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Abstract

Several variants of A* have been recently proposed for find-
ing optimal solutions for the multi-agent pathfinding (MAPF)
problem. However, these variants have not been deeply com-
pared either quantitatively or qualitatively. In this paper we
aim to fill this gap. In addition to obtaining a deeper under-
standing of the existing algorithms, we describe in detail the
application of the new enhanced partial-expansion technique
to MAPF and show how pattern databases can be applied on
top of this technique.

Introduction
Multi-agent pathfinding (MAPF) is a challenging problem
with many practical applications in robotics, video games,
vehicle routing, etc. (Silver 2005; Dresner and Stone 2008).
Instances of the problem consist of a graph G = (V,E) and
k agents. Each agent has a start position and a goal posi-
tion. The task is to move all the agents to their goals without
collisions (the precise definition will be given below) while
minimizing a cumulative cost function. In its general form,
MAPF is NP-complete, because it is a generalization of the
sliding tile puzzle which is NP-complete (Ratner and War-
rnuth 1986). Because of the problem’s difficulty, most re-
search focused on decentralized approaches that may return
non-optimal solutions and, in some cases, are not complete.

Most recently, solving MAPF optimally has gained more
attention, resulting in several new algorithms (Sharon et al.
2011; 2012) and variants of A* (Standley 2010; Felner et al.
2012). In this paper, we focus on the new variants of A*.

A recently developed technique called enhanced partial
expansion A* (EPEA*) (Felner et al. 2012), uses domain-
specific knowledge to avoid the generation of nodes whose
f -value is greater than the cost of the optimal solution.
EPEA* was applied to a large variety of domains. The
MAPF problem is the most challenging but it only received
very limited attention. The main contribution of our paper is
the detailed presentation of a way to apply EPEA* to MAPF.
Furthermore, our current method of applying EPEA* is gen-
eralized to allow using pattern databases (PDBs) on top of
EPEA*. We also present a number of enhancements to the
basic method of EPEA* for MAPF.
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Effectively applying PDBs to MAPF is a challenging task.
To the best of our knowledge, no application of PDBs to
MAPF has ever been reported and very simple heuristic
functions were used by previous A* solvers for MAPF. In
this paper, we report an application of PDBs to MAPF for
the first time. In fact, we describe how to apply PDBs on
top of EPEA*, with the result of further significant improve-
ment in time performance. This is the second contribution
of this paper.

Our third contribution is a new variant of A* for optimally
solving MAPF, which is a hybrid of the operator decompo-
sition (OD) technique of (Standley 2010) and the partial ex-
pansion technique of (Yoshizumi, Miura, and Ishida 2000)
(the latter is referred to as basic partial expansion (BPE)
hereafter).

Lastly, we present important insights about the unreported
properties of the techniques introduced by (Standley 2010)
and suggest ways to take advantage of some of these prop-
erties.

We start by formally describing the MAPF problem in
the next section. We then present all necessary background.
Following that are the sections with our contributions. We
follow up with experimental results, which (1) show that
EPEA* (in particular, combined with PDBs) is the cur-
rent state-of-the-art among A*-based approaches to optimal
MAPF and (2) provide deeper understanding of the differ-
ences in performance between EPEA* and ODA*. Finally,
we conclude.

Background
We now give background on the problem and the related
techniques.

Multi-agent pathfinding: formal definition
We focus on the following commonly used variant of
MAPF (Standley 2010; Sharon et al. 2011; 2012). The input
to MAPF is: (1) A graph G(V,E) and (2) k agents labeled
a1, a2 . . . ak. Every agent ai is coupled with a start and a
goal vertices: si and gi. At the initial time point t = 0 every
agent ai is located in location si. Between successive time
points, each agent can perform a move action to a neighbor-
ing location or can wait (stay idle) at its current location.
The main constraint is that each vertex can be occupied by
at most one agent at a given time. In addition, if a and b are
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neighboring vertices, two different agents cannot simulta-
neously traverse the connecting edge in opposite directions
(from a to b and from b to a). However, agents are allowed
to follow each other, i.e., agent ai could move from x to y at
the same time as agent aj moves from y to z.

