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Abstract

Crowdsourcing contests—events to solicit solutions to
problems via an open-call format for prizes—have
gained ground as a mechanism for organizations to ac-
complish tasks. This paper uses game-theoretic models
to develop design principles for crowdsourcing contests
and answer the questions: what types of tasks should
be crowdsourced? Under what circumstances? When a
single task is to be completed, crowdsourcing can lead
to higher quality outcomes than directed assignment if
the pool of players is diverse, but can lead to subopti-
mal outcomes when workers have similar abilities. With
multiple tasks, crowdsourcing can easily match players
with diverse skill-sets to different tasks to achieve high
aggregate performance. However, surprisingly, crowd-
sourcing is not always useful to find expert workers for
highly specialized tasks.

Introduction
Information technologies that provide lightning speed com-
munication at low cost are changing the nature of work. Or-
ganizations can now leverage networks, communities, and
ecosystems of people to perform tasks. Workforces are no
longer localized and homogenous, but instead are globally
distributed and diverse. Large projects are broken up into
smaller encapsulated pieces. In fact, the millennial genera-
tion shows a cultural preference for project-based rather than
jobs-based work (Bollier 2011). Within this environment,
methods of collective intelligence have emerged as key busi-
ness tools (Malone, Laubacher, and Dellarocas 2010). A
fundamental understanding of this evolution of work is es-
sential to shape its future form.

A notable example of decentralized organization is
crowdsourcing. Crowd-power has been harnessed to design
everything from t-shirts to software to artificial intelligence
algorithms by soliciting contributions via open calls (Tap-
scott and Williams 2006; Bokelberg and Varshney 2012;
Boudreau, Lacetera, and Lakhani 2011). The ability to reach
a large crowd of skilled workers quickly and inexpensively
gives firms an alternative means for accomplishing tasks. As
such, it is important to understand the pros and cons of a
fluid, crowd-based labor force. To quote Thomas Malone,
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“There is this misconception that you can sprinkle crowd
wisdom on something and things will turn out for the best.
That’s not true. It’s not magic.” (Lohr 2009).

How can an organization find the best person for a job and
incentivize him to attain peak performance? Crowdsourcing
has been thought of as a good tool for skill identification.
The aim of this paper is to identify the utility of crowdsourc-
ing contests as a business tool. The focus is crowdsourc-
ing contests, where monetary or otherwise tangible rewards
are provided to the winners of competitive events. This is
different from other forms of crowdsourcing where crowd
workers do not receive direct extrinsic rewards, such as in
Wikipedia (Benkler 2006; Howe 2008) and also different
from paid microtask forums, such as Amazon’s Mechanical
Turk, where there is no competition. Contests may be inter-
nal, with competition only among the employees of the or-
ganization (internal crowdsourcing, e.g. IBM’s Liquid plat-
form (Bokelberg and Varshney 2012)), or external and open
to the public (external crowdsourcing, e.g. TopCoder). Our
results apply to the last two types of crowdsourcing.

One approach to answer the question raised above is em-
pirical, as in (Liu et al. 2011). Contrarily, we set up a theo-
retical framework to answer this question, taking a first step
towards determining the optimal work structure for a given
task, be it labor-based, division into microtasks, a crowd-
sourcing contest (internal or external), or something else en-
tirely.

We use explicit game-theoretic models for crowdsourc-
ing single and multiple tasks, which build on previous
all-pay auction models (DiPalantino and Vojnović 2009;
Archak and Sundararajan 2009; Varshney et al. 2011; Liu et
al. 2011). First, we provide a mathematically-oriented tax-
onomy for tasks based on their optimal solution method.
This classification gives specific conditions for when crowd-
sourcing can generate revenue for the employer for a partic-
ular task.

