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Abstract

This paper presents a dynamic role assignment and forma-
tion positioning system used by the 2011 RoboCup 3D sim-
ulation league champion UT Austin Villa. This positioning
system was a key component in allowing the team to win
all 24 games it played at the competition during which the
team scored 136 goals and conceded none. The positioning
system was designed to allow for decentralized coordina-
tion among physically realistic simulated humanoid soccer
playing robots in the partially observable, non-deterministic,
noisy, dynamic, and limited communication setting of the
RoboCup 3D simulation league simulator. Although the po-
sitioning system is discussed in the context of the RoboCup
3D simulation environment, it is not domain specific and can
readily be employed in other RoboCup leagues as it general-
izes well to many realistic and real-world multiagent systems.

1 Introduction
Coordinated movement among autonomous mobile robots
is an important research area with many applications such
as search and rescue (Kitano et al. 1999) and warehouse
operations (Wurman, D’Andrea, and Mountz 2008). The
RoboCup 3D simulation competition provides an excellent
testbed for this line of research as it requires coordination
among autonomous agents in a physically realistic environ-
ment that is partially observable, non-deterministic, noisy,
and dynamic. While low level skills such as walking and
kicking are vitally important for having a successful soccer
playing agent, the agents must work together as a team in
order to maximize their game performance.

One often thinks of the soccer teamwork challenge as be-
ing about where the player with the ball should pass or drib-
ble, but at least as important is where the agents position
themselves when they do not have the ball (Kalyanakrish-
nan and Stone 2010). Positioning the players in a forma-
tion requires the agents to coordinate with each other and
determine where each agent should position itself on the
field. While there has been considerable research done in
the 2D soccer simulation domain (for example by Stone et
al. (Stone and Veloso 1999) and Reis et al. (Reis, Lau, and
Oliveira 2001)), relatively little outside of (Chen and Chen

This paper is to appear in Proceedings of the RoboCup Interna-
tional Symposium (RoboCup 2012), Mexico City, Mexico, June
2012.

2011) has been published on this topic in the more physi-
cally realistic 3D soccer simulation environment. (Chen and
Chen 2011), as well as related work in the RoboCup mid-
dle size league (MSL) (Lau et al. 2009), rank positions on
the field in order of importance and then iteratively assign
the closest available agent to the most important currently
unassigned position until every agent is mapped to a tar-
get location. The work presented in this paper differs from
the mentioned previous work in the 2D and 3D simulation
and MSL RoboCup domains as it takes into account real-
world concerns and movement dynamics such as the need
for avoiding collisions of robots.

In UT Austin Villa’s positioning system players’ positions
are determined in three steps. First, a full team formation
is computed (Section 3); second, each player computes the
best assignment of players to role positions in this forma-
tion according to its own view of the world (Section 4); and
third, a coordination mechanism is used to choose among all
players’ suggestions (Section 4.4). In this paper, we use the
terms (player) position and (player) role interchangeably.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a description of the RoboCup 3D simulation
domain. The formation used by UT Austin Villa is given in
Section 3. Section 4 explains how role positions are dynam-
ically assigned to players. Collision avoidance is discussed
in Section 5. An evaluation of the different parts of the posi-
tioning system is given in Section 6, and Section 7 summa-
rizes.

2 Domain Description
The RoboCup 3D simulation environment is based on
SimSpark,1 a generic physical multiagent system simulator.
SimSpark uses the Open Dynamics Engine2 (ODE) library
for its realistic simulation of rigid body dynamics with col-
lision detection and friction. ODE also provides support for
the modeling of advanced motorized hinge joints used in the
humanoid agents.

The robot agents in the simulation are homogeneous and
are modeled after the Aldebaran Nao robot,3 which has a
height of about 57 cm, and a mass of 4.5 kg. The agents in-

1http://simspark.sourceforge.net/
2http://www.ode.org/
3http://www.aldebaran-robotics.com/eng/
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teract with the simulator by sending torque commands and
receiving perceptual information. Each robot has 22 degrees
of freedom: six in each leg, four in each arm, and two in
the neck. In order to monitor and control its hinge joints, an
agent is equipped with joint perceptors and effectors. Joint
perceptors provide the agent with noise-free angular mea-
surements every simulation cycle (20 ms), while joint effec-
tors allow the agent to specify the torque and direction in
which to move a joint. Although there is no intentional noise
in actuation, there is slight actuation noise that results from
approximations in the physics engine and the need to con-
strain computations to be performed in real-time. Visual in-
formation about the environment is given to an agent every
third simulation cycle (60 ms) through noisy measurements
of the distance and angle to objects within a restricted vision
cone (120◦). Agents are also outfitted with noisy accelerom-
eter and gyroscope perceptors, as well as force resistance
perceptors on the sole of each foot. Additionally, agents can
communicate with each other every other simulation cycle
(40 ms) by sending messages limited to 20 bytes.

