in such settings.

In a first order setting, predicates are used to attribute
properties to objects and can be used to represent groups
of objects with same properties. For example, objects
such as bread, butter, sugar, etc. are items used for break
fast and rice, vegetables, etc. are items used for lunch.
A predicate breakFastItem(X) says that X is a break fast
item. A ground instance of this can be breakFastItem(butter)

and is a true ground atom. Whereas, breakFastItem(rice)
gives false as rice is not a break fast item. General-
ized features constructed using such first order predicates
help to represent and interpret the environment in an ef-
ficient way. For example, activity(T,prepareBreakFast):-
microwave(T,X),breakFastItem(X) says that the activity at
time T is prepareBreakFast if microwave has object X in it
at time T and X is a breakFastItem. There are many first
order systems that learn such features. However, most of
these systems learn the features by searching in a lattice
(partial ordered set with a unique top and a unique bottom)
of rules/clauses greedily by pruning away branches based
on the coverage of examples. However, since an exhaustive
search in the super exponential space is infeasible, an opti-
mum model is not guaranteed.

In activity recognition problems, the transition features
also have to be added to the set of first order emission fea-
tures (features and rules are synonymously used in this pa-
per, as the condition part of any rule can be treated as an
activity specific feature). As StructRELHKL is shown to
be learning optimum set of features in an exponential fea-
ture space for structured output classification problems, it is
intuitive to think of grounding all the predicates with all pos-
sible instances of variables and learn StructRELHKL model
on this. However, the number of groundings itself can be
huge and thus can be infeasible in real wold settings. More-
over the model learned will not be a generalized one. In this
paper we look into the challenges involved in learning an
optimum first order model by extending StructRELHKL.

The paper is organized as follows. Propositional greedy
feature induction approaches and hierarchical kernels based
approaches are discussed in Section 2. Section 3 discusses
about the first order rule learning settings. We discuss about
the challenges in learning optimum features for first order
settings in Section 4 and conclude the paper in Section 5.

2 Feature Induction in Propositional Settings
In this section, we first give a brief description of greedy fea-
ture induction approaches for structured output classification
problems. We then introduce the recent works on learning
optimal features using hierarchical kernels on structured out-
put spaces.

Feature Induction for Structured Outputs
In this subsection, we discuss our approach on feature in-
duction for HMM (Nair, Ramakrishnan, and Krishnaswamy
2011) as well as feature induction for CRF by McCallum et
al. (2003). Both the approaches propose feature induction
methods that iteratively construct feature conjunctions that
increase an objective. These approaches start with no fea-
tures and at each step, consider a set of candidate features
(conjunctions or atomic). The features, whose inclusion
will lead to maximum increase in the objective are selected.
Weights for the new features are trained. The steps are iter-
ated until convergence. While McCallum et al. (2003) trains
a CRF model and uses conditional log-likelihood as the ob-
jective for the greedy induction, we train an HMM and use
prediction accuracy on a held out dataset (part of the training
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data) as the objective. This effectively solves the problem of
incorrect conditional independence assumption among the
sensor values given an activity while not dealing with expo-
nential observation space.

Although these greedy feature induction approaches have
been shown to improve performance, they cannot guarantee
an optimal solution. An exhaustive search to find the opti-
mal solution is expensive due to the exponential size of the
search space. We next discuss an approach for optimal in-
duction of feature conjunctions.

Optimal Feature Induction using Hierarchical
Kernels
In this subsection, we briefly discuss our work on rule en-
semble learning using hierarchical kernels in structured out-
put spaces (Nair et al. 2012).

Our work builds on StructSVM framework (Tsochan-
taridis et al. 2004; Tsochantaridis 2006) which learns a
classification model for structured outputs such as sequence,
trees, graphs etc. We discuss our approach in the context of
sequence prediction problems in the activity recognition do-
main.

The objective of learning with structured output spaces is
to learn functions of the form F : X → Y from training
data, where X and Y are input and output sequence spaces
respectively. A discriminant function F : X × Y → R
is learned from training data that consists of pairs of input
and output sequences. The prediction is performed using
the decision function F(X; f):

F(X; f) = arg max
Y ∈Y

F (X,Y ; f), (1)

where F (X,Y ; f) = 〈f ,ψ(X,Y )〉 represents a score which
is a scalar value based on the features ψ involving input se-
quence X and output sequence Y values and parameterized
by a parameter vector f . In the case of sequence predic-
tion, features are constructed to represent emission (obser-
vation) and transition distributions. Unlike StructSVM, our
emission features represent all possible conjunctions of sen-
sor values for each activity. The objective for training is to
find a sparse set of simple features ψ(X,Y ) and their opti-
mal weights f , which make the score of original sequences
greater than any other possible sequence by a good margin.