To address the point about skill identification, we also
demonstrate conditions under which crowdsourcing contests
yield higher returns to the employer than hierarchical man-
agerial assignment. We find crowd-based self-assignment is
better for single tasks when

• Managers are uncertain about the resources and skills of
workers,
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• The pool of workers is diverse in its ability to perform the
given task, and

• Workers have low default base effort.
Contrary to the claims of Malone et al. (2010), the first

condition may not be sufficient. Further, when organizations
may have multiple different tasks and diverse workers, as
in crowdsourcing platforms like TopCoder or IBM’s Liquid
platform, we find:
• for tasks that do not require highly specialized skills,

crowdsourcing can perform as well as optimal assignment
of workers to tasks;

• but, crowdsourcing contests can be suboptimal even with
a pool of many strong players and just one weak player;
and

• crowdsourcing contests can perform badly for highly spe-
cialized tasks. Instead of pulling out highly-skilled work-
ers from a crowd, crowdsourcing could lead to mediocre
performance by everyone.
Malone et al. (2010) raise the question of how to invoke

collective intelligence to perform a task: via collection, con-
test, or collaboration? Within this framework, contests can
be thought of as a subtype of collection, where certain con-
tributions are awarded prizes. For collection (e.g. microtasks
or contests) to be the appropriate choice, they say that it
must be possible to divide the overall activity into small
pieces that can be done independently by different mem-
bers of the crowd. They go on to assert that contests are
a useful way of doing collection when only one or a few
good solutions are needed. In contrast to this claim, our final
multiple-task model demonstrates that under certain condi-
tions, tasks where many solutions are useful to the contest-
designer are more suitable to be solved using crowdsourc-
ing contests than tasks where only a few good solutions
are needed. This turns out to be true because when a large
number of qualified players are available, multiple tasks will
most effectively mobilize them.

Crowdsourcing Contests as All-Pay Auctions
Crowdsourcing contests involve multiple participants with a
diversity of skills and incentives. We develop simple models
based on standard game theory to help understand and de-
sign contests, building on previous work on all-pay auction
models (DiPalantino and Vojnović 2009; Archak and Sun-
dararajan 2009; Varshney et al. 2011; Liu et al. 2011). Play-
ers in all-pay auctions forfeit their bids regardless of whether
they win. Similarly, a participant in a crowdsourcing contest
pays (via effort, opportunity cost etc.) regardless of whether
his entry is chosen. For the remainder of the paper, we fol-
low the all-pay auction with complete information model of
crowdsourcing contests and we use the terms contestants,
players, workers and bidders interchangeably.

To understand how to find the best worker for a given
task and incentivize him to do his best, we compare the ef-
ficacy of targeted assignment to that of crowdsourcing con-
tests. The specific map of skill level to players becomes very
important for targeted assignment of tasks — the manager
or assigner must have at least some estimate of all these

values. On the other hand, auctions with complete infor-
mation only assume that each player knows the multiset of
the strengths of other players, which is much less informa-
tion than the exact mapped sequence of strengths (Varshney
and Goyal 2006). Crowdsourcing forums such as TopCoder
make heavy use of leader boards and public participation
records. These digital reputations and public rankings pro-
vide players good estimates of the strengths of other players
in a contest. Furthermore, the more experience a player has,
the better he will be at such estimation.

Empirical analysis of participation on Taskcn that reveals
high-quality (experienced) players have the most influence
on the contest-designer’s revenue and drive aggregate re-
ward and reserve-price effects on submission quality (Liu
et al. 2011). They find an early high-quality submission de-
ters other high-quality players. Clearly, understanding the
behavior of the strongest players is key.

The models used here build on these ideas where all play-
ers have distinct, public costs and we show weaker players
are deterred from entering when they know strong players
are already participating. We limit attention to auction mod-
els with complete information to distill the salient aspects of
this comparison. We assume all players know the skill levels
of all other players. High skills implies low costs per unit
effort.

The Model
Consider a crowdsourcing contest with n players (P1 to Pn)
and prize value A > 0. To capture the idea that players may
have different skill sets and abilities to perform the given
task, we introduce costs per unit effort ci, 1 ≤ i ≤ n, for
each player. For instance, an expert may only need a few
hours to complete a task and would have a low cost of effort,
whereas a novice might have much higher cost.