The task is to find a sequence of {move,wait} actions
for each agent such that each agent will be located in its goal
position while aiming to minimize a global cost function. In
our variant of the problem, the cost function is the summa-
tion (over all agents) of the number of time steps required
to reach the goal location. Therefore, both move and wait
actions cost 1.0, except for the case when the wait action
is applied at an agent’s goal location and costs zero. If an
agent waits m times at its goal location and then moves, the
cost of that move is m + 1.

The standard A* approach
The state space for an A*-based search consists of all pos-
sible permutations of the k agents on the |V | vertices. Let
bbase be the branching factor for a single agent. The global
branching factor is b = O((bbase)

k). All (bbase)
k combina-

tions of actions should be considered and only those with no
conflicts represent the legal moves.

The commonly-used admissible heuristic is the sum of
individual costs (SIC) (Sharon et al. 2011) defined as the
sum of the optimal solution costs of single-agent pathfind-
ing problems for the individual agents.

Pattern databases
Pattern Databases (PDBs) (Culberson and Schaeffer 1998;
Felner, Korf, and Hanan 2004) is a powerful method for
automatically building admissible memory-based heuristics
based on domain abstractions. The main idea of PDBs is
to first abstract the state space by only considering a sub-
set of the variables or constraints. Then, a full breadth-first
search is performed in the abstract state space (aka pattern
space) from the abstract goal. Distances to all abstract states
(patterns) are calculated and stored in a lookup table (PDB).
These values are then used throughout the search as admis-
sible heuristics for states in the original state space.

In our experiments, we used instance-dependent on-
demand pattern databases (Felner and Adler 2005). On-
demand PDBs are built lazily during the search and are par-
ticularly effective in domains where the abstract space is
too big to be stored completely in memory. At first, a di-
rected search in the pattern state space is performed from the
goal pattern to the start pattern (unlike regular PDBs where
a complete breadth-first search is performed). All the pat-
terns seen in this search are saved in the PDBs. Then, the
main search in the real state space begins. As more nodes
are generated, the search in the pattern space is continued
lazily and more PDB values are found and stored.

Standley’s A* variants
The current line of development of specific new algorithms
for optimal MAPF started with the seminal work of (Stan-
dley 2010). Standley suggested two main improvements to
the classic A* search for MAPF. We describe them briefly.

Independence detection (ID) The size of the state space
of MAPF is exponential in the number of agents. Stand-
ley introduced the independence detection (ID) framework
to reduce the number of agents that participate in the actual
A* searches as follows. Two groups of agents are designated
as independent if there is an optimal solution for each group
such that the two solutions do not conflict. The basic idea of
ID is to divide the agents into independent groups. Initially
each agent is placed in its own group. Shortest paths are
found for each group separately. The resulting paths of all
groups are simultaneously performed until a conflict occurs
between two (or more) groups. Several heuristic methods
are applied to try and resolve the conflict. If all methods
fail, the agents in the conflicting groups are unified into a
new single group. Whenever a new group of k ≥ 1 agents
is formed, this new k-agent problem is solved optimally by
an A∗-based search. This process is repeated until no con-
flicts between groups occur. Standley 2010 observed that the
A∗-search of the largest group dominates the running time
of solving the entire problem. Standley reported exponential
improvement in time performance using ID.

Operator decomposition (OD) Not only the number of
possible states for an instance of MAPF is exponential in
the number of agents (k), but, as explained above, even the
branching factor of a given state may be exponential in k.
Suppose a state with 20 agents on a 4-connected grid. Each
agent may have up to 5 possible moves (4 cardinal direc-
tions and wait). Fully expanding all the 520 = 9.53× 1014

neighbors of such a state is computationally infeasible. In
addition, each of the agents can either move towards the
goal, stay idle (wait action), or move away from its goal.
The agent’s individual f -value grows by zero, one or two,
respectively. In our example with 20 agents, children with
up to 41 different f -values will be generated. Most of these
children may never need to be expanded if their f -value is
larger than the cost of the optimal solution. We designate
such nodes, i.e. the nodes with f -value greater than the cost
of the optimal solution, as the surplus nodes.

