
Using Classical Planners to Solve
Conformant Probabilistic Planning Problems

Ran Taig and Ronen I. Brafman
Computer Science Department

Ben Gurion University of The Negev
Beer-Sheva, Israel 84105
taig,brafman@cs.bgu.ac.il

Abstract
Motivated by the success of the translation-based approach
for conformant planning, introduced by Palacios and Geffner,
we present two variants of a new compilation scheme from
conformant probabilistic planning problems (CPP) to vari-
ants of classical planning. In CPP, we are given a set of ac-
tions – which we assume to be deterministic in this paper, a
distribution over initial states, a goal condition, and a value
0 < p ≤ 1. Our task is to find a plan π such that the goal
probability following the execution of π in the initial state
is at least p. Our first variant translates CPP into classical
planning with resource constraints, in which the resource rep-
resents probabilities of failure. The second variant translates
CPP into cost-optimal classical planning problems, in which
costs represents probabilities. Empirically, these techniques
show mixed results, performing very well on some domains,
and poorly on others. This indicates that compilation-based
technique are a feasible and promising direction for solving
CPP problems and, possibly, more general probabilistic plan-
ning problems.

Introduction
An important trend in research on planning under uncer-
tainty is the emergence of planners that utilize an underly-
ing classical, deterministic planner to solve more complex
problems. Two highly influential examples are the replan-
ning approach (Yoon, Fern, and Givan 2007) in which an
underlying classical planner is used to solve MDPs by re-
peatedly generating plans for a determinized version of the
domain, and the translation-based approach for conformant
(Palacios and Geffner 2009) and contingent planning (Al-
bore, Palacios, and Geffner 2009), where a problem featur-
ing uncertainty about the initial state is transformed into a
classical problem on a richer domain. Both approaches have
drawbacks: replanning can yield bad results given dead-ends
and low-valued, less likely states. The translation-based ap-
proach can blow-up in size given complex initial belief states
and actions. In both cases, however, there are efforts to im-
prove these methods, and the reliance on fast, off-the-shelf,
classical planners seem to be very useful.

This paper continues this trend, leveraging the translation-
based approach of (Palacios and Geffner 2009) to han-
dle a quantitative version of conformant planning, in which

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

there is a probability distribution over the initial state of the
world, although actions remain deterministic. The task now
is to attain the goal condition with certain probability, rather
than with certainty. More generally, conformant probabilis-
tic planning (CPP) allows for stochastic actions, but as in
earlier work, we focus on the simpler case of deterministic
actions. Unlike our earlier work (Brafman and Taig 2011),
which reduces CPP into a Metric Planning problem, we of-
fer two closely related reductions of CPP into more common
variants of classical planning.

The key to understanding our translation is the observa-
tion that a successful solution plan for a deterministic CPP
problem is a conformant plan w.r.t. a (probabilistically) suf-
ficiently large set of initial states. Hence, a possible solution
method would be to ”guess” this subset, and then solve the
conformant planning problems it induces. Both our methods
essentially generate a conformant planning problem with ad-
ditional operators that allow the planner to select the set
of states on which it will ”plan”. Without additional con-
straints, the planner can simply guess an empty initial state,
or a singleton, and plan for it. We offer two alternative meth-
ods for enforcing these constraints. The first method uses re-
sources constraints. In this method, the planner is provided
with some ”probabilistic” resource it can spend. If θ is the
desired probability of success, then the planner has 1 − θ
units of ”probability” to spend. The planner can spend this
resource on ignoring initial states. It pays Pr(s) to ignore
a state s. An optimal plan for this problem would thus be
the shortest plan that satisfies the resource constraints and
attains the goal.

A second variant of this translation scheme reduces
the problem to cost-optimal planning. As in the resource-
constrained planning reduction, we add actions that tell the
planner to ”ignore” an initial state. An action that ignores
state s costs Pr(s); all other actions have zero (or ε cost).
Consequently, the cost-optimal plan is a plan with the high-
est probability of success. Thus, while the first method at-
tempts to find a good, valid plan quickly, the second method
attempts to find the most probable plan, possibly sacrificing
planning time.

Semantically, both methods described above map CPP
into resource-constrained or cost-optimal conformant plan-
ning. Practically, this is done utilizing the KT,M translation
from conformant to classical planning (Palacios and Geffner

65

Problem Solving Using Classical Planners
AAAI Technical Report WS-12-12

2009).
To assess our proposed translation schemes, we conduct

a preliminary comparison between them, PFF (Domshlak
and Hoffmann 2007) and PTP (Brafman and Taig 2011),
which are the state of the art in CPP. The results are mixed,
showing no clear winner. We believe they indicate that the
transformation approach is a promising technique for solv-
ing probabilistic planning problems, worthy of additional at-
tention.

