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Abstract

Quality assurance in crowdsourced annotation often in-
volves having a given example labeled multiple times
by different workers, then aggregating these labels. Un-
fortunately, the worker-example label matrix is typically
sparse and imbalanced for two reasons: 1) the average
crowd worker judges few examples; and 2) few labels
are typically collected per example to reduce cost. To
address this missing data problem, we propose use of
probabilistic matrix factorization (PMF), a standard ap-
proach in collaborative filtering. To evaluate our ap-
proach, we measure accuracy of consensus labels com-
puted from the input sparse matrix vs. the PMF-inferred
complete matrix. We consider both unsupervised and
supervised settings. In the supervised case, we evalu-
ate both weighted voting and worker selection. Experi-
ments are performed on both a synthetic data set and a
real data set: crowd relevance judgments taken from the
2010 NIST TREC Relevance Feedback Track.

Introduction
Crowdsourced labeling offers potential to reduce time, cost,
and effort of obtaining relevance judgments used to evaluate
search engine ranking algorithms (Alonso, Rose, and Stew-
art 2008). However, quality of judgments from non-workers
continues to be a concern, motivating continuing work in
quality assurance methods based on statistical label aggrega-
tion methods or greater attention to human factors. A com-
mon approach is to collect multiple, redundant judgments
from workers and aggregate them via methods like majority
voting (MV) or expectation maximization (EM) to produce
consensus labels (Ipeirotis, Provost, and Wang 2010).

Unfortunately, the average crowd worker typically judges
only a small number of examples. Moreover, few labels are
typically collected per example to reduce cost. As a result,
collected judgments are typically sparse and imbalanced,
with the consensus judgment for each example determined
by only a handful of workers. MV is completely suscepti-
ble to this problem. EM addresses this indirectly: while only
workers labeling an example vote on it, global judgments are
used to infer class priors and worker confusion matrices.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We propose to tackle this issue via a collaborative filter-
ing approach, a popular strategy to address sparsity of user
ratings (e.g., movies, books, etc.). In particular, we employ
probabilistic matrix factorization (PMF), which induces a la-
tent feature vector for each person and example (Salakhutdi-
nov and Mnih 2008) in order to infer unobserved judgments
for all examples. Figure 1 depicts our approach. PMF ex-
ploits latent feature matrices of workers and examples, with
gradient descent used to find a local minimum of the ob-
jective for the worker and example feature vectors. Infer-
ence yields a complete matrix, which we then use use for
label aggregation. This complete matrix contains relevance
judgments from all workers corresponding to all examples,
thereby reducing the bias of output consensus labels.

To evaluate our PMF approach, we measure accuracy of
consensus labels computed from the input sparse matrix vs.
the PMF-inferred complete matrix. We consider both un-
supervised and supervised settings. In the supervised case,
we evaluate both weighted voting and worker selection. Ex-
periments are performed on both a synthetic data set and a
real data set: crowd judgments collected from Amazon Me-
chanical Turk for the 2010 NIST TREC Relevance Feedback
Track (Buckley, Lease, and Smucker 2010). We do not know
of prior work investigating PMF or other collaborative filter-
ing approaches for quality assurance in crowdsourcing.

The rest of this paper is organized as follows. The next
section summarizes prior work on PMF methods and quality
issues in crowdsourcing. Following this, we present algorith-
mic background of PMF in the crowdsourcing context. Next,
we describe label aggregation methods in unsupervised and
supervised cases, with the latter considering weighted voting
& filtering methods. We then describe the synthetic data set
and the real data used in our experiments. Next, evaluation
results compare performance between the proposed method
and the other aggregation methods. We conclude the paper
with discussion and future work.

Related Work
Label acquisition varies according to the number of labels
per example (single vs. multiple) and the number of ex-
amples per worker (single expert vs. multiple crowd work-
ers). One naive way is that one expert labels all examples.
It would be expertise based label acquisition rather than
crowd-worker based method since labels from crowd work-
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Figure 1: Crowdsourcing workers judgments (Left) are copied to a sparse worker-example matrix (Middle). Missing judgments
are inferred via PMF (Right). Ln is a set of consensus labels correpsonding to each task induced by a label aggregation method.

ers may be not as reliable as expert does due to the lack of
knowledge and experience. However, this approach leads to
very expensive cost and comparatively long time. Another
way is to distribute all examples into multiple crowd work-
ers by assuming one label per each example (single label-
ing). This method saves cost and time by using the wisdom
of crowds; however, the quality of label is highly dependent
on single worker’s subjectivity and knowledge.