To deal with these problems, operator decomposition
(OD) was introduced by Standley 2010. Agents are assigned
an arbitrary (but fixed) order. When a regular A* node is
expanded, OD considers only the moves of the first agent,
which results in generating the so called intermediate nodes.
At these nodes, only the moves of the second agent are con-
sidered and more intermediate nodes are generated. When
an operator is applied to the last agent, a regular node is gen-
erated. Once the solution is found, intermediate nodes in the
open list are not developed further into regular nodes, so that
the number of regular surplus nodes is significantly reduced.
We refer to this variant of A* as ODA*.

Enhanced partial expansion (EPE)
Recall that surplus nodes are the nodes with f -value larger
than the cost of the optimal solution. Due to the large
branching factor, the number of surplus nodes in MAPF can
be very large.

Partial Expansion A* (PEA*) (Yoshizumi, Miura, and
Ishida 2000) addresses the problem of surplus nodes. When
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PEA* expands a node n, b children are generated but only
those with f = f(n) are inserted into the open list. The rest
of the generated children are discarded. n is re-inserted into
the open list, but with the f -cost of its best child that was
discarded. Such a node may be then re-expanded but with
the new f -value. Note that each child of a given node n may
be generated many times – once for every re-expansion of n.

In domains with a large branching factor, PEA* will gain
a large reduction in the size of the open list, which, depend-
ing on the implementation of the open list, may have positive
time performance implications as well. Hereafter, we refer
to PEA* as the basic partial expansion A* (BPEA*).

The recently introduced Enhanced Partial Expansion A*
(EPEA*) (Felner et al. 2012) takes BPEA* further. BPEA*
generates all children of n but only those with f = f(n) are
inserted into the open list. In contrast, EPEA* uses a mech-
anism which generates only the children with f = f(n),
without generating and discarding the other children. Thus,
each node is generated only once throughout the search
process and no child is regenerated when its parent is re-
expanded.

EPEA* uses a priori domain knowledge to avoid gener-
ating surplus nodes as follows. First, distinction is made be-
tween the regular f -value (g+h) of a node n, called its static
value and denoted by f(n) (small f ), and the value currently
stored for n in the open list, called the stored value of n and
denoted by F (n) (capital F ). Initially F (n) = f(n). When
expanding a node n, EPEA* generates only the children nc

with f(nc) = F (n). The stored value of n, F (n), is updated
to the f -cost of the next best child and n is re-inserted into
the open list.

This is achieved with the following idea. In many do-
mains, one can classify the operators applicable to a node n
based on the change to the f -value, ∆f = f(nc)− f(n), of
the children nc of n that they generate. The idea is to use this
classification and apply only the operators of the relevant
class. For its operation, EPEA* needs to be supplied with
a domain-specific operator selection function (OSF) which
receives a state p and a value v. The OSF has two outputs:
(1) a list of operators that, when applied to state p, will have
∆f = v. (2) vnext — the value of the next ∆f in the set of
applicable operators.

Assume that a node n is expanded with a stored value
F (n) and static value f(n). We only want to generate a
child nc if f(nc) = F (n). Since the static value of n is
f(n), we only need the operators which will increase f(n)
by ∆f = F (n)− f(n). Therefore, OSF (n,∆f) is used to
identify the list of relevant operators. Node n is re-inserted
into the open list with the next possible value for this node,
f(n) + vnext(n,∆f). If the vnext entry is nil, meaning that
all children of n have been generated, then n is moved to the
closed list.