Loss functions in structured outputs have to measure the
amount by which the prediction deviates from the actual
value and hence the zero-one classification loss is not suf-
ficient. We use the micro-average of wrong predictions as
loss function in our derivations. A loss function is repre-
sented as ∆ : Y × Y → R. ∆(Y, Ŷ ) is the loss value when
the true output is Y and the prediction is Ŷ . Before going
into further details of the model, we introduce the following
notations.

Let the input/observation at pth time step of the ith se-
quence (example) be xpi , where xpi is a vector of binary sen-
sor values (each element of the vector represents the value
of a sensor fixed at a location such as groceries cupboard,
bathroom door etc. at that time step). Similarly, output
(activity) at pth time step of the ith example is represented
by ypi . Let ypi can take any of n values. A feature vector,

ψ, contains entries for emission/observation and the transi-
tion distribution. To learn the emission structure, the fea-
ture vector has to be modified to include the emission lattice
defined in (Nair, Ramakrishnan, and Krishnaswamy 2011).
The emission lattice has conjunctions of basic features (sen-
sors) as nodes and obeys a partial order. The top node is the
empty conjunction and the bottom node is the conjunction
of all the basic features. The nodes at level 1, denoted by B,
are basic features themselves. As followed in (Jawanpuria,
Jagarlapudi, and Ramakrishnan 2011), D(v) and A(v) rep-
resent the set of descendants and ancestors of the node v
in the lattice. Both D(v) and A(v) include node v. The
hull and the sources of any subset of nodes W ⊂ V are
defined as hull(W) =

⋃
w∈W A(w) and sources(W) =

{w ∈ W|A(w)
⋂
W = {w}} respectively. The size of set

W is denoted by |W|. fW is the vector with elements as
fv, v ∈ W . Also let the complement ofW denoted byWc

be the set of all nodes belonging to the same activity that are
not inW . For the sake of visualization, we assume there is
a lattice for each label. Therefore, elements of ψ vector cor-
respond to the nodes in the conjunction lattice of each label
and the transition features. We represent the emission and
transition parts of the vector ψ as ψE and ψT respectively.
We assume that both ψE and ψT are of dimension equal
to the dimension of ψ with zero values for all elements not
in their context. That is, ψE has dimension of ψ, but has
zero values corresponding to transition elements. In similar
spirit, we split the feature weight vector f to fE and fT. Sim-
ilarly, V , the indices of the elements of ψ, is split into VE
and VT.

To learn a sparse emission model, we employ a ρ-norm
regularizer (Jawanpuria, Jagarlapudi, and Ramakrishnan
2011) on the emission features. Since, the transition fea-
tures are not exponential and do not obey a partial order, we
impose a 2-norm regularizer. Therefore, we separate the reg-
ularizer term in the SVM objective into those corresponding
to emission and transition features and construct the follow-
ing SVM formulation,

min
f ,ξ

1

2
ΩE(fE)2 +

1

2
ΩT (fT)2 +

C

m

m∑
i=1

ξi,

∀i,∀Y ∈ Y \ Yi : 〈f ,ψδi (Y )〉 ≥ 1− ξi
∆(Yi, Y )

∀i : ξi ≥ 0 (2)

where ΩE(fE) is defined in (Jawanpuria, Jagarlapudi, and
Ramakrishnan 2011) as

∑
v∈VE

dv ‖ fED(v) ‖ρ, ρ ∈

(1, 2], dv ≥ 0 is a prior parameter showing usefulness
of the feature conjunctions, fED(v) is the vector with ele-
ments as ‖ fEw ‖2 ∀w ∈ D(v), and ‖ . ‖ρ represents
the ρ-norm , ΩT (fT) is the 2-norm regularizer

(∑
i

f2
Ti

) 1
2 ,

m is the number of examples, C is the regularization pa-
rameter, ξ’s are the slack variables introduced to allow er-
rors in the training set in a soft margin SVM formulation,
and Xi ∈ X and Yi ∈ Y represent the ith input and out-
put sequence respectively. 〈f ,ψδi (Y )〉 represents the value
〈f ,ψ(Xi, Yi)〉 − 〈f ,ψ(Xi, Y )〉.
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The 1-norm in ΩE(fE) forces many of the ‖ fED(v) ‖ρ
to be zero. Even in cases where ‖ fED(v) ‖ρ is not forced
to zero, the ρ-norm forces many of node v’s descendants to
zero. This ensures a sparse and simple set of features. The
above SVM setup has two inherent issues which makes it
a hard problem to solve. The first is that the regularizer,
ΩE(fE), consists of ρ-norm over descendants of each lattice
node, which makes it exponentially expensive. The second
problem is the exponential number of constraints for the ob-
jective. Next paragraph discusses how to solve the problem
efficiently.