To solve the limit of single labeling methods, multiple la-
beling approaches based on redundancy have been proposed
as an efficient way to integrate the labels from many annota-
tors (Sheng, Provost, and Ipeirotis 2008) (Welinder and Per-
ona 2010). When multiple labels are available, a critical is-
sue is how to aggregate labels efficiently and accurately. One
simple way is to induce consensus labels based on majority
voting. However, it is nothing more than random label se-
lection when the disagreement between multiple labels goes
high. Thus, many studies have focused on improving the ac-
curacy of consensus labels by predictive models with ground
truth (Snow et al. 2008) (Dekel and Shamir 2009) or without
ground truth (Ipeirotis, Provost, and Wang 2010).

Dawid et al. (Dawid and Skene 1979) presented a model
for multi-value annotations where the biases and skills of the
annotators were modeled by a confusion matrix. Welinder
and Perona generalized and extended it to different annota-
tion types (Welinder and Perona 2010). In a similar way,
Raykar et al.(Raykar et al. 2010) presented a model that
considered annotator bias in the context of training binary
classifiers with noisy labels. Whitehill et al. (Whitehill et al.
2009) modeled both annotator competence and example dif-
ficulty, while did not consider annotator bias.

All these approaches are based on given raw labels which
were actually annotated. When all workers annotate the
same number of examples, worker’s quality such as accu-
racy over gold is measured over same number of labels and
each worker influences consensus labels uniformly. How-
ever, each worker may annotate a different number of exam-
ples unless a requester limits it. In reality, this issue occurs
more seriously as shown in Figure 2. Thus, we attempt to
deal with this issue by focusing on how to reduce the bias of
given labels with PMF.

To the best of our knowledge, we are not familiar with any
prior work investigating PMF, or collaborative filtering ap-
proaches more generally, toward crowdsourcing quality as-
surance. Related prior work has investigated other ways to
infer bias corrected labels in place of raw labels (Ipeirotis,
Provost, and Wang 2010), as well as inference of missing la-
bels by estimating a unique classifier for each worker (Chen
et al. 2010).

Probabilistic Matrix Factorization (PMF)

Suppose we have M examples, N workers, and a label matrix
R in which Rij indicates the label of worker i for example
j. Let U ∈ RD∗M and V ∈ RD∗N be latent feature matrices
for workers and examples, with column vectors Ui and Vj
representing D-dimensional worker-specific and example-
specific latent feature vectors, respectively. The conditional
probability distribution over the observed labelsR ∈ RN∗M

is given by Equation 1. Indicator Iij equals 1 iff worker i
labeled example j. We place zero-mean spherical Gaussian
priors on worker and example feature vectors (Equations 2
and 3).

p(R|U, V, σ2) =
N∏
i=1

M∏
j=1

[N (Rij |UT
i Vj , σ

2)]Iij (1)

p(U |σ2
U ) =

N∏
i=1

[N (Ui|0, σ2
U I)] (2)

p(V |σ2
V ) =

M∏
j=1

[N (Vj |0, σ2
V I)] (3)

To estimate model parameters, we maximize the log-
posterior over example and worker features with fixed
hyper-parameters. Maximizing the posterior with respect to
U and V is equivalent to minimizing squared error with L2
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regularization:

E =
1

2

N∑
i=1

M∑
j=1

Iij(Rij − UT
i Vj)

2

+
λU
2

N∑
i=1

‖Ui‖2Fro +
λV
2

M∑
i=1

‖Vj‖2Fro

where λU = σU/σ, λV = σV /σ, and ‖ � ‖2Fro denotes
the Frobenius Norm. We use gradient descent to find a lo-
cal minimum of the objective for U and V . Finally, we in-
fer missing worker judgments in the worker-example ma-
trix T by taking the scalar product of U and V. Note that
as in (Ipeirotis, Provost, and Wang 2010), we also replace
actual labels with bias-corrected inferred labels.

Label Aggregation
Label aggregation is to generate a consensus label per each
example with a set of inferred relevance judgments labels. In
order to compare the effectiveness of the proposed method,
we consider several ways to aggregate labels with or with-
out supervision. We first introduce unsupervised methods
to aggregate labels. We subsequently compare the proposed
method with supervised ways by using training gold labels.