Application of enhanced partial expansion to
MAPF

In this section we describe an operator selection function
(OSF) for MAPF that is generalized to allow for the usage
of PDBs. We define a composite agent (CA) as a group of

agents. For example, suppose that there are 5 agents. We
might build pairwise PDBs for agents 1 and 2 and for agents
3 and 4. In this case, we will build an OSF for three CAs:
CA1 consisting of agents 1 and 2, CA2 consisting of agents
3 and 4 and CA3 consisting of the single agent 5. As a result
of a move, an individual agent’s f -value can either remain
the same (∆f = 0) or grow by one (∆f = 1) or grow
by 2 (∆f = 2). The f -value of a composite agent with l
agents that moved can grow by any amount from ∆f = 0 to
∆f = 2l.

A special data structure, called the composite agent op-
erators structure (CAOS) contains, for each possible state
of each composite agent all legal (i.e. without collisions
of agents within the CA) operators ordered by ∆f . Since
this data structure can be very large, we compute it on de-
mand (using the same lazy technique of instance-dependent
PDBs which are computed on demand).1 At the beginning
of the search the CAOS is empty. When EPEA* expands a
node for the first time, it searches for each composite agent’s
state in that structure. Whenever a CA’s state is not found,
CAOS is updated (by activating the on-demand function for
this state) with the relevant list of operators ordered by ∆f .

Figure 1 (left) shows an example with 3 composite agents
with 5, 3 and 4 operators, respectively. Suppose that the
node being expanded has the static value of f = 2 and the
stored value of F = 10. The OSF will need to find all com-
binations of operators for composite agents with the sum of
∆f ’s equal to 10 − 2 = 8. In Figure 1 (left), the first such
choice is shown in solid.

Effectively, we have to solve the following combinatorial
enumeration problem: given k bins with balls each tagged
with a number, enumerate all ways of choosing one ball
from each bin, such that the total sum of the numbers on the
balls is F − f . It is easy to see that this problem is exponen-
tial in the number of bins (which corresponds to the number
of composite agents). Since this is done for every expansion,
it is critical that this problem be solved efficiently.

Our solution is a simple recursive procedure with three
enhancements, two generic and one domain-specific. We ex-
plain the recursive procedure with the above example with
three bins. The recursive procedure tries each of the choices
for the first bin and performs a recursive call with the up-
date sum for the remaining bins. For example, when third
choice (which is the first operator with ∆f = 3) is tried for
the first (i.e. left-most) bin, the remaining two bins have to
contribute 8 − 3 = 5 to the sum. Therefore, we can use a
recursive call to our procedure for the remaining two bins
and the required sum of 5.

The two enhancements are as follows. First, for each

1Note that several copies must be stored for states of a CA
where one of the individual agents is at its goal location. For ex-
ample, consider an agent that has arrived at its goal location with
the individual g-value of 5 (i.e. f = g = 5) and made two wait
moves. Since wait moves at the goal are free, this agent still has
f = g = 5. However, if we now choose to move this agent, then,
retroactively, all of the previous moves are not free and the agent’s
g-value grows by 3. This causes a different list of operators or-
dered by ∆f for the CA than if that agent had just arrived to its
goal location.
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Bins for three CAs
CA1 CA2 CA3

0 0 0
0 1 1
3 3 4
3 4
5

ND-bins for three CAs
CA1 CA2 CA3

0 0 0
3 1 1
5 3 4

Figure 1: Computing OSF for MAPF

CA, there can be several operators with the same ∆f . We
can considerably speed up the procedure by getting rid of
these duplicates. For our example, this is shown in Figure
1 (right). These bins with no duplicates (ND-bins) are also
stored in CAOS. For each combination with suitable sum in
ND-bins, the concrete operators with the corresponding ∆f
for each CA have to be applied. In our example, suppose
that the combination where the CAs contribute the ∆f ’s of
3,1 and 4, respectively, is found. We have two consider 2
operators for CA1 and 2 operators for CA2, for a total of 4
combinations of operators.

The second enhancement is that significant number of op-
tions can be pruned by storing the sums of the smallest and
the largest numbers in ND-bins. For example, once the num-
ber 0 is chosen in the first ND-bin, the total sum cannot be
smaller than 0 + (0 + 0) = 0 and cannot be larger than
0 + (3 + 4) = 7. Thus, we know that the sum of 8 cannot be
achieved without considering options for the remaining two
bins.