By solving (2), we expect most of the emission feature
weights to be zero. As illustrated by Jawanpuria et al.,
the solution to the problem when solved with the original
set of features is the same but requires less computation
when solved only with features having non zero weights at
optimality. Therefore, an active set algorithm can be em-
ployed to incrementally find the optimal set of non zero
weights (Jawanpuria, Jagarlapudi, and Ramakrishnan 2011).
In each iteration of the active set algorithm, since the con-
straint set in (2) is exponential, a cutting plane algorithm
has to be used to find a subset of constraints of polynomial
size so that the corresponding solution satisfies all the con-
straints with an error not more than ε. In our work (Nair et
al. 2012), we derive a dual for (2) with the feature set re-
duced to active features and a sufficient condition to check
for optimality. The active set algorithm invokes a mirror de-
scent algorithm and the mirror descent algorithm invokes a
cutting plane algorithm. Please refer to (Nair et al. 2012) for
more details.

3 First Order Rule Learning Settings
In this section, we first discuss the limitations of proposi-
tional logic and then introduce first order logic in the context
of activity recognition. We then briefly discuss some of the
properties and methodologies in first order learning settings.

In an activity recognition system, readings from sensors
installed at different locations are recorded. These com-
bined with the user annotated activities are used to build a
probabilistic model. Approaches such as HMM, CRF, fea-
ture induction assisted HMM, CRF with feature induction,
StructRELHKL etc. model each sensor as a propositional
feature. These approaches have the limitation that they are
not capable to represent groups of objects with same prop-
erties efficiently or capture the relationships among those
groups. For example, consider a kitchen environment where
sensors or RFID tags are attached to many objects such as
rice container, wheat container, sugar container, salt con-
tainer, cheese, bread, butter, microwave, gas stove, electric
stove, mixer, fridge etc. Let the activities being performed
are prepare break fast, prepare lunch and prepare dinner.
Intuitively, a person preparing break fast may place some
break fast food items on the stove and therefore, knowing the
break fast food items (bread, butter, milk etc.) would make
it easy to conclude that the person is preparing break fast.
However, propositional models lack this expressive power
and result in exponential increase in features leading to an
infeasible model in many settings. We now discuss how first

order logic helps to overcome this limitation.
For compact representation, better interpretation, and ef-