Background
Conformant Probabilistic Planning
The probabilistic planning framework we consider adds
probabilistic uncertainty to a subset of the classical ADL
language, namely (sequential) STRIPS with conditional ef-
fects. Such STRIPS planning tasks are described over a
set of propositions P as triples (A, I,G), corresponding to
the action set, initial world state, and goals. I and G are
sets of propositions, where I describes a concrete initial
state wI , while G describes the set of goal states w ⊇ G.
An action a is a pair (pre(a), E(a)) of the precondition
and the (conditional) effects. A conditional effect e is a
triple (con(e), add(e), del(e)) of (possibly empty) proposi-
tion sets, corresponding to the effect’s condition, add, and
delete lists, respectively. The precondition pre(a) is also a
proposition set, and an action a is applicable in a world state
w if w ⊇ pre(a). If a is not applicable in w, then the result
of applying a to w is undefined. If a is applicable in w, then
all conditional effects e ∈ E(a) withw ⊇ con(e) occur. Oc-
currence of a conditional effect e in w results in the world
state w∪add(e)\del(e), which we denote by a(w). We will
use ā(w) to denote the state resulting from the sequence of
actions ā in world state w.

If an action a is applied to w, and there is a proposition q
such that q ∈ add(e)∩del(e′) for (possibly the same) occur-
ring e, e′ ∈ E(a), the result of applying a in w is undefined.
Thus, actions cannot be self-contradictory, that is, for each
a ∈ A, and every e, e′ ∈ E(a), if there exists a world state
w ⊇ con(e) ∪ con(e′), then add(e) ∩ del(e′) = ∅. Finally,
an action sequence a is a plan if the world state that results
from iterative execution of a(wI) ⊇ G.

Our probabilistic planning setting extends the above with
probabilistic uncertainty about the initial state. In its most
general form, CPP covers stochastic actions as well, but we
leave this to future work. Conformant probabilistic plan-
ning tasks are 5-tuples (V,A, bI , G, θ), corresponding to the
propositions set, action set, initial belief state, goals, and ac-
ceptable goal satisfaction probability. As before, G is a set
of propositions. The initial state is no longer assumed to be
known precisely. Instead, we are given a probability distri-
bution over the world states, bI , where bI(w) describes the
likelihood of w being the initial world state.

There is no change in the definition of actions and their
applications in states of the world. But since we now work
with belief states, actions can also be viewed as transform-
ing one belief state to another. The likelihood [b, a] (w′) of
a world state w′ in the belief state [b, a], resulting from ap-
plying action a in belief state b, is given by [b, a] (w′) =

∑
a(w)=w′ b(w).
We will also use the notation [b, a] (ϕ) to denote∑
a(w)=w′,w′|=ϕ b(w), and we somewhat abuse notation and

write [b, a] |= ϕ for the case where [b, a] (ϕ) = 1.
For any action sequence a ∈ A∗, and any belief state b, the

new belief state [b, a] resulting from applying a at b is given

by [b, a] =


b, a = 〈〉
[b, a] , a = 〈a〉, a ∈ A
[[b, a] , a′] , a = 〈a〉 · a′, a ∈ A, a′ 6= ∅

..

In such setting, achieving G with certainty is typically un-
realistic. Hence, θ specifies the required lower bound on the
probability of achievingG. A sequence of actions a is called
a plan if we have ba(G) ≥ θ for the belief state ba = [bI , a].
Because our actions are deterministic, this is essentially say-
ing that a is a plan if Pr({w : a(w) |= G}) ≥ θ, i.e,. the
weight of the initial states from which the plan reaches the
goal is at least θ.

Related Work
The best current probabilistic conformant planner is Proba-
bilistic FF (PFF) (Domshlak and Hoffmann 2007). The ba-
sic ideas underlying Probabilistic-FF are:

1. Define time-stamped Bayesian Networks (BN) describing
probabilistic belief states.

2. Extend Conformant-FF’s belief state to model these BN.

3. In addition to the SAT reasoning used by Conformant-
FF (Hoffmann and Brafman 2006), use weighted model-
counting to determine whether the probability of the (un-
known) goals in a belief state is high enough.