3 Formation
This section presents the formation used by UT Austin Villa
during the 2011 RoboCup competition. The formation itself
is not a main contribution of this paper, but serves to set
up the role assignment function discussed in Section 4 for
which a precomputed formation is required.

In general, the team formation is determined by the ball
position on the field. As an example, Figure 1 depicts the
different role positions of the formation and their relative
offsets when the ball is at the center of the field. The forma-
tion can be broken up into two separate groups, an offensive
and a defensive group. Within the offensive group, the role
positions on the field are determined by adding a specific off-
set to the ball’s coordinates. The onBall role, assigned to the
player closest to the ball, is always based on where the ball is
and is therefore never given an offset. On either side of the
ball are two forward roles, forwardRight and forwardLeft.
Directly behind the ball is a stopper role as well as two ad-
ditional roles, wingLeft and wingRight, located behind and
to either side of the ball. When the ball is near the edge of
the field some of the roles’ offsets from the ball are adjusted
so as to prevent them from moving outside the field of play.

Within the defensive group there are two roles, backLeft
and backRight. To determine their positions on the field a
line is calculated between the center of the team’s own goal
and the ball. Both backs are placed along this line at specific
offsets from the end line. The goalie positions itself inde-
pendently of its teammates in order to always be in the best
position to dive and stop a shot on goal. If the goalie assumes
the onBall role, however, a third role is included within the
defensive group, the goalieReplacement role. A field player
assigned to the goalieReplacement role is told to stand in
front of the center of the goal to cover for the goalie going
to the ball.

During the course of a game there are occasional stop-
pages in play for events such as kickoffs, goal kicks, cor-
ner kicks, and kick-ins. When one of these events occur UT

Figure 1: Formation role positions.

Austin Villa adjusts its team formation and behavior to as-
sume situational set plays which are detailed in a technical
report (MacAlpine et al. 2011).

Kicking and passing have yet to be incorporated into the
team’s formation. Instead the onBall role always dribbles the
ball toward the opponent’s goal.

4 Assignment of Agents to Role Positions
Given a desired team formation, we need to map players to
roles (target positions on the field). Human soccer players
specialize in different positions as they have different bod-
ies and abilities, however, for us, the agents are all homo-
geneous, and so it is unnecessary to limit agents to constant
specific roles. A naı̈ve mapping having each player perma-
nently mapped to one of the roles performs poorly due to
the dynamic nature of the game. With such static roles an
agent assigned to a defensive role may end up out of posi-
tion and, without being able to switch roles with a teammate
in a better position to defend, allow for the opponent to have
a clear path to the goal. In this section, we present a dynamic
role assignment algorithm. A role assignment algorithm can
be thought of as implementing a role assignment function,
which takes as input the state of the world, and outputs a
one-to-one mapping of players to roles. We start by defin-
ing three properties that a role assignment function must
satisfy (Section 4.1). We then construct a role assignment
function that satisfies these properties (Section 4.2). Finally,
we present a dynamic programming algorithm implement-
ing this function (Section 4.3).

4.1 Desired Properties of a Valid Role
Assignment Function

Before listing desired properties of a role assignment func-
tion we make a couple of assumptions. The first of these is
that no two agents and no two role positions occupy the same
position on the field. Secondly we assume that all agents
move toward fixed role positions along a straight line at the
same constant speed. While this assumption is not always
completely accurate, the omnidirectional walk used by the
agent, and described in (MacAlpine et al. 2012), gives a fair

33



approximation of constant speed movement along a straight
line.

We call a role assignment function valid if it satisfies the
following three properties:

1. Minimizing longest distance - it minimizes the maximum
distance from a player to target, with respect to all possi-
ble mappings.