ficient inference, objects are attributed with properties and
groups of objects with same properties can be represented in
a general form in first order logic. The property attributed to
objects and used to group similar objects is called a first or-
der predicate and it holds a meaning. For example, objects
such as bread, butter, sugar, etc. are items used for break
fast and rice, vegetables, etc. are items used for lunch. Pred-
icates breakFastItem(X) and lunchItem(Y) stands for “X is a
break fast item” and “Y is a lunch item” respectively. Here X
and Y are typed variables. A ground instance of this can be
breakFastItem(butter) and is a true ground atom. Whereas,
breakFastItem(rice) is a false ground atom, as rice is not a
break fast item according to the definition. Predicates can
also represent relations between two or more objects. For
example, near(X,Y) stands for “object X is near to object Y”.
First order logic also enables to construct features based on
properties and provides a meaningful definition of the world.
Generalized features constructed using first order predicates
help to represent and interpret the environment in an ef-
ficient way. For example, activity(T,prepareBreakFast):-
microwave(T,X),breakFastItem(X) says that the activity at
time T is prepareBreakFast if microwave has object X in it
at time T and X is a breakFastItem. In real world settings,
possible groundings can be too large and thus propositional
approaches have their limitations. Inductive logic program-
ming (ILP) (Nienhuys-Cheng and Wolf 1997) approaches
learn first order relations from background knowledge, pos-
itive examples and negative examples. Background knowl-
edge can be in the form of true predicates or rules known a
priori. Although ILP systems which attribute probabilistic
information to the clauses (clauses are rules represented in
the form of disjunctions of literals) are called probabilistic
ILP, we use the term ILP in a general sense. Aleph (Srini-
vasan 2007), alchemy (Domingos et al. 2006), FOIL (Quin-
lan and Cameron-Jones 1993) etc. are some of the ILP
systems. Works by Landwehr et al. (2009), Kersting et
al. (2006) and Natarajan et al. (2008) are a few relational
models introduced in activity recognition domain. ILP sys-
tems learn the features by searching in a lattice (partial or-
dered set with a unique top and a unique bottom) of clauses
(features). These systems prune away branches based on
some heuristics and explores the exponential lattice in an ef-
ficient way. The heuristic, in most cases, is a score which is
a function of positive and negative examples covered by the
current model. For instance, Aleph is an ILP system that in
each iteration, selects a positive example, builds the most-
specific clause based on the example, searches for a more
general clause that has the best score, and removes examples
made redundant by the current clause. However, the search
for the best set of features is based on heuristics and thus an
optimum model is not guaranteed. An exhaustive search in
the super exponential space is infeasible. Inference in these
systems involves finding an interpretation (truth assignments
to all ground predicates) that maximizes the number (possi-
bly weighted sum) of satisfied clauses. We now discuss how
ILP systems exploit the structure of search space to learn
general clauses efficiently.
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As mentioned in the previous paragraphs, the objective of
ILP systems is to automatically construct general clauses,
that gives a better understanding about the world, from spe-
cific ones. A clause C1 is regarded to be more general than
C2 if and only if C1 |= C2. Therefore, the relation |= can
be used to make an ordering over a set of clauses. ILP sys-
tems search such orderings of clauses to find general clauses.
Since lattices are well structured orderings, many ILP sys-
tems use lattices to represent all the possible clauses. We
discuss subsumption lattice and implication ordering, two
generality orderings profoundly used in ILP, in the follow-
ing paragraphs.

A clause C subsumes a clause D if there is a sub-
stitution θ such that Cθ ⊆ D and therefore C |= D.
Cθ ⊆ D indicates that, after applying substitution θ
to C, every literal in C appears in D (Khardon and
Arias 2006; Nienhuys-Cheng and Wolf 1997). For exam-
ple, let C : cooking(T,X):-microwave(T,X) subsumes D :
cooking(T,rice):-microwave(T,rice),lunchItem(rice), where
θ = {X/rice}. This helps to order clauses in a quasi-
order (reflexive and transitive) which can be viewed as a
partial order among equivalence partitions of the set of
clauses. A subsumption lattice (Khardon and Arias 2006;
Nienhuys-Cheng and Wolf 1997) is such a partial order and
has a top node and a bottom node. Upward (generalization)
and downward (specialization) refinement operators are de-
fined over clauses as follows. Upward refinement can be
achieved by either removing one non redundant literal from
the clause or substituting an instantiation with a variable.
Downward refinement can be achieved by either adding a
non redundant literal to the clause or instantiating a vari-
able with a ground object. A greatest specialization under
subsumption (gss) of some finite set S of clauses is defined
as the union of all clauses in S after they are standardized
apart. Least generalization under subsumption (lgg) of a fi-
nite set of clauses S is the clause that is the least general
clause reachable from all the clauses in S by repeated up-
ward refinements. Search in the lattice can be top down (us-
ing gss) or bottom up (using lgg) refinements to find the best
clause.

An implication ordering is a generality ordering based on
the relation |= over a set of clauses. Implication ordering
in horn clauses is undecidable. Implication order is less
tractable and complicated in implementation than subsump-
tion order. However, ability to deal with recursive clauses
efficiently and to construct least generalizations efficiently
makes implication ordering interesting.

Incorporating background knowledge in the learning
model helps ILP systems to explore the lattice in an effi-
cient way. At each node, the current theory combined with
the background knowledge is used to compute the scores
and thus plays an important role in pruning away a signif-
icant portion of the search space. However, as stated be-
fore, the heuristic is mostly based on logical coverage of
examples and cannot guarantee an optimum model. Since
the search space is super exponential, an exhaustive search
for optimum model is infeasible in real world settings. In-
terested readers may please refer to (Nienhuys-Cheng and
Wolf 1997) for more details on ILP systems. In the next

section, we discuss the challenges involved in extending the
StructRELHKL, that learns optimum model in propositional
activity recognition settings, to first order settings to find an
optimum first order model.