4. Introduce approximate probabilistic reasoning into
Conformant-FF’s heuristic function.

PFF results were partially improved by the PTP planner
(Brafman and Taig 2011). Our work is close in spirit to
PTP . PTP compiles CPP into a metric planning problem
in which the numeric variables represent the probabilities
of various propositions and actions update this information.
For every variable p, they maintain a numeric variable Prp
that holds the probability of p in the current state. They also
maintain variables of the form p/t that capture conditional
knowledge. If an action adds p/t, then the value of Prt is
increased by the probability of t. Similar information about
the probability of the goal is updated with a Prgoal variable,
and the goal in this metric planning problem is: Prgoal ≥ θ.
We compare our methods to theirs below. The main a-priori
advantage of our approach is the reduction to planning prob-
lems that are more ”classical.” Cost-optimal planning has re-
ceived much attention in recent years, and we hope to take
advantage of improvements in this area to improve our abil-
ity to solve the CPP problem.

An earlier attempt to deal with probabilities by reducing it
to action costs appears in (Jiménez et al. 2006) in the context
of probabilistic planning problems where actions have prob-
abilistic effects but there is no uncertainty about the initial
state. The probabilistic problem is compiled into a classical
problem where each possible effect e is now represented by
a unique action and the cost associated with this action is set

66

to be 1 − Pre. That value captures the amount of risk the
planner takes when choosing that action, which equals the
probability the effect won’t take place if the original action
would have been executed. This value needs, of course, to
be minimized by the cost-optimal planner. Our second com-
pilation scheme uses related ideas but deals with uncertainty
about the initial state, and comes with correctness guaran-
tees.

Closely related to our work is the CLG+ planner (Albore
and Geffner 2009). This planner attempts to solve contin-
gent planning problems in which goal achievement cannot
be guaranteed. Thus, gradually, this planner makes assump-
tions that reduce the uncertainty, and allow it to plan. This
is achieved by adding special actions, much like ours, that
”drop” a tag, i.e., assume its value is impossible. These ac-
tions are associated with a high cost. The main difference,
of course, with our planner is that the cost we associate with
assumption-making actions reflects the probability of the
states ruled out, allowing us to model probabilistic planning
problems as cost-optimal planning. Furthermore, our plan-
ner may decide (depending on the search procedure used) to
come up with a sub-optimal plan, albeit one that meets the
desired probabilistic threshold, even when a full conformant
plan exists. This flexibility allows us to trade-off computa-
tional efficiency with probability of success.

Resource constrained classical planning
Resource constrained planning is a well known extension
of classical planning that models problems in which ac-
tions consume resources, such as time, energy, etc., and the
agent must achieve the goal using some initial amount of re-
sources. Here we follow the formulation of (Nakhost, Hoff-
mann, and Müller 2010) and (Haslum and Geffner 2001)
where a constrained resource planning task extends a simple
classical planning task with a set R of resource identifiers as
well as two functions:

• i : R→ R≥0, i(r) is the initial level of resource r ∈ R.

• u : (A × R) → R≥0, for each action a ∈ A and each
resource r ∈ R, u(a, r) is the amount of r consumed by
an execution of a.

A state s̄ is a pair (s, rem) where rem ∈ R≥0|R| holds
the remaining amount of each resource when reaching s. To
execute action a in s̄, its preconditions must hold in s, and
for every resource r, its value in remmust be at least as high
as the amount of this resource consumed by a.

The Translation Approach
We present here a modified version of the translation-based
method of (Palacios and Geffner 2009), adapted to our set-
tings. The essential idea behind the translation approach to
conformant planning implemented in the T0 planner is to
reason by cases. The different cases correspond to different
conditions on the initial state, or, equivalently, different sets
of initial states. These sets of states, or conditions, are cap-
tured by tags. That is, a tag is identified with a subset of bI .
Below we abuse notation often, treating a tag as the set of
initial states it defines.

With every proposition p, we associate a set of tags Tp.
We require that this set be deterministic and complete. We
say that Tp is deterministic if for every t ∈ Tp and any se-
quence of actions ā, the value of p is uniquely determined by
t, the initial belief state bI and ā. We say that Tp is complete
w.r.t. an initial belief state bI if bI ⊆

⋃
t∈Tp

t. That is, it
covers all possible relevant cases. We say that a set of tags is
disjoint when for every t 6= t′ ∈ Tp we have that t ∩ t′ = ∅.
We say that a set of tags is DCD if it is deterministic, com-
plete, and disjoint.