Each player submits a bid xi that represents the quality
of her submission, at cost cixi. The prize is awarded to the
best submission, i.e. the highest bid xi. In this paper, we ex-
clusively consider a complete information setup, where the
prize valueA and players costs ci are publicly known. Player
bidding strategies depend on the other player costs, but only
as a multiset. The specific mapping of costs to players is ir-
relevant in determining bidding strategies.

In a two-player contest with players P1 and P2, consider
the case where c1 < c2, i.e. P1 is the stronger player. Then
the expected utilities of the players, E[U1], E[U2], respec-
tively for bids of x1, x2, are

E[U1] = A · P [x1 > x2]− x1c1 (1)
E[U2] = A · P [x2 > x1]− x2c2 (2)

Theorem 1 (Hillman and Riley, (1989)). The two player
contest described above admits a unique Nash equilibrium.
At equilibrium P1 bids uniformly at random on [0, Ac2 ]. P2

bids 0 with probability c2−c1
c2

, and with the remaining prob-
ability, c1c2 , bids uniformly on [0, Ac2 ] as well.

Theorem 2 (Hillman and Riley, (1989)). If n ≥ 3 players
are involved with strictly increasing costs for P1, P2, P3, i.e.
(c1 < c2 < c3 ≤ c4 ... ≤ cn), and if the strongest players
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P1 and P2 act as if there were no other agents, then P3 to Pn
do not enter the contest and submit bids 0 with probability
1.

Thm. 2 demonstrates a mismatch between our model
and empirical characterizations of crowdsourcing contests,
where more than two players tend to participate. The empir-
ical phenomenon may arise because players are not rational,
because players underestimate their competition, or because
player skills are indeed exactly equal and so it is rational for
many to enter. Baye et al. (1996) consider an all-pay auc-
tion with n players with a set of n ≥ 3 players of identical
skill level. This case shows many asymmetric Nash equi-
libria, with more than two players entering the competition.
For simplicity, here we consider the model with a unique
Nash equilibrium, with distinct player costs. Ideas and in-
sights from our model can be extended to the model of Baye
et al. (1996).

The following section builds on the all-pay auction frame-
work here and to categorize tasks.

The Contest Designer’s Perspective
An all-pay auction traditionally assumes that all submitted
bids serve as revenue to the auctioneer. However, in a crowd-
sourcing contest, this might not be the case. Some events
may have synergy while others have redundancy across en-
tries (Bettencourt 2009). The utility that the contest-designer
derives from a task depends on its nature: we denote con-
test returns by the function f . Depending on f , the designer
may want to change the parameters of the contest or decide
whether it is even worthwhile to hold an event. The utility
derived by the contest-designer is

Utask = f(~x)−A (3)

where ~x represents the vector of n bids x1, x2, ..., xn.
The function f can provide a mathematically-oriented

classification of potential crowdsourcing tasks. Tasks may
be:
• selective, e.g. software component design,
• integrative, e.g. information aggregation or idea genera-

tion, or
• involve market creation, e.g. the X PRIZE.
We carry the terms selective and integrative from (Schenk
and Guittard 2011), which is one among many recent tax-
onomies for crowdsourcing. Contests that derive utility from
the top-k entries interpolate between the extremes of selec-
tive and integrative tasks (Archak and Sundararajan 2009).

In a selective task, only one working solution is useful
to the designer. In this case, the designer typically derives
utility from the maximum, and her utility function would be

f(~x) = max(x1, x2, ... , xn) (4)

On the other hand, an integrative idea generation contest
might provide an additive or even superadditive utility to the
designer and have eq. (5).

f(~x) = α
n∑
i=1

xi, α > 0 (5)

The log of the weighted sum of bids in the utility func-
tion above, f(~x) = α log (

∑n
i=1 xi), captures diminishing

marginal returns.
Tasks might also be subject to a coordination cost per

player, (γ > 0), which scales with the number of players
and thus decreases the utility of the contest designer as in
eq. (6).

f(~x) = α
n∑
i=1

xi − γn, α > 0 (6)

