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Abstract

Reaching for a target requires estimating the spatial po-
sition of the target and to convert such a position in a
suitable arm-motor command. In the proposed frame-
work, the location of the target is represented implic-
itly by the gaze direction of the robot and by the dis-
tance of the target. The NAO robot is provided with
two cameras, one to look ahead and one to look down,
which constitute two independent head-centered coor-
dinate systems. These head-centered frames of refer-
ence are converted into reaching commands by two neu-
ral networks. The weights of networks are learned by
moving the arm while gazing the hand, using an on-line
learning algorithm that maintains the covariance ma-
trix of weights. This work adapts a previously proposed
model that worked on a full humanoid robot torso, to
work with the NAO and is a step toward a more generic
framework for the implicit representation of the periper-
sonal space in humanoid robots.

Introduction
Humans live surrounded by objects. Reaching for an object
is one of the most common tasks of a human’s everyday life.
As robots are expected to be active participants in humans’
daily life, they also need to have good reaching skills. More-
over, the robots need to be able to constantly learn and im-
prove their reaching abilities autonomously so as to act on
unknown objects in new environments.

Reaching for a target, however, is not an easy task. It re-
quires to estimate the spatial position of the target and to
convert it into an arm motor command. Estimation of the ob-
ject position is problematic on its own as a three dimensional
object is projected into two dimensional surface of camera
sensor which in turn causes the distance to a target to be lost.
Typically, the common solution is to employ stereopsis to re-
construct the depth of the scene. However, stereopsis is not
the only cue that can be used to estimate the distance and, in-
deed, humans can perceive distance even with a single eye.
A more flexible solution would be to use multiple cues to
estimate the target position and then combine them in order
to maximize the accuracy of the distance estimation.
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Another challenge in reaching action, is the conversion
of the object’s spatial location into the arm position that al-
lows reaching the target. The conventional approach here is
to compute these transformations analytically by using the
known geometric properties of the robotic system. Usually,
such information is provided by the manufacturer or is esti-
mated by applying calibration procedures. This approach to
reaching allows achieving good performance, but only under
the assumption that the parameters of the system are time in-
variant. In practice, it is not always the case, and the system
needs to be re-calibrated periodically in order to keep work-
ing correctly. Therefore, it is convenient to develop a frame-
work that continuously adapts the sensorimotor mapping to
the constantly changing robot parameters.

In previous works we developed a framework that al-
lowed the implicit sensorimotor mapping of the peripersonal
space on a full humanoid robot torso (Chinellato et al. 2011;
Antonelli, Chinellato, and del Pobil 2011). Instead of using
the classical cartesian space, the spatial position of the tar-
get was encoded by the gaze direction and by the angular
position of the arm joint. Indeed, these variables were im-
plicit because they were directly provided by proprioception
cues (encoders). The plastic maps were encoded by radial
basis function networks because of their biological plausi-
bility (Pouget and Sejnowski 1997) and their ability to ap-
proximate any kind of non-linear function (Park and Sand-
berg 1991).

This paper presents our reaching framework extended and
adapted to work on a monocular robotic setup. Although, the
NAO robot has two cameras, their location does not allow
the use of vergence to estimate the distance of the target.
Thus, the first challenge is to modify our radial basis func-
tion framework to work with the distance estimation pro-
vided by one monocular camera, as our previous framework
was based only on the depth information provided by stereo
cameras. Herein, the target position is represented by the
gaze direction by which the target is viewed in the central
region of the image, and by the estimated target distance.
Alternatively, the same position is expressed in terms of the
arm posture that allows for reaching the target. The transfor-
mation between these frames of reference is encoded by a
radial basis function network (RBFN).

The visual fields of NAO’s cameras intersect just in a lim-
ited range, thus the use of both cameras extends greatly the
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field of view of the robot. On the other hand, the existence of
the common field of view raises an interesting issue of how
to combine different cues to perform a more accurate reach-
ing. Thus, the second challenge is identifying which camera
provides a better estimation of the reaching movement, or
how combine the result obtained from the two cameras. In
our framework, we make use of both cameras to have a more
coherent and augmented representation of the space.