2. Avoiding collisions - agents do not collide with each other
as they move to their assigned positions.

3. Dynamically consistent - a role assignment function f is
dynamically consistent if, given a fixed set of target po-
sitions, if f outputs a mapping m of players to targets at
time T , and the players are moving toward these targets,
f would output m for every time t > T .
The first two properties are related to the output of the role

assignment function, namely the mapping between players
and positions. We would like such a mapping to minimize
the time until all players have reached their target positions
because quickly doing so is important for strategy execution.
As we assume all players move at the same speed, we start
by requiring a mapping to minimize the maximum distance
any player needs to travel. However, paths to positions might
cross each other, therefore we additionally require a map-
ping to guarantee that when following it, there are no colli-
sions. The third property guarantees that once a role assign-
ment function f outputs a mapping, f is committed to it as
long as there is no change in the target positions. This guar-
antee is necessary as otherwise agents might unduly thrash
between roles thus impeding progress. In the following sec-
tion we construct a valid role assignment function.

4.2 Constructing a Valid Role Assignment
Function

Let M be the set of all one-to-one mappings between play-
ers and roles. If the number of players is n, then there are n!
possible such mappings. Given a state of the world, specif-
ically n player positions and n target positions, let the cost
of a mapping m be the n-tuple of distances from each player
to its target, sorted in decreasing order. We can then sort all
the n! possible mappings based on their costs, where com-
paring two costs is done lexicographically. Sorted costs of
mappings from agents to role positions for a small example
are shown in Figure 2.

Denote the role assignment function that always outputs
the mapping with the lexicographically smallest cost as fv .
Here we provide an informal proof sketch that fv is a valid
role assignment; we provide a longer, more thorough deriva-
tion in Appendix A.
Theorem 1. fv is a valid role assignment function.

It is trivial to see that fv minimizes the longest distance
traveled by any agent (Property 1) as the lexicographical or-
dering of distance tuples sorted in descending order ensures
this. If two agents in a mapping are to collide (Property 2)
it can be shown, through the triangle inequality, that fv will
find a lower cost mapping as switching the two agents’ tar-
gets reduces the maximum distance either must travel. Fi-
nally, as we assume all agents move toward their targets

Figure 2: Lowest lexicographical cost (shown with arrows) to
highest cost ordering of mappings from agents (A1,A2,A3) to role
positions (P1,P2,P3). Each row represents the cost of a single map-
ping.

1:
√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√
2 (A3→P3), 1 (A2→P1)

3:
√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√
5 (A2→P3), 2 (A1→P2),

√
2 (A3→P1)

5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

at the same constant rate, the distance between any agent
and target will not decrease any faster than the distance be-
tween an agent and the target it is assigned to. This observa-
tion serves to preserve the lowest cost lexicographical or-
dering of the chosen mapping by fv across all timesteps
thereby providing dynamic consistency (Property 3). Sec-
tion 4.3 presents an algorithm that implements fv .

4.3 Dynamic Programming Algorithm for Role
Assignment

In UT Austin Villa’s basic formation, presented in Section 3,
there are nine different roles for each of the nine agents on
the field. The goalie always fills the goalie role and the on-
Ball role is assigned to the player closest to the ball. The
other seven roles must be mapped to the agents by fv . Ad-
ditionally, when the goalie is closest to the ball, the goalie
takes on both the goalie and onBall roles causing us to cre-
ate an extra goalieReplacement role positioned right in front
of the team’s goal. When this occurs the size of the mapping
increases to eight agents mapped to eight roles. As the to-
tal number of mapping permutations is n!, this creates the
possibility of needing to evaluate 8! different mappings.

Clearly fv could be implemented using a brute force
method to compare all possible mappings. This implemen-
tation would require creating up to 8! = 40, 320 mappings,
then computing the cost of each of the mappings, and fi-
nally sorting them lexicographically to choose the smallest
one. However, as our agent acts in real time, and fv needs
to be computed during a decision cycle (20 ms), a brute
force method is too computationally expensive. Therefore,
we present a dynamic programming implementation shown
in Algorithm 1 that is able to compute fv within the time
constraints imposed by the decision cycle’s length.