Once we compute the tags required for a proposition p,
(see below) we augment the set of propositions with new
propositions of the form p/t, where t is one of the possi-
ble tags for p. p/t holds the current value of p given that
the initial state satisfies the condition t. The value of each
proposition p/t is known initially – it reflects the value of
p in the initial states represented by t, and since we focus
on deterministic tags only, then p/t ∨ ¬p/t is a tautology
throughout. Our notation p/t differs a bit from theKp/t no-
tation of Palacios and Geffner. The latter is used to stress the
fact that these propositions are actually representing knowl-
edge about the belief state. However, because of our assump-
tion that tags are deterministic, we have that ¬Kp→ K¬p.
To stress this and remove the redundancy, we use a single
proposition p/t instead of two propositions Kp/t,K¬p/t.

The actions are transformed accordingly to maintain our
state of knowledge. Given the manner tags were selected, we
always know how an action would alter the value of some
proposition given any of its tags. Thus, we augment the de-
scription of actions to reflect this. If the actions are deter-
ministic (which we assume in this paper), then the change
to our state of knowledge is also deterministic, and we can
reflect it by altering the action description appropriately.

The resulting problem is a classical planning problem de-
fined on a larger set of variables. The size of this set depends
on the original set of variables and the number of tags we
need to add. Hence, an efficient tag generation process is
important. A trivial set of tags is one that contains one tag
for each possible initial state. Clearly, if we know the initial
state of the world, then we know the value of all variables
following the execution of any set of actions. However, we
can often do much better, as the value of each proposition at
the current state depends only on a small number of propo-
sitions in the initial state. This allows us to use many fewer
tags (=cases). In fact, the current value of different proposi-
tions depends on different aspects of the initial state. Thus,
in practice, we select different tags for each proposition. We
generate the tags for p by finding which literals are relevant
to its value using the following recursive definition:
1.p is relevant to p.
2. If q appears (possibly negated) in an effect condition c for
action A such that c → r and r contains p or ¬p then q is
relevant to p.
3.If r is relevant to q and q is relevant to p then r is relevant
to p.

Let Cp denote the set containing all the propositions rel-
evant to p. The set of tags consisting of one tag for every
possible assignment to Cp is DCD. This set can be reduced
farther, while remaining DCC, if we remove any tag that cor-

67

responds to an assignment to Cp which has probability 0 in
the initial state.

New Translation Schemes for CPP
Let P = (V,A, bI , G, θ) be the CPP given as input. Recall
that Tp is the set of tags for p. We use T to denote the entire
set of tags (i.e., ∪Tp). We will also assume a special distin-
guished tag, the empty set. We now present two compilation
methods for P .

Variant 1: CPP as resource constrained classical
planning (RCCP)
The basic motivation for this method is the understanding
that we can solve the problem by identifying a set of initial
states whose joint probability is greater or equal to θ, such
that we have a conformant plan from this set of states to the
goal. This plan is a solution to the CPP problem. We make
the identification of this set of states part of the planning pro-
cess. That is, the planner essentially decides which states to
ignore. By default, the other states are the states it plans for.
The joint probability of ignored states cannot exceed 1 − θ,
and the planner treats this probability as a resource it can
spend. This resource is consumed by special actions that es-
sentially tell the planner to ignore a state (or set of states).
Such an action consumes as much resource as the probabil-
ity of the states ignored. Technically, the ignored states make
it easier for the planner to obtain knowledge. Typically, we
say that the agent knows ϕ at a certain belief state, if ϕ holds
in all world states in this belief state. In the compilation ap-
proach such knowledge is added by applying ”inference” ac-
tions – actions that do not change the state of the world, but
rather deduce new information from existing information –
known as merge actions. Once a state has been ”ignored” by
an ”ignore” action, the merge actions effectively ignore it,
and deduce the information as if this state is not possible.
The Translation Scheme. Given P , we generate the
following resource constrained planning problem P̃ =

(Ṽ , Ã, Ĩ, G̃, R̃, i, u):
Variables: Ṽ = {p/t | p ∈ V, t ∈ Tp} ∪ {DROPt|t ∈ T}.
The first set of variables are as explained above. By con-
vention, we will use p to denote p/{}. These variables de-
note the fact that p holds unconditionally, i.e., in all possible
worlds. The second set of variables – Dropt – denotes the
fact that we can ignore tag t.
Initial State: Ĩ = {l/t | l is a literal, and t, I � l}. All valid
assumptions on the initial worlds captured by the special
variables. Note that all DROPt propositions are false.
Resources: We define single resource so that R̃ =
{”UISP”} (for unneeded initial states probability).
Resource initialization: i(UISP) = 1− θ. The planner is
limited by the unneeded states’ joint probability.
Goal State : G̃ = G. The goal must hold for all initial states.
Recall that what we call knowledge is not real knowledge,
because we allow ourselves to overlook the ignored states.
Actions: Ã = Ã1 ∪ Ã2 ∪ Ã3 ∪ Ã4 where:

• Ã1 = {ã | a ∈ A}: Essentially, the original set of actions.