The paper is structured as follows. The next section pro-
vides a background of the related work and briefly presents
the neuroscientific findings that inspired our work. The sub-
sequent section describes how the target can be implicitly
encoded by the robot sensorimotor maps, which is then fol-
lowed by the description of the computational model and
learning algorithm. The next sections show our experimen-
tal setup and the results obtained from both computer sim-
ulation and real robot experiments. We close the paper with
the discussion of the results and future work.

Background
Our approach to the sensorimotor transformation problem is
inspired by neuroscientific findings, mainly concerned with
human and primates’ brain. Two types of visual process-
ing exist in the brain, that is visual processing to obtain in-
formation about the features of objects such as color, size,
shape (“vision for perception”) in the ventral stream of vi-
sual cortex, and visual processing needed to guide move-
ments such as reaching and grasping (“vision for action”) in
the dorsal stream of visual cortex (Goodale and Westwood
2004). The main cortical areas related to reaching action
are V6A and MIP (Galletti et al. 2003; Fattori et al. 2001;
Dechent and Frahm 2003; Caminiti, Ferraina, and Mayer
1998), both located in the parietal lobe. Findings in V6A
neurons showed neurons that encoded the gaze directions
and the distance of the target (Fattori et al. 2005; Marzoc-
chi et al. 2008). Moreover, some neurons seemed to be in-
volved in the execution of reaching movements (Galletti et
al. 2003). These findings indicate that V6A is in charge of
performing the sensorimotor transformations required for
reaching for a given target in the 3D space.

The radial basis function networks are suitable for mod-
eling the parietal cortex neurons as they are able to natu-
rally reproduce the gain-field effects often observed in pari-
etal neurons (Salinas and Thier 2000). Moreover, it was sug-
gested that locations of objects in the peripersonal space are
coded through the activity of parietal neurons that act as
basis functions, and any coordinate frame can be read out
from such population coding according to the task require-
ments (Pouget and Sejnowski 1997).

In robotics, even though extensive literature describes
the problem of learning eye-hand coordination (Martinetz,
Ritter, and Schulten 1990; Jones and Vernon 1994; Han,
Okada, and Kondo 2006; Fuke, Ogino, and Asada 2009;
Hoffmann, Schenck, and Möller 2005; Nori et al. 2007;
Marjanovic, Scassellati, and Williamson 1996; Sun and
Scassellati 2005), to the best of our knowledge only few pa-
pers describes the use of RBF networks (Marjanovic, Scas-
sellati, and Williamson 1996; Sun and Scassellati 2005). The
main differences of our model with respect their approach

Figure 1: Computational framework of the sensorimotor
integration model. A transformation for each camera al-
low converting the head position (pan-tilt-distance into arm-
motor position (shoulder pitch, shoulder roll and elbow).

can be pointed out. Marjanovic et al. learned the transforma-
tion only on a surface of the space, that is the target distance
was not explicitly taken into account (Marjanovic, Scassel-
lati, and Williamson 1996). Sun et al. used a stereo system to
compute the cartesian position of the target, while our sys-
tem employes implicit variables (Sun and Scassellati 2005).

Model
In our proposed framework, the spatial position of the tar-
get object is maintained by three global frames of reference
(f.o.r.), two centered in the cameras and one centered in the
left arm. The two head-centered f.o.r.s (one for each camera
of the robot) consist of a spherical-like coordinate system in
which the azimuth and the inclination angles are replaced by
the gaze direction, while the radius is the estimated distance
of the target.

One important remark should be made about the use of
the distance in the RBFN framework. Indeed, the distance
is not directly observable by the robot, that is, it is not an
implicit variable. However, primates have access to several
cues that can be used to estimate the distance, such as stere-
opsis, familiar size, motion parallax and so on (Landy et al.
1995). These variables are implicit and are inversely propor-
tional to the distance and could be used in our framework
in place of the distance. For example, our previous work,
used vergence alone (Chinellato et al. 2011). However, when
multiple cues are available, it seems more reliable to inte-
grate the cues altogether before calculating the arm position.
Such a computation can be performed by a three layer neural
network with reward-mediated learning similarly to what is
done in (Karaoguz et al. 2011). Thus, in our framework, it
is possible to replace the distance with the output of another
computation as long as it provides neural activation which is
related with the distance of the target. In this way, the frame-
work becomes more general and can be used independently
of the cues available to estimate the distance.