Theorem 2. Let A and P be sets of n agents and positions
respectively. Denote the mapping m := fv(A,P ). Let m0

be a subset of m that maps a subset of agents A0 ⊂ A to a
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Algorithm 1 Dynamic programming implementation
1: HashMap bestRoleMap = ∅
2: Agents = {a1, ..., an}
3: Positions = {p1, ..., pn}
4: for k = 1 to n do
5: for all a in Agents do
6: S =

(n−1
k−1

)
sets of k − 1 agents from Agents− {a}

7: for all s in S do
8: Mapping m0 = bestRoleMap[s]

9: Mapping m = (a→ pk) ∪mo

10: bestRoleMap[a ∪ s] = mincost(m, bestRoleMap[a ∪ s])

11: return bestRoleMap[Agents]

{P1} {P2,P1} {P3,P2,P1}
A1→P1 A1→P2, fv(A2→P1) A1→P3, fv({A2,A3}→{P1,P2})
A2→P1 A1→P2, fv(A3→P1) A2→P3, fv({A1,A3}→{P1,P2})
A3→P1 A2→P2, fv(A1→P1) A3→P3, fv({A1,A2}→{P1,P2})

A2→P2, fv(A3→P1)
A3→P2, fv(A1→P1)
A3→P2, fv(A2→P1)

Table 1: All mappings evaluated during dynamic programming
using Algorithm 1 when computing an optimal mapping of agents
A1, A2, and A3 to positions P1, P2, and P3. Each column contains
the mappings evaluated for the set of positions listed at the top of
the column.

subset of positions P0 ⊂ P . Then m0 is also the mapping
returned by fv(A0, P0).

A key recursive property of fv that allows us to exploit dy-
namic programming is expressed in Theorem 2. This prop-
erty stems from the fact that if within any subset of a map-
ping a lower cost mapping is found, then the cost of the com-
plete mapping can be reduced by augmenting the complete
mapping with that of the subset’s lower cost mapping. The
savings from using dynamic programming comes from only
evaluating mappings whose subset mappings are returned
by fv . This is accomplished in Algorithm 1 by iteratively
building up optimal mappings for position sets from {p1} to
{p1, ..., pn}, and using optimal mappings of k − 1 agents to
positions {p1, ..., pk−1} (line 8) as a base when construct-
ing each new mapping of k agents to positions {p1, ..., pk}
(line 9), before saving the lowest cost mapping for the cur-
rent set of k agents to positions {p1, ..., pk} (line 10).

An example of the mapping combinations evaluated in
finding the optimal mapping for three agents through the dy-
namic programming approach of Algorithm 1 can be seen in
Table 1. In this example we begin by computing the distance
of each agent to our first role position. Next we compute the
cost of all possible mappings of agents to both the first and
second role positions and save off the lowest cost mapping
of every pair of agents to the the first two positions. We then
proceed by sequentially assigning every agent to the third
position and compute the lowest cost mapping of all agents
mapped to all three positions. As all subsets of an optimal
(lowest cost) mapping will themselves be optimal, we need
only evaluate mappings to all three positions which include
the previously calculated optimal mapping agent combina-
tions for the first two positions.

Recall that during the kth iteration of the dynamic pro-
gramming process to find a mapping for n agents, where

k is the current number of positions that agents are being
mapped to, each agent is sequentially assigned to the kth
position and then all possible subsets of the other n − 1
agents are assigned to positions 1 to k − 1 based on com-
puted optimal mappings to the first k − 1 positions from the
previous iteration of the algorithm. These assignments result
in a total of

(
n−1
k−1
)

agent subset mapping combinations to be
evaluated for mappings of each agent assigned to the kth
position. The total number of mappings computed for each
of the n agents across all n iterations of dynamic program-
ming is thus equivalent to the sum of the n − 1 binomial
coefficients. That is,

n∑
k=1

(
n− 1

k − 1

)
=

n−1∑
k=0

(
n− 1

k

)
= 2n−1

Therefore the total number of mappings that must be eval-
uated using our dynamic programming approach is n2n−1.
For n = 8 we thus only have to evaluate 1024 mappings
which takes about 3.3 ms for each agent to compute com-
pared to upwards of 50 ms using a brute force approach to
evaluate all possible mappings.4 For future competitions it
is projected that teams will increase to 11 agents to match
that of actual soccer. In this case, where n = 10, the number
of mappings to evaluate will only increase to 5120 which is
drastically less than the brute force method of evaluating all
possible 10! = 3, 628, 800 mappings.

4.4 Voting Coordination System
In order for agents on a team to assume correct positions on
the field they all must coordinate and agree on which map-
ping of agents to roles to use. If every agent had perfect in-
formation of the locations of the ball and its teammates this
would not be a problem as each could independently cal-
culate the optimal mapping to use. Agents do not have per-
fect information, however, and are limited to noisy measure-
ments of the distance and angle to objects within a restricted
vision cone (120◦). Fortunately agents can share informa-
tion with each other every other simulation cycle (40 ms).
The bandwidth of this communication channel is very lim-
ited, however, as only one agent may send a message at a
time and messages are limited to 20 bytes.