– pre(ã) = pre(a). That is, to apply an action, its pre-
conditions must be known. Recalling that our notion of
knowledge is modulo ignored states, this means that we
allow for plan failure that stems from the execution of
an action without a proper precondition. This is unlike
previous CPP solvers.

– For every conditional effect (c → p) ∈ E(a) and for
every t ∈ T , ã contains: {c/t | c ∈ con} → {p/t}.
That is, for every possible tag t, if the condition holds
given t, so does the effect.

• Ã2 = {{p/t | t ∈ Tp} → p |p is a precondition of some
action a ∈ A or p ∈ G}. These are known as the merge
actions. They allow us to infer from conditional knowl-
edge about p, given certain sets of tags, absolute knowl-
edge about p. That is, if p holds given t, for an appropriate
set of tags, then p must hold everywhere.

• Ã3 = {Dropt | t ∈ T} where: pre(Dropt) =
{}, eff(Dropt) = {Dropt}. That is, the Dropt action
let’s us drop tag t, making DROPt true.

• Ã4 = {Assumep/t |p is a precondition of some ac-
tion a ∈ A or p ∈ G, t ∈ Tp} pre(Assumep/t) =
{DROPt}, eff(Assumep/t) = {p/t}.
That is, we can assume whatever we want about what is
true given a dropped tag.

• For each actionDropt ∈ Ã3, we set the resource function
as follows: u(UISP,Dropt) = PrI(t). All other actions
consume 0 resource.
Thus, essentially, using the DROPt action, the planner
decides to ”pay” some probability for dropping all initial
states that correspond to this tag. Once it drops a tag, it can
conclude whatever it wants given this tag. Thus, achiev-
ing the goal given a dropped tag is trivial. Because we
limit the resource level to 1−θ, for all other states, whose
weight is at least θ, the plan must truly achieve the goal.
If tags are DCD, our methods are sound and complete.
Soundness follows from the soundness result for con-
formant planning (Palacios and Geffner 2009). However,
there is a subtle point about the semantics of success in
CPP. In (Hoffmann and Brafman 2006) a successful plan
was required to be applicable to all possible initial states,
and successful on a subset with probability of θ or more.
We believe that a more sensible definition requires that
the plan be applicable and successful on a set state with
probability θ, but agnostic as to what happens on other
states. In principle, this gives us more flexibility, as any
plan that works under the former criteria works under
the latter. However, somewhat paradoxically, this requires
more from the relevance relation used to compute the set
of tags. Whereas previously, in Step 2 of the recursive rel-
evance relation, we did not need to consider the precon-
ditions of an action, but only its conditional effects (be-
cause preconditions had to hold with probability 1), now
we need to add preconditions of relevant actions to the set
of relevant propositions. This change can cause the width
of a planning problem to increase.

68

Completeness is less immediate. Intuitively, if the granu-
larity of the set of tags is too coarse, we may not be able to
express the assumptions under which a plan exists. That
is, either we can ignore too small a set of states, for which
no plan exists, or we ignore too large a set of states, whose
probability exceeds 1− θ.
It turns out that DCD suffices for completeness. The proof
is omitted due to space limitations, but the following ex-
ample illustrates the intuition. Suppose our goal is p ∧ q.
p is the only proposition relevant to p and q is the only
proposition relevant to q. Furthermore, assume that ini-
tially, the probability of p is 0.5 and the probability of q is
0.5 and the required success probability if 0.75. Imagine
that there exists a plan π that achieves the goal from all
states except the state satisfying p∧q (and thus, meets the
success criterion). In our language, we only have tags of
the form ”drop p”, ”drop ¬p”, ”drop q”, ”drop ¬q”. Any
one of them ”costs” 0.5, and thus cannot be used in a suc-
cessful plan. We claim that from the relevance relation,
it follows that π achieves the goal from all states. To see
this, notice that, by assumption, π achieves p from p∧¬q.
But q is not relevant to p, and hence π must achieve p
from p ∧ q, as well. Symmetrically, this holds for q as
well. More generally, we have:

Lemma 1 Let π̃ be a valid plan that solves P̃ . The plan π
obtained from π̃ by dropping all actions of type Ã2∪Ã3∪Ã4

is a valid solution plan for P . (Soundness)

Lemma 2 For every plan π that solves P there exists a plan
π∗ that solves P̃ such that π∗ extends π with actions from
Ã2 ∪ Ã3 ∪ Ã4 only. (completeness)

Variant 2: CPP as cost-optimal Planning
CPP is a decision problem – find a plan with suitable success
probability. Rather than solve this problem directly, we solve
the optimization problem of finding a plan with the high-
est probability of success. Practically, this is often a harder
problem, and in certain applications we may not care about
finding such a solution because it may be much longer to
generate, and possibly much longer to execute then an alter-
native, short solution that is not optimal. Nevertheless, much
effort has been invested in cost-optimal planning, and we
hope to leverage the improvements in this area.

The underlying ideas are essentially the same as the pre-
vious method, except that we attempt to find a plan that uses
a minimal amount of the resource. Since there is a single
resource, we can simply model the resource consuming ac-
tions as action with a cost that equals their resource con-
sumption. Actions that do not consume resource have cost
0.1 We use P̂ to denote the optimal-cost planning problem
induced from P using this method. A solution to P̂ will
make the least costly assumptions possible, and hence will
work on the (probabilistically) largest set of initial states.

1In practice, we set the cost of all other actions to some very
small ε (0.001) because we found cost-optimal planner have diffi-
culty handling 0-cost actions.

The following results hold for this translation method,
again, under the assumption of deterministic, complete, and
disjoint set of tags.

Lemma 3 Let π̂ be a valid plan that solves P̂ . The plan π
obtained from π̂ by dropping all actions of type Ã2 ∪ Ã3 ∪
Ã4 is the solution plan for P with the largest probability of
success.
Lemma 4 Let π be a solution plan for P . Then, the solution
to P̂ achievesGwith probability of at least θ (After dropping
all non original actions).

Example
We illustrate the ideas behind our first method using
an example adapted from (Palacios and Geffner 2009)
and (Brafman and Taig 2011). In this problem we need to
move an object from the origin to a destination on a linear
grid of size 4. There are two actions: pick(l) picks an object
from location l if the hand is empty and the object is in l.
If the hand is full, it drops the object being held in l. put(l)
drops the object at l if the object is being held. All effects
are conditional, and there are no preconditions. Formally,
the actions are as follows:
pick(l) : ¬hold, at(l) → hold ∧ ¬at(l),hold →
¬hold ∧ at(l).
put(l) : hold→ ¬hold ∧ at(l)
Consider an instance P of this domain in which the hand is
initially empty with certainty, and the object is initially at
either l1 or l2 or l3, and it needs to be moved to l4 with a
probability of 0.5. More specifically:
I = {Pr[¬hold] = 1, P r[at(l1)] = 0.2, P r[at(l2)] =
0.4, P r[at(l3)] = 0.4, P r[at(l4)] = 0},G = {Pr[at(l4)] ≥
0.5}.
It is easy to see that the goal can be achieved by considering
two possible original object locations only, unlike in confor-
mant planning where we must succeed for all three possible
initial locations. The tags : TL = {at(l1), at(l2), at(l3)}
for L ∈ {hold, at(l4)}. Note that TL is indeed disjoint,
deterministic, and complete for L. Based on these tags
our algorithm outputs the following resource constrained
planning task (Method 1):
P̂ = {V̂ , R̂, Â, Î, Ĝ, i, u} as follows:
V̂ = {L/t | L ∈ {at(l), hold}, t ∈ {l1, l2, l3}} ∪
{DROPt | t ∈ {at(l1), at(l2), at(l3)}}.
Î = {at(l)/at(l) | l ∈ {l1, l2, l3}}. R̂ = {r} and
i(r) = 0.5 – the complementary probability of Θ. We
now show an example of the modified actions on the first
conditional effect in pick(l):
Original: ¬hold, at(l)→ hold
Modification: For each l′ ∈ {l1, l2, l3,empty tag} we add
the following conditional effects to the modified action:
¬hold/at(l′), at(l)/at(l′) → hold ∧ ¬at(l), hold/at(l′);
In addition we add (examples):
Merge action :at(l4)/at(l1) ∧ at(l4)/at(l2) ∧
at(l4)/at(l3)→ at(l4).
Dropatl3 : No pre-conditions, adds the variable
DROPatl3