The arm position also provides the spatial position of the
target when the robot is touching the object. Herein, we use
just one arm, the left one. In this case, the target position
is encoded by the angles of the joints which are provided
by the proprioceptive signals. Usually the arm-centered f.o.r.
is redundant in the representation of the position, because
many joint configurations can bring the hand in the same
spatial position. The implication is that the mapping between
the head-centered f.o.r. and the arm-centered f.o.r. is not a
single-valued function.
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Figure 2: Association between the oculomotor and arm-
motor signals. When the robot moves its hand and gazes
towards the same point, it can update its sensorimotor repre-
sentation to locally reduce the error of the transformations.

As the main focus of this work is put on the learning of
the sensorimotor transformations, the redundancy problem
is bypassed by simplifying the experimental setup. There-
fore, only three joints of the arm, two for the shoulder and
one for the elbow are used. In this way, the two transfor-
mations became functions, enabling to employ a RBFN for
encoding each sensorimotor transformation (see Fig. 1).

Both maps are updated when the hand position and the
gaze direction are pointing to the same spatial location. The
robot autonomously verifies such a condition by checking
whether the visual position of the hand is in the center of the
visual field (see Fig. 2). If the hand is visible but it is not in
the center of the image, the robot gazes the hand to reinforce
the head-arm association. The gazing is performed using a
hard-coded proportional controller based on the visual input,
but a saccadic map can be implemented as proposed in the
previous work (Antonelli, Chinellato, and del Pobil 2011).

In principle, the mapping between the distinct sensorimo-
tor modalities can be learned during the interaction with the
environment, through reaching and gazing movements. Af-
ter each performed movement, visual feedback is used to
check the coordination of gaze and arm. At the beginning,
the system does not have any previous knowledge of the
sensorimotor transformation, thus, random movements can
be introduced to begin the exploration of the environment.
Successively, these random movements can be suppressed
and the system can keep adapting during the goal-directed
exploration.

Radial Basis Function Networks
Learning of the sensorimotor transformations, as stated in
the previous section, can be seen as a function approxima-
tion problem. Radial basis function networks can potentially
approximate any function with the desired precision, so they
are especially suitable for encoding sensorimotor transfor-
mations (Pouget and Sejnowski 1997).

Basis function networks are three-layer feed-forward neu-
ral networks whose hidden units perform a non-linear trans-
formation of the input data, whereas the output is computed
as a linear combination of the hidden units. Let y be the out-
put of the network, it can be expressed as:

y = hT(x) ·W (1)

(a) Top view (b) Lateral view

Figure 3: Sketch of the NAO robot’s cameras taken from the
manufacturer website.

where, h is the activation of the hidden layer for the input x
and W is the matrix of the weights. Radial basis functions
are a particular case of basis functions which values depend
on the euclidean distance from a point, called center of acti-
vation.

Learning in the context of the radial basis function net-
works can be divided into two phases. An unsupervised
phase allows setting the parameters of the network, such as
the number of hidden units and the position of their centers,
whereas a supervised phase allows for finding the values of
the weights.

In the proposed framework, we employed fixed centers,
whose receptive fields could not move according to the in-
put data. Gaussian functions were used as non-linear trans-
formation of the input. Hidden units were characterized by
their center of activation ci, whereas the width of the “bell”
curve Σ was the same for every units:

hi(x) = h(||x− ci||) = e−(x−ci)
T Σ−1(x−ci) (2)

Using this setup, the learning process is reduced to find the
weights that better approximate the sensorimotor transfor-
mation. Given a new input-output sample of the target func-
tion, the weights W can be updated to reduce the error (e) of
the network by minimizing sum of the square error. Among
the available techniques, we employed the recursive least
square algorithm (RLS) because of its fast convergence rate.
Moreover, the RLS keeps trace of the covariance matrix P
which can be used to evaluate the accuracy of the transfor-
mation. The algorithm is the following:

S = hTP · h +R (3)

K = P · h · S−1 (4)
W = W + K · e ·P (5)
P = P−K · hT ·P (6)

where R is the variance of the observation error and K is
the Kalman gain. The matrix P is initialized to large values
( 104 · I), whereas W is initialized to zero.