Unsupervised Label Aggregation
Given the complete set of inferred worker relevance judg-
ments in matrix R, we next aggregate worker judgments to
induce consensus labels. Majority Voting is a straightfor-
ward method which takes account of each label uniformly.
We consider majority voting with raw (sparse) labels as a
baseline (Method 1).

Expectation Maximization (EM) (Dawid and Skene 1979)
estimates the error rates of each classifier ck by a latent con-
fusion matrix [π(k)

ij ], where ij-th element π(k)
ij denotes the

probability of classifier ck classifying an example to class j
given the true label is i, estimated based on each example’s
class membership as:

π̂
(k)
ij =

∑M
m=1 Tmin

(k)
mj∑C

i=1

∑M
m=1 Tmin

(k)
mj

(4)

where n(k)mj denotes the number of times label lm receives
response j from classifier ck, and {Tmi} represents the set of
indicators for class membership of label lm such that Tmt =
1 if t is the true label for label lm and Tmi = 0 otherwise.
The latent class prior {pi}Li=1 is estimated by:

p̂i =
1

M

M∑
m=1

Tmi (5)

Since the true label for each label lm is unknown in the un-
supervised methods, EM uses a mixture of multinomials to
describe the quality of classifiers. Assuming every pair of
classifiers is independent, the probabilistic model likelihood
can be written:

L(pi, π
(k)
ij ) =

M∏
m=1

 C∑
i=1

pi

K∑
k=1

C∑
j=1

(π
(k)
ij )n

(k)
mj

 (6)

Estimating the maximum likelihood in Equation 6 is ana-
lytically intractable since it involves computing the product
of a summation. However, once we get estimates for latent
parameters pi and π(k)

ij , we can derive new class member-
ship Tmi for label lm such that Tml = 1 if l becomes the
estimated true label for label lm which maximizes:

L(pi, π
(k)
ij ) =

M∏
m=1

pi

K∏
k=1

C∏
j=1

(π
(k)
ij )n

(k)
mj . (7)

We then iteratively re-estimate latent pi and π(k)
ij , and miss-

ing labels Tmi from Equations 4, 5, and 7 until convergence.
We use this method with raw labels as another baseline
(Method 2).

Supervised Label Aggregation
In supervised setting, we measure each worker’s accuracy
based on expert judgments. We flip labels of anti-correlated
workers in order to make accuracy always ≥ 50%. We use
supervision in two distinct ways: weighted voting (WV) and
worker filtering. For weighted voting, we put each worker’s
accuracy as an weight on each label. For worker filtering,
only workers with accuracy ≥ α participate in voting. As
shown in Table 1, method 4 uses only weighted voting, and
method 5 is only based on worker filtering method. Method
6 exploits both methods by filtering out noisy labels then
doing weighted voting.

Data
Synthetic Data
We generate a synthetic data set for binary classification
with 10,000 examples (uniformly) randomly assigned to
each class. We generate a pool of 1000 workers. Each
worker’s accuracy is randomly selected between 0.2 and
0.8, and the distribution of worker’s accuracy follows a nor-
mal distribution of N(0.5, 1). The number of examples per
worker follows an exponential probabilistic distribution with
a parameter µ=40. No examples are annotated by the same
worker more than one time. Since the size of the given
worker by example matrix is 10,000,000 and the number
of generated labels is approximately 40,000, only 4/1000 =
0.4% of labels in the raw matrix is given. It is similar to the
case we face in Turk data which will be described in the next
section.

Turk Data
Turk data contains crowd judgments collected in the
2010 TREC Relevance Feedback Track (Buckley, Lease,
and Smucker 2010) from Amazon Mechanical Turk. 762
crowd workers judged 19033 query-document examples,
and 89624 judgments were collected. Our worker-example
matrix thus has 762 columns (workers) and 19,033 rows (ex-
amples); only 89,624 out of 14,503,146 labels (0.6%) are
observed, so data is extremely sparse. We use two sets of
ground truth. First, we use 3,275 expert relevance judgments
by NIST that are partitioned into training (2,275) and test
(1,000) sets. The test set is evenly-balanced between rele-
vant and non-relevant classes. Second,we use 1,865 in-house
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Figure 2: The number (log-scale) of examples per worker on
crowd judgments collected in the TREC Mechanical Turk
data set used.

relevance judgments produced by the University of Water-
loo (Smucker 2012).