4 Learning Optimum Features in First
Order Settings

RELHKL and StructRELHKL, as discussed in Section 2,
deals with propositional binary features and the learning in-
volves selection of optimum features from a lattice that can
be a conjunction or disjunction lattice over propositional fea-
tures. The kernels are (or can be decomposed into) binary
kernels. The approach starts with an empty set of features
and keeps on adding sufficiency condition violating nodes to
find the optimum model. Since, one has to deal with a huge
set of possible groundings of clauses as well as variable shar-
ing among predicates in clauses of a first order setting, lever-
aging RELHKL approaches to learn optimal first order rela-
tions is non trivial and is an open question. Since subsump-
tion ordering is more tractable and easily implementable, in
this section, we use subsumption lattice as the default or-
dering unless stated otherwise. In the following paragraphs,
we look into the problem from an RELHKL perspective and
then discuss the challenges involved in mapping the first or-
der setting into RELHKL setting.

RELHKLL or StructRELHKL setting selects optimum
features from lattice of propositional binary features, where
each node represents a conjunction (or disjunction) of ba-
sic features. In the case of activity recognition, each binary
sensor value is a basic feature. StructRELHKL considers
separate lattices for each activity and selects activity spe-
cific features. It also adds all the possible transition fea-
tures with the set of emission features to get the final model.
The hierarchical regularizer imposed over the lattice of fea-
tures selects a sparse and optimum set of simple features. It
also involves summation of binary values over descendants,
which is handled efficiently by a kernel trick on basic binary
features. Unlike in ILP settings, RELHKL explores multiple
nodes simultaneously and thus gives an optimum solution in
an efficient way. In the rest of the section, we use the general
term RELHKL for RELHKL as well as StructRELHKL.

By extending RELHKL for first order settings, we ex-
pect the features (and kernels) to be represented as binary
features which can be ordered as a lattice. We confine
our discussion to disjunction lattice in the rest of the sec-
tion. In a disjunction lattice, there should be one node
for each possible first order rule (clause), which is a dis-
junction of predicates with arguments that are variables or
ground objects. One way to find a general clause in sub-
sumption lattice is by replacing ground objects in predi-
cates with variables. Following the generalization principle,
least general generalizations for a set of clauses are con-
structed by finding the least general clause that is a gen-
eralization of all the individual clauses in the set. Thus a
general clause with a variable can have child clauses which
have same predicate names but different ground objects
in place of the variable. Since there are a huge number
of possible groundings for a predicate, it is highly com-
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putational to explicitly represent all the possible ground-
ings in a learning setting. For example breakFastUtensil(X)
can be a generalization for the predicates such as break-
FastUtensil(cup1), breakFastUtensil(cup2),. . . , breakFas-
tUtensil(cup24), breakFastUtensil(plate1), breakFastUten-
sil(plate2),. . . , breakFastUtensil(plate14), breakFastUten-
sil(bowl1), etc. Representing every ground predicate, and
therefore clause, in the lattice is infeasible in large settings.
Another generalization operation is by removing a literal
from the clause. For example, boiling(X) :- hot(X) is an lgg
of boiling(X) :- hot(X), stoveOn(X) and boiling(X) :- hot(X),
inductionCooker(X). Since RELHKL is not a guided search
method to find best clauses, we need to define methods to
incorporate all such information in the training model. We
now list a few open questions to be answered to build an
RELHKL model for first order clauses.

The key questions to be answered for defining an
RELHKL setting for first order clauses are a) how to incor-
porate the huge set of groundings?, b) how to define variable
sharing across predicates?, c) how to represent subsumption
relationships among clauses in binary kernels d) how to deal
with clauses that are subsume equivalent?, e) how to apply
refinement operators in the lattice statically or on-the-fly? f)
how to incorporate background knowledge?, We briefly dis-
cuss these questions in the following paragraphs.

First order systems learn general clauses to represent
relationships among a large set of ground objects in the
form of conjunctions/disjunctions, where as RELHKL as-
sumes features in the propositional space and learns con-
junctions/disjunctions of them. Therefore, the two ap-
proaches differ in their representation and lattice setting. To
learn optimum first order models using RELHKL, we need
to either find a mechanism to represent first order lattice in
an RELHKL setting or adapt RELHKL to work on first or-
der settings. One quick fix to this is to assume each first or-
der predicate as a basic propositional feature and learn con-
junctions/disjunctions on them. This assumption, in most
of the cases, results in information loss as the predicates in
a first order clause usually shares variables. On the other
hand, grounding all the clauses to learn feature conjunc-
tion/disjunctions will lead to a super exponential learning
setting and is infeasible in real world settings. Therefore,
we need a mechanism to define variable sharing across pred-
icates in a clause in the RELHKL setting for first order
clauses.