Modeling market creation though a function is more chal-
lenging. As noted by the X PRIZE Foundation, their goal is
“about launching new industries that attract capital, that get
the public excited, that create new markets” (Tapscott and
Williams 2010, p. 131). Thus, independent of the quality of
bids, the sheer number of entries might provide utility with

f(~x) = αn+ β (7)

where n is the number of players.
One may further desire the f function to be upper-

bounded by some maximum value.
Here, we use f to characterize which tasks are best

suited to crowdsourcing contests. As a minimum require-
ment, we would like to ensure that the contest-designer’s
utility E[Utask] is positive, so no losses are incurred by run-
ning a contest. This idea extends to ensure against some min-
imum profit.

We consider four examples below. More than just mathe-
matical derivation within the model, our point is to show that
the parameters of the player pool influence how a particular
task should be solved.
Example 1. In a two-player selective winner-take-all con-
test, eq. (4), the expected utility under equilibrium is,

E[f(~x)−A] = E[Utask] =
A

6

(
3c2 + c1
c22

)
−A, (8)

which follows from the randomized strategies of the play-
ers discussed in Thm. 1. The calculations are omitted here.
Thus, E[Utask] is positive if and only if 3c2−c1

6c22
−1 > 0. The

player strengths c1 and c2 determine whether the contest-
designers utility is positive. If c2 � c1, i.e. the second player
is much weaker than the first, then the condition reduces to
c2 <

1
2 . On the other hand if 3c2 − c1 = ε is small, then

c22 <
ε
6 is a strong enough condition to ensure positive util-

ity.
Example 2. For an integrative task with superadditive f as
in eq. (5), even a weak player pool can provide positive util-
ity, as below:

E[Utask] = α

(
A

2c2
+
c1A

2c22

)
−A (9)

Therefore E[Utask] > 0 if and only if α >
2c22
c1+c2

. If c2 �
c1, this reduces to α

2 > c2, while if c2 − c1 = ε is small,
then a sufficient condition for positive E[Utask] is given by
α > c2, since α

2 >
c22
2c2

+ ε > c2
2 . In the case α = 1, we

see that the positive utility conditions for integrative tasks
are weaker than those for selective tasks.
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Example 3. Consider n players with strictly increasing
costs competing for the task, as in eq. (6). We noted ear-
lier that in this case x3, ..., xn = 0 with probability 1 if the
strongest players P1 and P2 ignore the presence of the other
players, Hence, E[Utask] for the contest-designer is exactly
as eq. (8). Clearly, having a contest to complete just one task
when a large pool of players are available, and where the
coordination costs scale with the number of players, as in
eq. (6), a winner-take-all contest would be exactly the wrong
structure. Dividing the task into smaller pieces (if possible)
would be advantageous to the designer in this case.
Example 4. Finally, in the case of an event where the ob-
jective is market creation, the designer’s utility does not even
depend on the effort of the players.
Remark 1. In closing, we observe that if f1(~x) ≥ f2(~x) for
all ~x, E[Utask](f2) > 0 implies that E[Utask](f1) > 0, since
player bidding strategies are independent of the designer’s
valuation function f . Even with approximate functions, this
provides contest-designers a simple rule of thumb to order
potential f functions.

Comparing Crowdsourcing Contests to
Targeted Assignment

Crowdsourcing can be a powerful way to reach a large pool
of players inexpensively. The right crowdsourcing model
might increase fluidity in the labor force of the future (Bol-
lier 2011). However, it is important not to think of crowd-
sourcing as a catch-all solution.

The fluidity of the crowdsourcing model allows a player
to self-select tasks. With this agency, players (or employ-
ees) will likely choose tasks that they are good at and enjoy,
while, as noted earlier, managerial assignment requires more
detailed information. How useful is crowdsourcing for skill
identification?

The winner-take-all format provides natural performance
incentives without the cost of organizational frameworks.
Quite clearly, such a model comes with the benefits and
pitfalls of an outcomes-based reward structure (e.g. (Dixit
2002)). How important are these competitive incentive fac-
tors?