Figure 2 shows the number of examples per worker on
crowd judgments collected in our turk data. In this data, re-
quester did not limit the number of examples per worker,
thus the distribution of the number of examples per worker
is very imbalanced. Furthermore, the top 200 workers did la-
bel 90% of the given examples as shown in Figure 3. In this
case, a crowd worker may have a serious effect on the quality
of consensus labels more than the others since the number of
examples per worker is skewed. Thus, a worker-by-example
table is very sparse and imbalanced and it is very similar to
a problem in collaborative filtering. Multiple labeling meth-
ods enable us to reduced noise of labels; however, it still
suffers sparsity and imbalance since a crowdworker usually
participates a small number of examples.

Evaluation
Evaluation Setting
Since PMF is fully-unsupervised, we iteratively run PMF
with the entire set of raw labels to optimize parameters. For
dimensionality of worker and example latent feature vec-
tors, we consider D ∈ 10, 30, 50 and select D = 30 based
on cross-validation on the entire set of labels (unsupervised)
for both synthetic and turk data. We similarly tune regular-
ization parameter λ ∈ {0.001, 0.01, 0.1, 0.3, 0.5} and select
λ = 0.3 for a synthetic data and λ = 0.1 for a turk data.

For a synthetic experiment, we compare the performance
of PMF based inference method with majority voting (MV)
and Expectation Maximization (EM). These are all unsuper-
vised label aggregation methods that do not assume the pres-
ence of ground truth.

With a turk data, we conduct experiments with various
label aggregation methods in unsupervised and supervised
setting. In unsupervised setting, PMF based inference are
evaluated with MV (method 1) and EM (method2). For su-

Figure 3: The percentage of cumulative labels per worker on
crowd judgments collected in the TREC Mechanical Turk
data set used.

pervised label aggregation, each worker’s accuracy are used
to filter out noisy workers and weighted voting. We tune the
worker filtering thresholdα ∈ [0.6, 0.99] by cross-validation
on the training set using a linear sweep with step-size 0.01.
We used the following measures for comparing the perfor-
mance of given methods.

RMSE =

√√√√ 1

N − 1

N∑
i=1

(p− q)2 (8)

Accuracy(ACC) =
tp+ tn

(tp+ tn+ fp+ fn)
(9)

Specificity(SPE) =
tn

(tn+ fp)
(10)

where tp is the number of true positive classifications,
fp is false positives, tn is true negatives, and fn is false
negatives. p is the true labels and q is the predicted labels.
RMSE is a largely used measure of the difference between
predicted values and actual values, which is popular in the
evaluation of collaborative filtering algorithms. Accuracy
reports the proportion of true results over all inference la-
bels, while specificity indicates the ability of method to
identify negative results. Thus, a specificy 100% indicates
that the inference method recognizes all actual negatives cor-
rectly.

Results
Synthetic data Figure 4 shows the results of each meth-
ods in the absence of supervision. In terms of accuracy
and RMSE, EM with raw labels and PMF based infer-
ence achieve the equivalent scores. A two-tailed paired t-test
proves that there is no statistically significant difference be-
tween two methods at the significance level of 0.05. PMF re-
ports a higher specificity score compared to two other meth-
ods, since it reduces the number of false positives and in-
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Method Supervised Worker Labels Label Aggregation ACC Rank RMSE Rank SPE Rank
1 No raw (sparse) MV 0.603 4 0.630 4 0.332 6
2 No raw (sparse) EM 0.644 3 0.596 3 0.418 5
3 No PMF (complete) MV 0.643 3 0.598 3 0.440 4
4 Yes raw (sparse) WV 0.642 3 0.598 3 0.900 1
5 Yes raw (sparse) Filtering(α=0.67) 0.752 1 0.498 1 0.838 2
6 Yes raw (sparse) WV & Filtering(α=0.67) 0.750 1 0.500 1 0.848 2
7 Yes PMF (complete) WV & Filtering(α=0.7) 0.673 2 0.571 2 0.542 3

Table 1: Results of PMF-based inference of missing worker labels over NIST ground truth. For the unsupervised case, majority
voting (MV) with PMF (Method 3) is compared to MV and EM approaches using input (sparse) worker labels (Methods 1-2).
With supervision, we compare weighted voting (WV) and/or filtering with and without PMF. Ranks shown indicate statistically
significant differences at p <= 0.05 using a two-tailed paired t-test.