We utilize the agents’ limited communication bandwidth
in order to coordinate role mappings as follows. Each agent
is given a rotating time slice to communicate information,
as in (Stone and Veloso 1999), which is based on the uni-
form number of an agent. When it is an agent’s turn to send
a message it broadcasts to its teammates its current position,
the position of the ball, and also what it believes the optimal
mapping should be. By sending its own position and the po-
sition of the ball, the agent provides necessary information
for computing the optimal mapping to those of its teammates
for which these objects are outside of their view cones. Shar-
ing the optimal mapping of agents to role positions enables
synchronization between the agents, as follows.

First note that just using the last mapping received is dan-
gerous, as it is possible for an agent to report inconsistent

4As measured on an Intel Core 2 Duo CPU E8500 @3.16GHz.
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mappings due to its noisy view of the world. This can eas-
ily occur when an agent falls over and accumulates error in
its own localization. Additionally, messages from the server
are occasionally dropped or received at different times by
the agents preventing accurate synchronization. To help ac-
count for inconsistent information, a sliding window of re-
ceived mappings from the last n time-slots is kept by each
agent where n is the total number of agents on a team. Each
of these kept messages represents a single vote by each of
the agents as to which mapping to use. The mapping chosen
is the one with the most votes or, in the case of a tie, the
mapping tied for the most votes with the most recent vote
cast for it. By using a voting system, the agents on a team
are able to synchronize the mapping of agents to role posi-
tions in the presence of occasional dropped messages or an
agent reporting erroneous data. As a test of the voting system
the number of cycles all nine agents shared a synchronized
mapping of agents to roles was measured during 5 minutes
of gameplay (15,000 cycles). The agents were synchronized
100% of the time when using the voting system compared to
only 36% of the time when not using the voting system.

5 Collision Avoidance
Although the positioning system discussed in Section 4 is
designed to avoid assigning agents to positions that might
cause them to collide, external factors outside of the sys-
tem’s control, such as falls and the movement of the op-
posing team’s agents, still result in occasional collisions. To
minimize the potential for these collisions the agents em-
ploy an active collision avoidance system. When an obsta-
cle, such as a teammate, is detected in an agent’s path the
agent will attempt to adjust its path to its target in order to
maneuver around the obstacle. This adjustment is accom-
plished by defining two thresholds around obstacles: a prox-
imity threshold at 1.25 meters and a collision threshold at
.5 meters from an obstacle. If an agent enters the proximity
threshold of an obstacle it will adjust its course to be tangent
to the obstacle thereby choosing to circle around to the right
or left of said obstacle depending on which direction will
move the agent closer to its desired target. Should the agent
get so close as to enter the collision proximity of an obstacle
it must take decisive action to prevent an otherwise immi-
nent collision from occurring. In this case the agent com-
bines the corrective movement brought about by being in
the proximity threshold with an additional movement vec-
tor directly away from the obstacle. Figure 3 illustrates the
adjusted movement of an agent when avoiding a collsion.

6 Formation Evaluation
To test how our formation and role positioning system5 af-
fects the team’s performance we created a number of teams
to play against by modifying the base positioning system
and formation of UT Austin Villa.

5Video demonstrating our positioning system can be found
online at
http://www.cs.utexas.edu/∼AustinVilla/sim/3dsimulation/
AustinVilla3DSimulationFiles/2011/html/positioning.html

Figure 3: Collision avoidance examples where agent A is travel-
ing to target T but wants to avoid colliding with obstacle O. The
left diagram shows how the agent’s path is adjusted if it enters the
proximity threshold of the obstacle while the right diagram depicts
the agent’s movement when entering the collision threshold. The
dotted arrow is the agent’s desired path while the solid arrow is the
agent’s corrected path to avoid a collision.

UT Austin Villa Base agent using the dynamic role positioning
system described in Section 4 and formation in Section 3.

NoCollAvoid No collision avoidance.
AllBall No formations and every agent except for the goalie goes

to the ball.
NoTeamwork Similar to AllBall except that collision avoidance is

also turned off such that agents disregard their teammates when
going for the ball.