,u(Dropatl3 , r) = 0.4.
ASSUMEatl4/atl3

: Single precondition: DROPatl3
,

69

θ = 0.25 θ = 0.5 θ = 0.75 θ = 1.0
Instance #actions/#facts/#states t/l t/l t/l t/l

PFF PTP PRP PFF(m) PACP(m) PFF PTP PRP PFF(m) PACP(m) PFF PTP PRP PFF(m) PACP(m) PFF PTP PRP PFF(m) PACP(m)
Safe-uni-70 70/71/140 2.65 /18 0.87/18 0.55/70 4.88/18 0.41/18 5.81/35 0.85/35 0.55/70 32.07/35 0.51/35 10.1/53 0.9/53 0.59/70 69.12/53 0.59/53 5.1/70 0.88/70 0.65/70 5.1/70 0.65/70
Safe-cub-70 70/70/138 0.88/5 0.9/5 0.55/70 1.05/5 0.72/5 1.7/12 0.94/12 0.55/70 2.62/12 0.93/12 3.24/21 0.95/21 0.55/70 6.71/21 1.19/21 4.80/70 0.96/70 0.55/70 4.80/70 0.55/70
Cube-uni-15 6/90/3375 4.25/26 2.4/33 0.8/30 11.21/27 0.3/26 6.35/34 2.49/45 0.84/34 11.44/34 0.37/34 9.20/38 2.65/50 0.7/38 15.25/38 0.41/38 31.2/42 2.65/50 0.73/42 31.2/42 0.73/42
Cube-cub-11 6/90/3375 0.3/5 1.17/12 0.61/7 7.2/14 0.94/14 0.9/9 1.31/15 0.7/14 11.32/26 1.05 /26 1.43/13 1.41/21 0.7/15 13.44/34 1.27/34 28.07/31 3.65 /36 1.1/30 28.07/31 1.1/30
Bomb-50-50 2550/200/> 2100 0.01/0 0.01/0 0.1/0 0.1/0 0.1/0 0.10/16 3.51/50 36.1/50 – – 0.25/36 3.51/50 36.1/50 – – 0.14/51/50 3.51/50 36.1/50 – –
Bomb-50-10 510/120/> 260 0.01/0 0.01/0 0.1/0 0.1/0 0.1/0 0.89/22 1.41/90 2.05/66 – – 4.04/62 1.41/90 2.8/42 – – 1.74/90 1.46/90 1.45/90 – –
Bomb-50-5 255/110/> 255 0.01/0 0.01/0 0.1/0 0.1/0 0.1/0 1.70/27 1.32/95 1.35/47 – – 4.80/67 1.32/95 1.15/71 – – 2.17/95 1.32/95 0.9/95 – –
Bomb-50-1 51/102/> 251 0.01/0 0.01/0 0.1/0 0.1/0 0.1/0 2.12/31 0.64/99 0.85/50 – – 6.19/71 0.64/99 0.7/74 – – 2.58/99 0.64/99 0.7/99 – –
Log-2 3440/1040/> 2010 0.90/54 – – – – 1.07/62 – – – – 1.69/69 – – – – 1.84/78 – – – –
Log-3 3690/1260 /> 3010 2.85/64 – – – – 8.80/98 – – – – 4.60/99 – – – – 4.14/105 – – – –
Log-4 3960/1480/> 4010 2.46/75 – – – – 8.77/81 – – – – 6.20/95 – – – – 8.26/107 – – – –

Table 1: Empirical results. t: time in seconds. l: plan length. PFF(m) and PACP(m): performance on modified problems (see
text).

:

Single effect:atl4/atl3 . Possible solution plan is: 〈
pick(l1),put(l4),pick(l2),put(l4),Dropatl3 , ASSUMEatl4/atl3
,MERGEat(l4)〉. Dropping all the inference and assump-
tion actions, we get a plan for the original CPP.