Popular ILP systems search for useful clauses in the sub-
sumption lattice and any optimal learning approach needs
to explore a subsumption lattice (or an implication order)
using refinement operators to learn efficiently. In first or-
der logic, two clauses are considered to be subsume equiv-
alent if they are variants after reduction by a renaming
scheme θ (Nienhuys-Cheng and Wolf 1997). First order
learning systems should not generate subsume equivalent
clauses while doing upward and downward refinement op-
erations. The first order optimum feature learning method
should be modeled to differentiate between subsume equiv-
alent clauses and the refined clauses.

One of the greatest advantages of first order settings is the
ability to incorporate background knowledge. Theories are

learned by constructing clauses that when combined with
background knowledge gives an explanation to the exam-
ples. As background knowledge plays an important role in
the efficiency of the trained model, RELHKL for first order
settings should be able to incorporate background knowl-
edge in the learning setting.

5 Conclusion and Future work
Feature induction techniques based on heuristics have
gained profound interest in the past due to the performance
improvement over traditional systems in sequence classifi-
cation problems in activity recognition domain. These ap-
proaches neither guarantee an optimum model nor scales
well for an exhaustive search. Recent work on Rule Ensem-
ble Learning using Hierarchical kernels in structured out-
put spaces (StructRELHKL) have been shown to search the
lattice for an optimum model in an efficient way and outper-
forms existing approaches. However StructRELHKL cannot
be trivially extended to first order settings. In this paper, we
bring the intuitions to leverage StructRELHKL to learn op-
timum model for first order settings. We also have discussed
some of the challenges involved in this domain.

Future work involves developing representation for-
malisms to incorporate complex first order logic properties
such as variable sharing, subsumption relation, background
knowledge, etc. in the StructRELHKL setup.

Glossary
Atoms: They are predicates in pure form, for eg: par-

ent(ann,mary), female(X).

Body: Right side of (:-) (if) is called body of the clause.

Clause: Disjunction of literals for eg: (parent(ann,mary) ∨ ¬ fe-
male(ann)) ≡ (parent(ann,mary) :- female(ann)).

Clause Representation: Any clause can be written in the form
of

Comma separated positive literals :- Comma
separated negated literals,

where (:-) is pronounced as if. For example in propositional
logic the clause a ∨ b ∨ ¬ c ≡ a,b :- c.

Conjunctive Normal Form (CNF ): Every formulae in proposi-
tional logic or first-order logic is equivalent to a formula that
can be written as a conjunction of disjunctions i.e, something
like (a (X) ∨ b (X))∧ (c (X) ∨ d (X))∧ · · · . When written in
this way the formula is said to be in conjunctive normal form or
CNF.

Constants: A constant symbol represents an individual in the
world. In first order logic it is represented by small letter eg:
jane, 1, a etc.

Definite Clause: Clauses with exactly one positive literal eg: p(X)
:- c(X),d(Y).

Facts: Body less horn clauses, for eg: female(ann); daugh-
ter(mary).

Functions: Take input as tuple of objects and return another object
eg: motherOf(ann), parentOf(mary).

Ground Clause: Clauses formed as a result of replacing each
variable by all possible constants in each predicate of a clause.
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Head: Left side of (:-) (if ) is called head of the clause.
Herbrand Interpretation: A (Herbrand) interpretation is a truth

assignment to all the atoms formed as a result of replacing the
variables in a predicate by all the possible constants (objects).

Herbrand Model: a Herbrand model is simply a Herbrand inter-
pretation that makes a wellformed formula true.

Horn Clause: Clause with atmost one positive literal for eg:
(:- parent(ann,joan), female(joan).) , (parent(ann,kan) :- fe-
male(mary).)

In a horn clause in CNF, all the atoms preceded by a ¬ form the
body part and the atom not preceded by a ¬ is the head. Here

¬A means (not)A.

Knowledge Base: A Knowledge Base is a set of clauses which
represents a theory.

Literals: They are predicates in either pure form or negated form,
for eg: ¬parent(ann,mary).

Model: An interpretation which makes the clause true. For eg: P
:- Q,R, the models are M = φ, {P,Q,R}.

Statistical Relational Learning (SRL): Statistical relational
learning deals with machine learning and data mining in rela-
tional domains where observations may be missing, partially
observed, and/or noisy.

Variables: Stands for typed objects and starts with the capital let-
ters for eg: X,Abs, etc.
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