The third enhancement takes place when combinations of
operators prunes combinations of operators for composite
agents by checking for collisions between agents that be-
long to different composite agents. In our example, if apply-
ing the first operator with ∆f = 3 for CA1 and the (only)
operator with ∆f = 1 for CA2 results in an illegal move,
then we do not have to consider the operators with ∆f = 3
for CA3.

In order to compute the next stored value for the node
being expanded, we maintain two quantities when searching
for suitable combinations in ND-bins: (1) the sum of the
current choices for the ND-bins and (2) the smallest possible
choices for the remaining beans is maintained at all times.
The next stored value is the smallest sum of these quantities
that has been encountered.

PDBs for MAPF
The task of effectively applying PDBs to MAPF presents
the following challenge. PDBs are effective only when the
entries of PDB contain abstract states with distance to the
goal higher than the base heuristic (such as the Manhattan
distance for pathfinding) for this abstract state. In case of
MAPF, the abstract states are projections of regular states
onto different subsets of agents, while the base heuristic is
the sum of individual costs heuristic (SIC) (defined above).
In our terminology, abstract states are composite agents with
their locations. Consider, as an example, a composite agent
consisting of two agents at particular locations. The SIC
heuristic of this state will underestimate the true distance to

s1 s2, g2
X X g1 X

Figure 2: An example of inconsistency of PDBs applied to
MAPF

the goal only if there is a conflict between the agents. There-
fore, PDBs for MAPF can be effective only if they are built
for agents that participate in many conflicts. However, this
information is not known a priori. For example, given an
instance with 20 agents, a special method is needed to find
an effective way to pair up the agents for pairwise databases.

We overcome this problem by using the ID framework.
Namely, whenever ID joins two agents into a group, we use
this information to build pairwise PDBs at later stages of
ID. Suppose, for example an instance with 10 agents. Let us
consider an execution of ID, while ignoring all operations
except the joining of two groups into a single group. Sup-
pose that ID joined agents {1, 5}, then joined agents {2, 8}
and then joined the two groups together, forming the group
consisting of agents {1, 2, 5, 8}. When looking for an op-
timal path for this group, we will use two 2-agent PDBs:
one with states projected onto agents {1, 5} and the other
using projections onto agents {2, 8}. In our experiments, we
used instance dependent pattern databases (Felner and Adler
2005) described above.

It is important to note that, in our formulation of MAPF,
the PDB-heuristic can be inconsistent (Felner et al. 2011).
For example, suppose a pattern that consists of two agents,
whose start and goal locations are shown in Figure 2. The
PDB entry for the start location of the agents contains the
value of 6 (Agent a1 moves three steps, while agent a2 the
must wait, move away and move back). Suppose that a1
moves to the right, while a2 waits (this wait is free, since
a2 is located at it’s goal). The resulting node has g = 1
while it’s PDB entry contains 4, which means that the f -
value has decreased to 5, signifying inconsistency. Standard
techniques, such as BPMX (Zahavi et al. 2007) can be ap-
plied to take advantage of this property of PDBs for MAPF,
which we did in our experiments.

Basic partial expansion (BPE) A* with
operator decomposition

We note that BPEA* is generic and can be applied on top
of any procedure for neighbor generation. In particular,
BPEA* can be applied on top of OD as follows. Each in-
termediate note is a successor of some standard node. The
most immediate such standard node is called the standard
predecessor of the intermediate node. When a node n is ex-
panded there are two cases: (1) if n is standard, then the
regular BPE condition applies, otherwise (2) a child nc is
kept only if it’s f -value is equal to the stored value of the
standard predecessor of the node being expanded. We call
this algorithm BPEODA*.

We note that BPEODA* suffers much less than BPEA*
from having to generate all children of a node being ex-
panded before discarding the surplus nodes. This is be-
cause operator decomposition reduces the branching factor
to that of a single agent, so that the overhead of generating
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Figure 3: Limitations of ID

all neighbors is rather small. However, this algorithm suffers
from the need to the generate intermediate nodes, which it
inherits from ODA*. BPEODA* inherits the advantage of
ODA* as well – early duplicate detection. However, our ex-
periments showed that this duplicate detection becomes less
effective when BPE is enabled.