NoCommunication Agents do not communicate with each other.
Static Each role is statically assigned to an agent based on its uni-

form number.
Defensive Defensive formation in which only two agents are in the

offensive group (one on the ball and the other directly behind the
ball).

Offensive Offensive formation in which all agents except for the
goalie are positioned in a close symmetric formation behind the
ball.

Boxes Field is divided into fixed boxes and each agent is dynami-
cally assigned to a home position in one of the boxes. Similar to
system used in (Stone and Veloso 1999).

NearestStopper The stopper role position is mapped to nearest
agent.

PathCost Agents add in the cost of needing to walk around known
obstacles (using collision avoidance from Section 5), such as
the ball and agent assuming the onBall role, when computing
distances of agents to role positions.

PositiveCombo Combination of Offensive, PathCost, and Near-
estStopper attributes.

Results of UT Austin Villa playing against these modified
versions of itself are shown in Table 2. The UT Austin Villa
agent is the same agent used in the 2011 competition, except
for a bug fix,6 and so the data shown does not directly match
with earlier released data in (MacAlpine et al. 2012). Also
shown in Table 2 are results of the modified agents playing
against the champion (Apollo3D) and runner-up (CIT3D) of
the 2011 RoboCup China Open. These agents were chosen
as reference points as they are two of the best teams available
with CIT3D and Apollo3D taking second and third place
respectively at the main RoboCup 2011 competition. The

6A bug in collision avoidance present in the 2011 competition
agent where it always moved in the direction away from the ball to
avoid collisions was fixed.
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Table 2: Full game results, averaged over 100 games. Each row
corresponds to an agent with varying formation and positioning
systems as described in Section 6. Entries show the goal difference
(row− column) from 10 minute games versus our base agent, using
the dynamic role positioning system described in Section 4 and
formation in Section 3, as well as the Apollo3D and CIT3D agents
from the 2011 RoboCup China Open. Values in parentheses are the
standard error.

UTAustinVilla Apollo3D CIT3D
PositiveCombo 0.33 (.07) 2.16 (.11) 4.09 (.12)

Offensive 0.21 (.09) 1.80 (.12) 3.89 (.12)
AllBall 0.09 (.08) 1.69 (.13) 3.56 (.13)

PathCost 0.07 (.07) 1.27 (.11) 3.25 (.11)
NearestStopper 0.01 (.07) 1.26 (.11) 3.21 (.11)
UTAustinVilla — 1.05 (.12) 3.10 (.12)

Defensive -0.05 (.05) 0.42 (.10) 1.71 (.11)
Static -0.19 (.07) 0.81 (.13) 2.87 (.11)

NoCollAvoid -0.21 (.08) 0.82 (.12) 2.84 (.12)
NoCommunication -0.30 (.06) 0.41 (.11) 1.94 (.10)

NoTeamwork -1.10 (.11) 0.33 (.15) 2.43 (.12)
Boxes -1.38 (.11) -0.82 (.13) 1.52 (.11)

China Open occurred after the main RoboCup event during
which time both teams improved (Apollo3D went from los-
ing by an average of 1.83 to 1.05 goals and CIT3D went
from losing by 3.75 to 3.1 goals on average when playing
100 games against our base agent).

Several conclusions can be made from the game data in
Table 2. The first of these is that it is really important to be
aggressive and always have agents near the ball. This finding
is shown in the strong performance of the Offensive agent.
In contrast to an offensive formation, we see that a very de-
fensive formation used by the Defensive agent hurts perfor-
mance likely because, as the saying goes, the best defense is
a good offense. The poor performance of the Boxes agent, in
which the positions on the field are somewhat static and not
calculated as relative offsets to the ball, underscores the im-
portance of being around the ball and adjusting positions on
the field based on the current state of the game. The likely
reason for the success of offensive and aggressive forma-
tions grouped close to the ball is because few teams in the
league have managed to successfully implement advanced
passing strategies, and thus most teams primarily rely on
dribbling the ball. Should a team develop good passing skills
then a spread out formation might become useful.

The NearestStopper agent was created after noticing that
the stopper role is a very important position on the field so
as to always have an agent right behind the ball to prevent
breakaways and block kicks toward the goal. Ensuring that
the stopper role is filled as quickly as possible improved per-
formance slightly. This result is another example of added
aggression improving game performance.