Experimental Framework
Robotic Setup
Aldebaran’s commercially available humanoid robot NAO
was used as platform for testing the proposed framework.
The robot is provided with 25 degrees of freedom (d.o.f.s)
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(a) Top view (b) Lateral view

Figure 4: Distribution of the training points in the cartesian space. The x-z axis define the sagittal plane while the y-z axis
define the coronal plane. The ground is the plane z = 0.

among which two are placed in the head (pan and tilt) and
five in each arm. Herein, we have used just three d.o.f.s for
the arm. The vision system of the robot is composed by two
identical cameras, but not in the classical stereo setup (see
Fig. 3).

Training data collection
Learning of the sensorimotor transformation is essentially
approximating the function through training samples of the
form (d, θhead, θarm)i = 1, 2, ..., nwhere d is distance from
the camera to the robot’s hand, θhead, θarm are the joint an-
gles of the head and arm, respectively, and n is the size of the
training set. Such a training set was generated by moving the
arm, while the robot was gazing the hand. Herein, a visual
marker (a ball) was used to facilitate the recognition of the
hand in a visual field of view. The distance of the hand was
computed using the familiar size of the ball. That is, know-
ing the physical size of an objects (Sphysical), its absolute
depth (d) was calculated by using equation (7):

d = f × Sphysical

Sobserved
(7)

where and Sobserved is size of the object observed in the
image, while f is the focal length. Both Sobserved and f
are expressed in terms of pixels. Equation (7) assumes that
the observed feature is presented orthogonally to the camera
sensor. Such a restriction is avoided by the choice of the ball
as visual marker.

The training points shown in Fig. 4 were collected dur-
ing the exploration of the arm-joint space. As it can easily
be observerd, the fields of view of the cameras intersect just
within a small area. These training points were inherently
noisy, due to small imprecisions in identifying the center and
the distance of the marker in the image and to the proprio-
ceptive errors. However, the ability of averaging–typical of
the feed-forward neural networks–overcome the problem.

The structure and parameters of the RBFNs were the same
for both cameras and were chosen using a heuristic search
on a simulated model of the robot. We employed Gaussian
receptive fields, uniformly distributed on a lattice composed
of 7x7x7 neurons. The spread of the Gaussian activation Σ
was a diagonal matrix σI with σ was set to 0.28. The in-
put space of the two RBFNs was the pan-tilt-distance space
normalized between 0 and 1, while the output space was the
shoulder (pitch and roll)-elbow space. The weights of the
networks were learned using the recursive least square algo-
rithm on the training samples.

Results
Learning the Sensorimotor Transformations
At the end of the data collection process, the networks were
tested off-line on the acquired sample points using the K-
Fold cross validation with K set to 5. Once calculated the
error in the joint-space, it was converted into the cartesian
space using the kinematics of the arm. Thus, in order to sim-
plify the evaluation of the results, the error was shown as
euclidean distance in the cartesian space between sampled
and computed values (see Table 1). The magnitude of the
error was small enough to allow the robot to reach a target.

Grasping Task
The performance of the system trained with the whole
dataset was tested on a grasping task. The robot had to local-
ize and to grasp a ball easily identificable by its color. The
ball was placed on two lattices of 3 by 3 points that covered
a region of 5 cm by 8 cm (x,y) on left side of the robot (see
Fig. 5). The grasping was executed using the two cameras
independently to evaluate the single performance. In both
cases, the arm began every movement from a safe position
that allowed reaching the ball without any collision. During
the training of the transformations, the ball was put in the
center of the hand, so we expected that a correct arm move-

5



Table 1: Parameters of the RBFNs and their performances on the training set using the K-Fold cross validation (K=5). Mean
error and standard deviation (µ± σ) are expressed in mm in the cartesian space.