The single task model addresses the tradeoff between en-
dogenous incentives offered by a contest-based solution ver-
sus externally provided incentives, and the effect of obser-
vation noise when a manager assigns a task to a player for a
selective task with two players. Similar models can be easily
developed for integrative or market creation tasks.

The second model looks at a multi-task, multi-player set-
ting and captures the potential of crowdsourcing contests to
solve hard matching problems and to yield higher utility for
both designers and players.

Of course, completion of the task at hand with maximum
utility may be only one among many objectives desired by
the contest-designer. A longer-term perspective may neces-
sitate considering completion of many (similar or dissimi-
lar) tasks over time, which may require workforce evolution
and retention. Further, it has been observed empirically that
crowdsourcing contests may be inefficient, since they are
prone to overeffort; in aggregate, players may exert more

than fifteen times the effort required to complete the task
(Varshney et al. 2011). Direct assignment of tasks to players
minimizes such overeffort and can offer training benefits.
These issues are not addressed in the preliminary models
here.

Crowdsourcing a Single Task
Different tasks require different skills on the part of the
player, and different players have different skills. For in-
stance, one software development project may require
knowledge of Java, whereas another might require DB2.
We represent these skills for both players and tasks with k-
length binary vectors similar to Hong and Page (2001).

We model imperfect skill information on the part of the
manager as a noisy observation—the manager observes each
skill vector with a bit flip probability σ. Based on this obser-
vation, the manager assigns the closest player (in Hamming
distance) to a task. Targeted assignment with high noise is
like random assignment.

Let di, i = 1, 2, d1 < d2 represent the distances of play-
ers 1 and 2 from the task, which serve as a proxy for the
costs incurred for the players. Let ~s1 and ~s2 represent the
length k skill vectors of the two players, and ~z1, ~z2 be the
two independent noise vectors∼ Bernoulli(σ). The manager
observes ~s1 + ~z1 and ~s2 + ~z2, and which are at distances e1
and e2 from the task.

First, let us calculate the utility achieved with noiseless
perfect assignment. The stronger player, player 1, will at
best exert A

d1
effort to complete the task. In the absence

of competition to win the reward as an incentive, managers
must provide an external framework to motivate workers —
these might include long term benefits, reputation, future job
prospects, promotions etc. Let θ be the base fraction of effort
exerted by players through such external (non-competition
based) incentives. θ is an empirical factor and does not im-
pact the utility derived from crowdsourcing. Let v be the
base utility obtained by the contest-designer. Noiseless opti-
mal assignment gives the expected utility:

E[Uopt] = v + θ
A

d1
−A = v +A(

θ

d1
− 1). (10)

Next, we look at what happens with noisy observations
and compare utility from such assignment to that from
crowdsourcing contests.

Theorem 3. The expected utility achieved by targeted as-
signment and crowdsourcing contest mechanisms are given
as

E[Uman] = v +A[P (r)
θ

d1
+ (1− P (r)) θ

d2
− 1] (11)

E[Ucs] = v +
A

6

(
3d2 + d1

d22

)
−A (12)

respectively, where P (r) is the probability that the task is
assigned to the correct player, and can be calculated as be-
low.

Proof: It is a straightforward expectation that gives
E[Uman] as eq. (11), once we have P (r).
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(a) One strong and one weak player (b) Two weak players (c) Two strong players

Figure 1: Crowdsourcing contests offer the greatest advantage if the players are diverse in their ability to perform the task — it
is easier to identify the stronger player than through noisy observations.

To calculate P (r) we note that an error will be made by
the manager if e1 > e2 even though d1 < d2, i.e. P (r) =
P (e1 < e2|d1 < d2). Hence, we are interested in the change
in e1 − e2 compared to d1 − d2. This can equivalently be
modeled as ~s1 being perturbed by noise ~z ∼ Bernoulli(φ),
where φ = 2σ − 2σ2, with ~s2 unchanged. Let dch be the
change in ~s1 due to the noise ~z. Then,

P (r) =

d1−d2∑
l=0

P (dch = l) (13)

P (dch = l) =

k1∑
k=0

(
n− d1
l + k

)(
d1
k

)
φl+2k(1− φ)n−l−2k

(14)

where k1 = min(d1, n− d1 − l).
Since a crowdsourcing mechanism picks out the maxi-

mum bidder, we can calculate the distribution of the ex-
pected utility under equilibrium as the E[max(x1, x2)],
where bids x1 and x2 have distributions as specified by
Thm. 1. This is similar to the calculation in Example 1, and
gives eq. (12).