Another factor in team performance that shows up in the
data from Table 2 is the importance of collision avoidance.
Interestingly the AllBall agent did almost as well as the Of-
fensive agent even though it does not have a set formation.
While this result might come as a bit of surprise, collision
avoidance causes the AllBall agent to form a clumped up
mass around the ball which is somewhat similar to that of
the Offensive agent’s formation. For the strategy of all the

agents running to the ball to work well it is imperative to
have good collision avoidance. This conclusion is evident
from the poor performance of the NoTeamwork agent where
collision avoidance is turned off with everyone running to
the ball, as well as from a result in (MacAlpine et al. 2012)
where the AllBall agent lost to the base agent by an average
of .43 goals when both agents had a bug in their collision
avoidance systems. Turning off collision avoidance, but still
using formations, hurts performance as seen in the results
of the NoCollAvoid agent. Additionally the PathCost agent
showed an improvement in gameplay by factoring in known
obstacles that need to be avoided when computing the dis-
tance required to walk to each target.

Another noteworthy observation from the data in Table 2
is that dynamically assigning roles is better than statically
fixing them. This finding is clear in the degradation in per-
formance of the Static agent. It is important that the agents
are synchronized in their decision as to which mapping of
agents to roles to use, however, as is noticeable by the dip in
performance of the NoCommunication agent which does not
use the voting system presented in Section 4.4 to synchro-
nize mappings. The best performing agent, that being the
PositiveCombo agent, demonstrates that the most successful
agent is one which employs an aggressive formation coupled
with synchronized dynamic role switching, path planning,
and good collision avoidance. While not shown in Table 2,
the PositiveCombo agent beat the AllBall agent (which only
employs collision avoidance and does not use formations or
positioning) by an average of .31 goals across 100 games
with a standard error of .09. This resulted in a record of
43 wins, 20 losses, and 37 ties for the PositiveCombo agent
against the AllBall agent.

7 Summary and Discussion
We have presented a dynamic role assignment and forma-
tion positioning system for use with autonomous mobile
robots in the RoboCup 3D simulation domain — a physi-
cally realistic environment that is partially observable, non-
deterministic, noisy, and dynamic. This positioning system
was a key component in UT Austin Villa7 winning the 2011
RoboCup 3D simulation league competition.

For future work we hope to add passing to our strategy and
then develop formations for passing, possibly through the
use of machine learning. Additionally we intend to look into
ways to compute fv more efficiently as well as explore other
potential functions for mapping agents to role positions.
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Appendix
A Role Assignment Function fv

The following is a more in depth analysis of the the role
assignment function fv described in Section 4.2.

A.1 Minimizing Longest Distance
Having all agents quickly reach the target destinations of a
formation is important for proper strategy execution, par-
ticularly that of set plays for game stoppages discussed
in (MacAlpine et al. 2011) where there is a set time limit

Figure 4: Example collision scenario. If the mapping
(A1→P2,A2→P1) is chosen the agents will follow the dot-
ted paths and collide at the point marked with a C. Instead fv
will choose the mapping (A1→P1,A2→P2), as this minimizes
maximum path distances, and the agents will follow the path
denoted by the solid arrows thereby avoiding the collision.

of 15 seconds before play resumes. It is trivial to determine
that fv selects a mapping of agents to role positions that min-
imizes the time for all agents to have reached their target
destinations. The total time it takes for all agents to move to
their desired positions is determined by the time it takes for
the last agent to reach its target position. As the first compar-
ison between mapping costs is the maximum distance that
any single agent in a mapping must travel, and it is assumed
that all agents move toward their targets at the same constant
rate, the property of minimizing the longest distance holds
for fv .

A.2 Avoiding Collisions

Given the assumptions that no two agents and no two role
positions occupy the same position on the field, and that all
agents move toward role positions along a straight line at
the same constant speed, if two agents collide it means that
they both started moving from positions that are the same
distance away from the collision point. Furthermore if either
agent were to move to the collision point, and then move to
the target of the other agent, its total path distance to reach
that target would be the same as the path distance of the other
agent to that same target. Considering that we are working in
a Euclidean space, by the triangle inequality we know that
the straight path from the first agent to the second agent’s
target will be less than the path distance of the first agent
moving to the collision point and then moving on to the sec-
ond agent’s target (which is equal to the distance of the sec-
ond agent moving on a straight line to its target). Thus if the
two colliding agents were to switch targets the maximum
distance either is traveling will be reduced, thereby reducing
the cost of the mapping, and the collision will be avoided.
Figure 4 illustrates an example of this scenario.