Camera RBFN par. N. points K=1 K=2 K=3 K=4 K=5
centers radius(σ) µ± σ µ± σ µ± σ µ± σ µ± σ

Top 7x7x7 0.28 1458 7.32± 7.55 8.44± 14.28 7.31± 9.10 7.65± 10.49 6.41± 6.71
Bottom 7x7x7 0.28 1254 7.52± 8.22 7.75± 6.48 7.27± 8.47 7.09± 5.26 6.91± 5.90

(a) Upper camera (b) Lower camera

Figure 5: Experimental setup. A ball was put on a lattice
on the left side of the robot to test the grasping task. Yellow
markers indicate a correctly grasping task while the red ones
indicate a failure.

ment would bring the center of the hand near the ball. The
robot grasped correctly the ball 9 times out of 9 when using
the upper camera and 7 out of 9 when using the lower one.
When the failure occurred, distance of the target was mea-
sured and it was about 1 cm in one case and 1.5 in the other
case (see Fig. 5).

Integrating different fields of view
As was mentioned before, the sensorimotor transformations
allowed for grasping a target ball in the 100% of the trials us-
ing the upper camera and in the 77.8% using the lower one.
During this experiment, however, the information provided
by the covariance matrix was not taken into account.

The covariance matrix can be exploited to calculate the
variance σ2 of the transformation for the new observed in-
put:

σ2 = hT ·P · h (8)

where h is the activation of the hidden layer for the new in-
put and P is the covariance matrix. The variance obtained by
the transformations of the two cameras can be used, within
their small intersecting field of view, to compare or merge
the output of the RBFNs.

Preliminary results in this direction was obtained by posi-
tioning the ball in 50 different positions visible by both cam-
eras. For each position, we calculated the errors made by: 1)
each transformation alone; 2) the average of the two trans-

Table 2: Mean error [mm] during the reaching task using to
upper camera (Top), the lower camera (Bottom), the aver-
age between the two camera (AV ), the average weighted by
the variance (WAV ) and by taking the transformation with
the minimun variance (MV ).

Top Bottom AV WAV MV
8.78 8.47 6.75 5.44 6.35

formations; 3) the average weighted by the variance value;
4) the transformation with the minimun variance.

The results presented in Table 2 are quite promising and
show that the use of the covariance matrix can improve the
accuracy of the reaching movement.

Discussion and Future Work
This work is focused on the encoding of the visuomotor
transformations that allows for eye-hand coordination. The
RBFNs were trained with real data collected while the robot
was gazing its hand. The training was performed with an
on-line algorithm that keeps trace of the covariance matrix
P of the transformation, which can be used to evaluate the
accuracy of the transformation.

In the currently implemented framework, distance was
calculated using the familiar size of the object. Such a dis-
tance, however, can be estimated by others cues, e.g. motion
parallax, kinetic depth effect and so on, which can be inte-
grated together in the spirit of the Bayesian theorem in or-
der to obtain a reliable distance estimation. Our future work
will focus on the integration of the proposed sensorimotor
framework with another model that implicitly encodes the
distance perceived by several cues.

This work is a part of a larger framework that is inspired
by infant development. The final goal is to provide the robot
with a coherent near and far space representation. The vi-
suomotor knowledge of the peripersonal and extrapersonal
space should be built in a dynamical way, through the ac-
tive interaction with the environment in a similar way as in-
fants do. Following this approach, the robot has to be able to
keep learning during its normal behavior, by interacting with
the world and continually update the representation of the
world itself. Moreover, the learning process should be self-
supervised in order to avoid the need of an external teacher.
That is, the robot should be able to improve its capabilities
by observing the outcome of its actions.

Conclusions
This paper presented a framework for sensorimotor trans-
formations that is inspired by neuroscientific findings. The
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plausibility of our framework was tested with the NAO hu-
manoid robot. Although the robot’s cameras were not lo-
cated in a typical stereo-vision setup, we demonstrated how
they can complement each other augmenting the robot’s ef-
fective reachable space. We showed that these space repre-
sentations are very plastic as the robot were able to update
and to improve its performance during interaction with the
environment. Moreover, the adaptation of our framework on
the NAO robot, further supports the extendability and gen-
erality of our approach.

Acknowledgements
This research was partly supported by WCU (World Class
University) program through the National Research Foun-
dation of Korea funded by the Ministry of Education, Sci-
ence and Technology (Grant No. R31-2008-000-10062-
0), by Ministerio de Ciencia e Innovación (FPU grant
AP2007-02565, FPI grant BES-2009-027151, DPI2011-
27846), by Generalitat Valenciana (PROMETEO/2009/052)
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