Insights About Standley’s Techniques
Algorithm-dependence of ID
Note that the ID framework treats the underlying search
algorithm as a black box that returns an optimal solution
given a set of constraints (such as the paths chosen by other
agents). As such, the groups formed by ID depend very
much on the move ordering and tie-breaking rules of the
underlying search algorithm. In particular, the size of the
largest group may change depending on that move ordering.

Furthermore, this effect may appear in a stronger manner
when ID is used with different underlying algorithms. We
report that ID’s performance can dramatically differ from
one algorithm to another. For the instance in Figure 3 (left),
ID on top of ODA* created a group of 12 agents (num-
bered 1-4, 7-11 and 13-15 in the figure) and failed to solve
the problem in two minutes. When ID was used on top
of EPEA*, the same problem was solved in under half-a-
second with only 9 agents (the as above without agents 2,9
and 10) in the largest group.

We believe that an important direction for future work
would be to investigate such instances in order to develop
move ordering heuristics that would result in higher per-
formance of ID. In particular, we are working on a frame-
work that runs several instances of ID in parallel, each in-
stance using a different search algorithm. The instance with
the smallest, among all instances, largest group of inter-
dependent agents would be allowed to proceed at any given
time.

ID: Large group vs. hard instance
In our experiments, there were many instances, where SIC
was a perfect estimate of the solution cost and yet ID formed
large groups of inter-dependent agents. For the instance in

Figure 3 (right), ID on top of ODA* created a group of six
agents (numbered 1,2,5,6,8 and 10 in the figure) although
the SIC estimate at the start stage is perfect (that is, there
is an optimal solution where each agent follows his individ-
ual optimal path; however, the underlying search algorithm
happened supply other, conflicting, solutions to ID).

This suggests two insights. First, the observation of Stan-
dley that solving the largest group dominates the running
time of solving the entire problem is not strictly true. Some-
times, one of the smaller groups contains the conflicts of
interest between the agents responsible for large execution
times. When analyzing the instances, one should be care-
ful not to be misled by the large group sizes. Second, there
may be a lot of space for improving ID, with potential for
exponential increase in performance.

OD: exponential number of high-value nodes
Standley uses the following theoretical reasoning to show
the benefits of OD: “When coupled with a perfect heuristic
and a perfect tie breaking strategy, A* search generates bd
nodes where b is the branching factor, and d is the depth
of the search. Since the standard algorithm has a branching
factor of approximately 9n (Standley experimented with 8-
connected grids) and a depth of t (the number of timesteps in
the optimal solution), A* search on the standard state space
generates approximately (9n)t nodes when coupled with a
perfect heuristic. A* with OD, however, will generate no
more than 9nt nodes in the same case because its branching
factor is reduced to 9, and its depth only increases to nt.
This is an exponential savings with a perfect heuristic.”

However, the following theoretical example suggests a
possibility for poor node performance of OD. As explained
above, OD helps reduce the number of surplus nodes by re-
ducing the branching factor of each node. We show that
even with OD, it is possible to have an exponential number
of surplus nodes in a MAPF problem instance.

Let n be a full state in the open list with f(n) = 10. As-
sume that the cost of the optimal solution is also 10. This
means that all the descendants of n with f -cost larger than
10 are surplus nodes. Using OD, the children of n are the
intermediate states where the first agent a1 has moved. Any
child of n that is generated by a1 making a move that de-
creases the heuristic value will have the same f -value of n
and will also be expanded. In a 4-connected grids with the
Manhattan Distance heuristic there can be two such children
of n. When each of these children are expanded, they too
can generate two nodes with the same f -value as n. Thus, if
there are k agents, the node n can have potentially 2k inter-
mediate nodes that have f -value equal to f(n). Now assume
that the last agent do not have any move that decreases the
h-value, e.g., because that agent is blocked. This means that
all the children of node n are in fact surplus nodes, since
non of them lead to a full state with f -value lower than the
optimal solution (10). Thus, in such a case a total of 2k−1