Figs. 1(a)-(c) help interpret Thm. 3 by showing the rela-
tive utility obtained by the task-designer with different val-
ues of the managerial noise and base level of effort. Pro-
ductivity estimates often show that θ might be about 0.5.
The relative strengths of the two players d1, d2 can affect
whether crowdsourcing or managerial assignment provide
higher returns. Note these figures serve as examples and
changes to θ, φ, d1, d2 may affect the nature of the plots.

As Fig. 1(a) shows, crowdsourcing offers the greatest ad-
vantage over assignment when the skill levels in the pool
of players is diverse. We see that with a weak pool of play-
ers targeted assignment performs better than crowdsourcing
(Fig. 1(b)). With two strong players, noise does not matter
much, and crowdsourcing does not offer significant advan-
tages to identify skill (Fig. 1(c)).

Crowdsourcing Multiple Tasks
Matching multiple tasks and multiple potential solvers is a
complex assignment problem. It is tempting to believe that
crowdsourcing mechanisms could provide a natural scheme
through which players will self-select appropriate tasks. Not
only would players choose suitable tasks, but the competi-
tion could provide performance incentives. This section ex-
plores a simple multi-player multi-task model. We find that
• for generic tasks with many skilled players, crowdsourc-

ing can easily achieve close to optimal utility for a task;
• surprisingly, crowdsourcing contests can provide utility

close to zero even with a pool of many strong players and
just one weak player; and

• crowdsourcing contests perform badly for highly special-
ized tasks, which only few experts might be qualified to
perform. In fact, these experts might get buried under the
crowd.
We introduce some new notation to setup the framework.

Consider a setting with 2n tasks (EJ(1), · · · , EJ(n)) and
(EG(1), · · · , EG(n)) and 2m players (PJ(1), · · · , PJ(m))
and (PG(1), · · · , PG(m)), with m ≥ n. There are n tasks
of each of two types: Java-based (type J) or graphic design-
based (type G), and similarly, m players of each type.

Players of a given type are better at tasks of the same type.
A Java programmer (graphic artist) can complete a Java task
(or graphic-design task) at a low cost (cl), whereas she has a
high cost (ch) for a graphic-design task (or Java-task). PJ(i)
has cost cJJ(i) = cl + ε(i) for tasks EJ(1) to EJ(n), and
cost cJG(i) = ch + ε(i) for EG(1) to EG(n). Costs for
PG(i), i.e. cGG(i) and cGJ(i) are defined similarly. ε(i) is
to be thought of as an error term: ε(i) � cl � ch. Base
effort θ is as defined earlier. Without loss of generality, as-
sume that the player costs are ordered: cJJ(1) < cJJ(2) <
· · · < cJJ(m) � cGJ(1) < cGJ(2) < · · · < cGJ(m),
and cGG(1) < cGG(2) < · · · < cGG(m) � cJG(1) <
cJG(2) < · · · < cJG(m).

The optimal utility, Uopt, is achieved when each player is
matched to a task of his or her type. This total utility is the
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sum of utilities the events less the reward paid out, and acts
as our baseline.

E[Uopt] =
n∑
i=1

θ
A

cJJ(i)
+

n∑
i=1

θ
A

cGG(i)
− 2nA (15)

≈ 2nA(
θ

cl
− 1). (16)

However, manually doing this matching is difficult.
Theorem 4. In the framework described above, if the man-
ager observes an incorrect player type with probability φ,
then the expected contest-designer utility, Uman, is

E[Uman] = 2nA

(
(1− φ)θ

cl
+
φ · θ
ch
− 1

)
(17)

Proof: An expectation calculation gives:

E[Uman] =(1− φ)
n∑
i=1

θ
A

cJJ
+ φ

n∑
i=1

θ
A

cJG
+

(1− φ)
n∑
i=1

θ
A

cGG
+ φ

n∑
i=1

θ
A

cGJ
− 2nA.