The following is a proof sketch related to Figure 4 that no
collisions will occur.
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Assumption. Agents A1 and A2 move at constant velocity v on
straight line paths to static positions P2 and P1 respectively. A1 6=
A2 and P1 6= P2. Agents collide at point C at time t.

Claim. A1→P2 and A2→P1 is an optimal mapping returned by
fv .

Case 1. P1 and P2 6= C.
By assumption:
A1C = A2C = vt
A1P2 = A1C + CP2 = A2C + CP2

A2P1 = A2C + CP1 = A1C + CP1

By triangle inequality:
A1P1 < A1C + CP1 = A2P1

A2P2 < A2C + CP2 = A1P2

max(A1P1, A2P2) < max(A1P2, A2P1)
∴ cost(A1 → P1, A2 → P2) < cost(A1 → P2, A2 → P1)
and claim is False.

Case 2. P1 = C, P2 6= C.
By assumption:
CP2 > CP1 = 0
A2C ≤ A1C = vt
A1P1 = A1C < A1C + CP2 = A1P2

By triangle inequality:
if A1C = A2C

A2P2 < A2C + CP2 = A1C + CP2 = A1P2

otherwise A2C < A1C
A2P2 ≤ A2C + CP2 < A1C + CP2 = A1P2

max(A1P1, A2P2) < max(A1P2, A2P1)
∴ cost(A1 → P1, A2 → P2) < cost(A1 → P2, A2 → P1)
and claim is False

Case 3. P2 = C, P1 6= C.
Claim False by corollary to Case 2.

Case 4. P1, P2 = C.
Claim False by assumption.

As claim is False for all cases fv does not return mappings with
collisions.

A.3 Dynamic Consistency
Dynamic consistency is important such that as agents move
toward fixed target role positions they do not continually
switch or thrash between roles and never reach their target
positions. Given the assumption that all agents move toward
target positions at the same constant rate, all distances to tar-
gets in a mapping of agents to role positions will decrease at
the same constant rate as the agents move until becoming
0 when an agent reaches its destination. Considering that
agents move toward their target positions on straight line
paths, it is not possible for the distance between any agent
and any role position to decrease faster than the distance be-
tween an agent and the role position it is assigned to move
toward. This means that the cost of any mapping can not
improve over time any faster than the lowest cost mapping
being followed, and thus dynamic consistency is preserved.
Note that it is possible for two mappings of agents to role
positions to have the same cost as the case of two agents
being equidistant to two role positions. In this case one of
the mappings may be arbitrarily selected and followed by

Figure 5: Example where minimizing the sum of path dis-
tances fails to hold desired properties. Both mappings of
(A1→P1,A2→P2) and (A1→P2,A2→P1) have a sum of distances
value of 8. The mapping (A1→P2,A2→P1) will result in a col-
lision and has a longer maximum distance of 6 than the mapping
(A1→P1,A2→P2) whose maximum distance is 4. Once a mapping
is chosen and the agents start moving the sum of distances of the
two mappings will remain equal which could result in thrashing
between the two.

Figure 6: Example where minimizing the sum of path distances
squared fails to hold desired property of minimizing the time for
all agents to have reached their target destinations. The mapping
(A1→P1,A2→P2) has a path distance squared sum of 19 which
is less than the mapping (A1→P2,A2→P1) for which this sum is
27. fv will choose the mapping with the greater sum as its maxi-
mum path distance (proportional to the time for all agents to have
reached their targets) is

√
17 which is less than the other mapping’s

maximum path distance of
√
18.

the agents. As soon as the agents start moving the selected
mapping will acquire and maintain a lower cost than the un-
selected mapping. The only way that the mappings could
continue to have the same cost would be if the two role posi-
tions occupy the same place on the field, however, as stated
in the given assumptions for fv , this is not allowed.

A.4 Other Role Assignment Functions
Other potential ordering heuristics for mappings of agents
to target positions include both minimizing the sum of all
distances traveled and also minimizing the sum of all path
distances squared. Neither of these heuristics preserve all
the desired properties which are true for fv . As can be seen
in the example given in Figure 5, none of the three prop-
erties hold when minimizing the sum of all path distances.
The third property of all agents having reached their target
destinations is not true when minimizing the sum of path
distances squared as shown in the example in Figure 6.
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