nodes are surplus nodes.
Since this worst case can potentially occur to every ex-

panded node, then if A* expands X nodes, A*+OD may
generate X · 2k−1 nodes.
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Unique Nodes Generated, ×103 Run-Time, ms
k Ins A* ODA* BPEA* BPEODA* EPEA* EPEA*+PDBs A* ODA* BPEA* BPEODA* EPEA* EPEA*+PDBs

Instances solved by both A* and BPEA* within two minutes and 2GB memory
2-6 793 46.35 1.27 0.08 0.38 0.08 0.06 647 5 606 5 2 33
7-8 34 1,261.04 3.26 0.11 0.88 0.10 0.05 22,440 14 14,886 12 2 100

9-10 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Instances solved by neither A* nor BPEA* within two minutes and 2GB memory

2-6 1 n/a 335.34 n/a 105.14 9.94 9.31 n/a 2,153 n/a 1,803 278 354
7-8 25 n/a 219.11 n/a 67.04 7.82 4.41 n/a 1,637 n/a 1,312 335 232

9-10 13 n/a 705.76 n/a 211.54 17.57 10.01 n/a 16,660 n/a 8,846 3,062 1,089

Table 1: First comparison of different algorithms for MAPF

Figure 4: Duplicate detection for intermediate nodes

OD as a method for early duplicate pruning
One of the great benefits of A* is its usage of memory which
prevents any path from being explored more than once. In
most applications, in order to make sure that a given node
is not a re-exploration of a path that has been previously ex-
plored, it is enough to check that the open/closed list does
not contain the same state with the same or a lower g-value.
However, it turns out that this simple condition is not suffi-
cient to prune duplicate intermediate states. Therefore, as
a default, (Standley 2010) suggests that intermediate nodes
not be put on the closed list at all, resulting in 93% savings of
memory. As a second option, (Standley 2010) explains how
to perform correct duplicate detection of intermediate nodes
and concludes that the result is worth the effort. However,
he does not explain why this duplicate detection is so effec-
tive. We would like to offer an explanation. We contribute
our explanation.

Suppose an instance with 20 agents and suppose two in-
termediate states s1 and s2 with the following properties: (1)
Agents in s1 occupy the same locations as in s2, (2) in both
s1 and s2 only the first agent has moved and (3) The sets of
legal moves possible at s1 and s2 are identical. This con-
dition is not trivial. Figure 4 shows two different standard
states together with a move of the first agent. Intermediate
states with the same locations of agents result. However, in
Figure 4 (left), the second agent cannot move to the right,
while in Figure 4 (right) it can move to the right, but cannot
move down.

Suppose that the duplicate pruning for intermediate nodes
is not used. Note that the set of the standard nodes that can
result from s1 by moving the remaining 19 agents is the
same as the set of the standard nodes that can result from
s2. All of these nodes will be generated to be pruned. On
the other hand, if duplicate pruning at intermediate nodes is
used, then all of this work will be saved.

In our opinion, early duplicate detection is one of the main
benefits of OD.

Experimental results
We start by an overall comparison of the different variants
of A* for solving MAPF optimally. After that, we focus on
detailed comparison of EPEA* and ODA*.

Table 1 shows the comparison of five algorithms on a
four-connected 8x8 grid with no obstacles with various num-
bers of agents. Since the ID framework can produce very
different result due to reasons that are not related to the per-
formance of the algorithms per se as discussed above, we
compared the algorithms using the following approach. For
each given instance, we first ran ODA* under the ID frame-
work and saved the largest group of inter-dependent agents.
Then, the original instance was substituted by another in-
stance, where the agents not in the largest group are dis-
carded. The algorithms were then compared on these in-
stances without the use of ID.