(18)

Substituting values of the costs gives the desired eq. (17).
Now consider the crowdsourcing scenario. Each player

can submit entries for any task, however, finally only one
player will be picked per task and each player can only win
one contest.
Theorem 5. In a crowdsourcing contest as described above,
when m ≥ n+1, the expected utility from crowdsourcing is

E[Ucs] = 2nA(
1

cl
− 1), (19)

as n → ∞ when cJJ(i) ≈ cJJ(k), cGG(i) = cGG(k) for
all 1 ≤ i, k ≤ n.

Proof: First, consider all n tasks of type J . For nota-
tional ease, let vJJ(i) = A

cJJ (i)
. Thus, we are looking at an

all-pay auction, with n identical goods E1, ..., En, and 2m
players. The n highest bidders will be assigned the n tasks1.

When all the players have unequal valuations, this game
has a unique Nash equilibrium, in which only the strongest
n+1 players actively bid, while the rest almost surely bid 0.
Thus, only players PJ(1) to PJ(n + 1) with values vJJ(1)
to vJJ(n+1) will actively submit entries for tasks of type J .
From Clark and Riis (1998), we know that PJ(1) to PJ(n)
will randomize over the interval [`(i), vJJ(n+ 1)], where

`(i) =

(
1−

n∏
k=i

vJJ(k)

vJJ(i)

)
vJJ(n+ 1), i = 1, 2, ...n.

(20)

Let r be a parameter such that r = 1 if `(1) ≤ x ≤
vJJ(n + 1), else r = s if `(s) ≤ x < `(s − 1). Then, the

1Such auctions with multiple goods and players have been ex-
tensively studied (Barut and Kovenock 1998; Clark and Riis 1998),
and we build on this work here.

distribution of the bidding strategy (Clark and Riis 1998),
FJ,i(x), for i = 1, 2, ...n is given by

FJ,i(x) = 1 −

 vJJ (i)∏n
k=r

vJJ (k)
1

n+1−r

(1 −
x

vJJ (n + 1)

) 1
n+1−r

(21)

Player PJ(n + 1) submits 0 with probability(
1− vJJ (n+1)

vJJ (n)

)
, and otherwise randomizes according

to eq. (21) with vJJ(n) in place of vJJ(i).
The expected utility of each player in this case is given by

vJJ(i) − vJJ(n + 1). The expected payoff to the contest-
designer would be the sum of the n highest bids of the play-
ers.

As n becomes large, players submit entries close to the
upper bound vJJ(n + 1). Similar to the two-player all-pay
auction where no players bid higher than the weaker player’s
valuation, the weakest players valuation vJJ(n + 1) is an
upper bound on the bids of all players. Note that if vJJ(i) ≈
vJJ(k) for all i, k then the lower bound for the support of
the mixed strategies of all players is close to 0. r = 1 for
most x in this interval in this case and

FJ,i(x) ≈ 1−
(
1− x

vJJ(n+ 1)

) 1
n

. (22)

Since all players adopt the same strategy, the probability
of any one player winning is n

n+1 . Thus, the expected bid is
the difference of the expected gross surplus and the expected
utility,

E[xi] =
n

n+ 1
vJJ(i)− (vJJ(i)− vJJ(n+ 1)) (23)

≈ n

n+ 1

(
A

cl

)
(24)

Now consider the tasks of type G. The n + 1 strongest
players for this task are the players of type G. Since these
players were strictly weaker than the players of type J for
the tasks of type J , none actively participated in any of those
tasks. However, they will actively bid on the tasks of type
G, following exactly the same patterns as the players of type
J in bidding on the tasks of type J . Hence, the total ex-
pected utility to the contest-designer using crowdsourcing
in the case of approximately identical costs (or values) for
all players of a type is given by