Empirical Evaluation
We implemented the algorithms as follows. Our input prob-
lem is stripped of probabilistic information and transformed
into a conformant planning problem. This is fed to the cf2cs
program, which is a part of the T-0 planner, and computes
the set of tags. Using this set of tags, we generate the new
compiled problem. Currently, we have a somewhat ineffi-
cient tool for generating the new domains, which actually
uses part of the T-0’s domain generation code and another
tool we implemented that creates the described compila-
tions. The compiled problem is then fed into Metric-FF.
The output is then returned after we removed all special ac-
tions we added. For our first variant, Metric-FF is used as
a a resource-constrained planner. Resources are modeled as
numeric variables and suitable pre-conditions are added to
actions which consume resources to make sure no resource
is consumed behind his initial amount. We refer to the re-
sulting planner as PRP. For the second variant Metric-FF
is used as a cost optimal planner. Metric-FF and the other
FF extensions are currently the only efficient classical plan-
ners that support and function well with a large amount of
conditional effects. The major drawback of using Metric-FF
is that it is not an optimal planner so, our implementation
does not really return a minimal cost solution, and hence
is not complete. Unfortunately, FD (Helmert 2006) fails to
even pass the translation to SAS phase, apparently due to
the large number of conditional effects. Moreover, none of
its more competitive admissible heuristics supports condi-
tional effects. We refer the resulting second planner PACP.
Table 1 shows the results of our experimental evaluation.

On the bomb, cube, and safe domains, PRP works as good
or better than PFF, with few exceptions, such as bomb-
50-50 and bomb-50-10 and cube-11 for lower values of θ.
On logistics, the translation method fail completely, unable
to solve the classical planning problem. On some of these
domains, a full conformant plan is shorter (because ignor-
ing each subgoal would require making assumptions, each
of which requires two actions, whereas the subgoal can be
achieved with a single ”real” action.) For this reason, PRP

prefers the fully conformant plan.
PACP finds the most probable solution. Since all domains

tested by PFF (with deterministic actions) have conformant
plans, we also created modified versions of these domains
that have no conformant solution by removing certain ac-
tions, yet ensuring that the problem is solvable with proba-
bility ∼ Θ (according to the specific experiment). To make
the comparison with PFF fair, we also give results for the
performance of PFF on the modified versions. The results
for both on cube and safe shows that PACP dominates PFF
by an order of magnitude, as it seems to have more difficulty
when problems have no conformant solutions.

In logistics, PACP fails because the classical planner re-
turns a highly suboptimal plan in which the goal is solved
by ignoring all the possible worlds. Whether a cost-optimal
planner would solve this problem, or simply fail to return an
answer remains to be seen. For PRP, the problem appears
to be the heuristic guidance provided by Metric-FF whose
relaxation-based heuristic effectively ignores resource con-
straints. Finally, two additional domains that we have not
tested our planners on are rovers and grid. These domains
have high conformant width, implying that a complete trans-
lation scheme would yield very large problem instances. T-0
is able to deal with these domains by using various simpli-
fications, and integrating these simplifications with our nu-
meric techniques remains an important challenge.

Summary
We described two new, closely related translation schemes
for CPP that build upon the techniques of (Palacios and
Geffner 2009) and their extension to CPP (Brafman and
Taig 2011). Our planners perform well on some domains,
whereas in others they face fundamental problems in using
the underlying planners. We believe that improvements in
resource-constrained classical planning, together with better
translation techniques may make the compilation approach
a viable method for solving probabilistic planning problems.

Acknowledgments
The authors were partly supported by ISF Grant 1101/07, the
Paul Ivanier Center for Robotics Research and Production
Management, and the Lynn and William Frankel Center for
Computer Science.

70

References
Albore, A., and Geffner, H. 2009. Acting in partially ob-
servable environments when achievement of the goal cannot
be guaranteed. In ICAPS’09 Planning and Plan Execution
for Real-World Systems Workshop.
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In IJ-
CAI, 1623–1628.
Brafman, R. I., and Taig, R. 2011. A translation based ap-
proach to probabilistic conformant planning. In ADT.
Domshlak, C., and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-
ing. J. Artif. Intell. Res. (JAIR) 30:565–620.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. Artificial Intelligence 129(1-2):5–33.
Helmert, M. 2006. The fast downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Brafman, R. I. 2006. Conformant plan-
ning via heuristic forward search: A new approach. Artif.
Intell. 170(6-7):507–541.
Jiménez, S.; Coles, A.; Smith, A.; and Madrid, I. 2006. Plan-
ning in probabilistic domains using a deterministic numeric
planner. In The 25th PlanSig WS.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2010. Improving
local search for resource-constrained planning. In SOCS.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
JAIR 35:623–675.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In ICAPS, 352–.

71