There were a total of 1,000 instances. All algorithms
were given up to two minutes and two gigabytes of mem-
ory per instance. The results were bucketed according to
the number of agents and results for instances falling into
the same bucket were averaged. Since the basic A* and
BPEA* perform much worse than the other algorithms, we
split the table into two halves. The upper part of the table
shows results for instances that were solved within allowed
resources by both A* and BPEA*. The lower part of the
table shows results for instances that were not solved by ei-
ther A* or BPEA*. We see that none of the instance with
9 or 10 agents were solved by A* and BPEA*, which sup-
ports Standley’s claim about the importance of the number
of agents in the largest group of ID. On the other hand, let
us note the time performance of ODA* for the only instance
of 2-6 agents that was not solved by either A* or BPEA* –
2,153ms. However, the average time performance of ODA*
for the instances of 7-8 agent is 1,637ms. A similar phe-
nomenon can be noted for BPEODA* and EPEA*+PDBs.
This shows that the number of agents in the largest group is
not a reliable indicator of an instance’s hardness.

The following trends can be observed. First, as reported
by (Standley 2010), ODA* is faster than A*. Second,
BPEA* is faster than A*, but it suffers from the overhead of
generating the surplus nodes in order to prune them away.
Third, BPEODA* significantly outperforms both A* and
ODA* due to maintaining a much smaller open list result-
ing in cheaper open list operations. EPEA* is faster than all
these variants. In addition, for hard instances, PDBs give
a significant (up to three times on average) improvement
on top of EPEA*. Since the PDBs are instance-dependent,
their building times cannot be amortized over all instances.
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Hard for 10 agents (ODA* took 1000 ms or longer)
Timea Expanded, ×103 Expansions nFsb Generated, ×103

Total Std./Frst.c per noded With duplicates Unique
Tot. Std. Tot. Std. fstatic = copt fstatic > copt

Tot. Exp.
ODA* 8,435 233.50 20.76 0.31 0.00 983.19 92.12 741.81 71.25 185.67 0.96 323.64

EPEA* 2,376 32.14 20.81 1.46 0.31 561.76 561.76 20.81 20.81 0.10 0.10 0.00

aTime in milliseconds.
bNumber of different stored f -values per node on average.
cStandard for OD and first expansion for PE
dNumber of times a node was expanded on average.

Table 2: Comparison of ODA* and EPEA*

However, we see that building PDBs well pays off for the
hard instances. For easier instances, EPEA*+PDBs was still
the best algorithm in terms of nodes, but not in terms of
time. This is because, besides the nodes generated during
the main search, the version with PDBs generates nodes in
order to build the PDBs. Hence for easy instances, EPEA*
is the current state-of-the-art, while for harder instances,
EPEA*+PDBs is.

We now compare of EPEA* and ODA* more deeply in or-
der to understand why EPEA* was better. Table 2 presents
detailed statistics for experiments with the two algorithms.
The meaning of the columns is explained in the table’s foot-
notes. We need to explore the following trade-off. On the
one hand, ODA* provides early duplicate pruning as ex-
plained above. On the other hand, ODA* generates surplus
and intermediate nodes.

Let us first focus on the last column. We see that the num-
ber of surplus nodes is small relative to the total number of
generated nodes. Therefore, surplus nodes is not the reason
for EPEA*’s advantage over ODA* (but it is the reason for
EPEA*’s advantage over the basic A*). Now, let us shift
our attention to the total number of unique generated nodes.
Here, we see a factor of eight difference between the two
algorithms. However, when we look at the total numbers of
generated nodes including duplicates, the difference is much
smaller. We can conclude that the difference between the
numbers of unique generated nodes is due to the large num-
ber of intermediate nodes generated by IDA* and that the
early duplicated detection does not quite cover that gap.

Conclusions
We presented a study of several variants of A* for optimally
solving the multi-agent pathfinding (MAPF) problem. An
application of the novel EPEA* technique to MAPF that
supports PDBs was fully described and several enhance-
ments proposed. We also presented several important and
hitherto uncovered insights about the techniques reported in
the existing literature. These insights open several interest-
ing directions for future work.
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