E[Ucs] ≈
n∑
i=1

n

n+ 1

(
A

cl

)
+

n∑
i=1

n

n+ 1

(
A

cl

)
− 2nA,

(25)

= 2n
n

n+ 1

(
A

cl

)
− 2nA (26)

= 2nA

(
1

cl
− 1

)
, as n→∞. (27)

With enough skilled competitors, crowdsourcing can
yield higher utility than even optimal assignment (eq. (16)),
since 0 ≤ θ ≤ 1, and has been empirically estimated to be
around 0.5.
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Theorem 6. If m = n, and ch is high enough that A
ch
≈ 0

then the expected utility from crowdsourcing E[Ucs] = 0.
Proof: This case follows as Thm. 5 until eq. (21). How-

ever, FJ,i(x) ≈ 1 −
(
1− x

vGJ (1)

) 1
n ≈ 0 for all 1 ≤ i ≤ n.

Since there are only enough players to complete the task,
each player is assured of winning a task and thus has no in-
centive to put in a non-zero bid.

Lack of competition leads to low performance by all play-
ers. Instead, in this case if tasks were assigned by a man-
ager, albeit noisily, significant utility could be derived for at
least some of the tasks. The natural thought process might
lead us to believe that crowdsourcing contests are good for
skill discovery — it is easy to think that expert players
will clearly become obvious in a competitive setting. This
setup gives a clear example where this would not be the
case. Crowdsourcing may not be a good solution when the
contest-designer has many tasks of a specialized nature that
requires highly-skilled players who are in short supply. This
model easily extends to more than two types of events and
players.

When it is possible to divide a large project into smaller
tasks the best way to harness multiple players is through
multiple tasks. However, if contest-designers are able to di-
vide a large task into many smaller tasks of different types
that are matched to the different types of players in the
crowd, both the designers and the players could receive
higher utilities. Our guidelines for crowdsourcing tasks both
support and complement those from Malone et al. (2010).

Conclusions and Future Work
Complementing empirical work in this area, we have devel-
oped a theoretical framework that may guide organizations
that are considering crowdsourcing contests to do work.
More broadly, we try to understand the implications and
strengths and weaknesses of more fluid task-focused labor
markets.

The simple models presented here are only a first step.
Models involving multiple prizes, incomplete information of
player strengths, and also those which take into account re-
peated game effects such as player learning and retention
costs are necessary future work.

Acknowledgements
The authors would like to thank Eric Bokelberg, Ankur
Mani, Anshul Sheopuri, and Lada Adamic for helpful dis-
cussions.

References
Archak, N., and Sundararajan, A. 2009. Optimal design of
crowdsourcing contests. In Proc. Int. Conf. Inf. Syst. (ICIS).
Barut, Y., and Kovenock, D. 1998. The symmetric multi-
ple prize all-pay auction with complete information. Eur. J.
Polit. Econ. 14(4):627–644.
Baye, M. R.; Kovenock, D.; and de Vries, C. G. 1996. The
all-pay auction with complete information. Econ. Theor.
8(2):291–305.

Benkler, Y. 2006. The Wealth of Networks. Yale University
Press.
Bettencourt, L. M. A. 2009. The rules of information ag-
gregation and emergence of collective intelligent behavior.
Topics Cogn. Sci. 1(4):598–620.
Bokelberg, E. H., and Varshney, L. R. 2012. Liquid: Har-
nessing the passion of the crowd within the enterprise. sub-
mitted.
Bollier, D. 2011. The Future of Work. Aspen Inst.
Boudreau, K. J.; Lacetera, N.; and Lakhani, K. R. 2011.
Incentives and problem uncertainty in innovation contests:
An empirical analysis. Manage. Sci. 57(5):843–863.
Clark, D. J., and Riis, C. 1998. Competition over more than
one prize. Am. Econ. Rev. 88(1):276–289.
DiPalantino, D., and Vojnović, M. 2009. Crowdsourcing
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