Figure 4: Results of PMF-based inference of missing worker
labels over a synthetic data introduced in data set section .
Majority voting (MV) with PMF (Method 3) is compared to
MV and EM approaches using input (sparse) worker labels
(Methods 1-2). Ranks shown indicate statistically significant
differences at p <= 0.05 using a two-tailed paired t-test.

creases the number of true negatives by reducing the bias of
labels based on matrix factorization.

Turk Data Table 1 reports accuracy (ACC), RMSE, and
specificity (SPE) achieved by each method over NIST
ground truth. In unsupervised setting, PMF with majority
voting (Method 3) outperforms the MV baseline (Method 1)
in terms of given measures. It even performs equivalently
to EM (Method 2). While supervised methods tend to dom-
inate, unsupervised EM and PMF both match performance
of the supervised weighted voting (WV) method without fil-
tering.

In supervised setting, worker filtering is clearly seen to
provide the greatest benefit, and surprisingly performs bet-
ter without PMF than with PMF (Methods 6 vs. 7). When
filtering is used, use of WV is not seen to further improve
performance (Methods 5 vs. 6). We do see PMF-based mod-
eling outperform non-PMF modeling when worker filtering
is not employed (Methods 7 vs. 4).

Results of PMF-based inference over Waterloo ground
truth are slightly different from the previous one over NIST
ground truth as shown in table 2. PMF with majority voting
(Method 3) outperforms the MV baseline and shows slightly
better performance than EM. However, in supervised setting,
weighted voting (Method 4) outperforms all the other meth-
ods. In addition, PMF with supervision does not improve the
quality of consensus labels significantly compared to unsu-
pervised one. In other words, weighted voting and worker
filtering are not helpful to PMF based inference.

PMF with majority voting do not accomplish the highest
score compared to supervised methods over two test sets. In
the absence of ground truth, PMF is equivalent to or slightly
better than EM that is the one of popular methods in unsu-
pervised label aggregation methods. However, there is more
room to improve the performance of PMF based inference
since we only use majority voting for label aggregation and
we replaced all labels with inferred labels.

Conclusion
We presented a label inference method based on probabilis-
tic matrix factorization by transforming a crowdsourcing
data into collaborative filtering data. It enables us to predict
unlabeled and missing labels from crowd-workers. In addi-
tion, we induce consensus labels based on this method and
compare its quality with the other well-known label aggre-
gation methods in unsupervised and supervised ways.

While unsupervised consensus labeling accuracy with
PMF only matched EM performance, there is a room to im-
prove the performance of our proposed method. Since we
use a simple majority voting with PMF, we can expect that
the performance would be improved by taking account of
other label aggregation methods. In addition, we only use
inferred labels for label aggregation in this study. However,
it would be interesting for using both inferred and raw labels
together to induce more reliable consnesus labels.

Apart from consensus accuracy, complete worker judg-
ments inferred by PMF may have further value, such as pre-
dicting the best worker to route a given example to for label-
ing. Such routing has potential to improve labeling accuracy
and reduce the total number of labels required.

Intuitively, an accurate worker’s empirical label distribu-
tion should resemble the actual class prior. This suggests an
alternative, more weakly supervised scenario to consider in
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Method Supervised Worker Labels Label Aggregation ACC Rank RMSE Rank SPE Rank
1 No raw (sparse) MV 0.457 6 0.424 2 0.263 7
2 No raw (sparse) EM 0.468 6 0.426 2 0.328 6
3 No PMF (complete) MV 0.482 4 0.434 2 0.356 5
4 Yes raw (sparse) WV 0.518 1 0.433 2 0.643 1
5 Yes raw (sparse) Filtering(α=0.67) 0.504 2 0.410 1 0.639 1
6 Yes raw (sparse) WV & Filtering(α=0.67) 0.506 2 0.411 1 0.633 1
7 Yes PMF (complete) WV & Filtering(α=0.7) 0.487 4 0.427 2 0.542 4

Table 2: Results of PMF-based inference of missing worker labels over Waterloo ground truth. For the unsupervised case,
majority voting (MV) with PMF (Method 3) is compared to MV and EM approaches using input (sparse) worker labels (Meth-
ods 1-2). With supervision, we compare weighted voting (WV) and/or filtering with and without PMF. Ranks shown indicate
statistically significant differences at p <= 0.05 using a two-tailed paired t-test.

which class priors are known while example labels are not.
In the unsupervised case, we might instead simply examine
the distribution of empirical priors for each worker and de-
tect outliers (Jung and Lease 2011). We plan to investigate
these ideas further in combination with those described here.
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