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Abstract

Many tasks for autonomous agents or robots are best de-
scribed by a specification of the environment and a specifi-
cation of the available actions the agent or robot can perform.
Combining such a specification with the possibility to imper-
atively program a robot or agent is what we call the action-
based imperative programming. One of the most successful
such approaches is Golog.
In this paper, we draft a proposal for a new robot program-
ming language YAGI, which is based on the action-based
imperative programming paradigm. Our goal is to design a
small, portable stand-alone YAGI interpreter. We combine
the benefits of a principled domain specification with a clean,
small and simple programming language, which does not ex-
ploit any side-effects from the implementation language. We
discuss general requirements of action-based programming
languages and outline YAGI, our action-based language ap-
proach which particularly aims at embeddability.

Introduction
Many tasks for autonomous agents or robots are best de-
scribed by a specification of the environment and a specifica-
tion of the available actions the agent or robot can perform.
Consider a simple office delivery robot delivering items. The
task of the robot is defined by keeping track of the robot’s
position and the objects the robot should carry around. Fur-
thermore, it needs to know the office layout and the recip-
ient of the items it is delivering. The robot should be able
to perform a set of actions like moving to the offices and
picking up and putting down objects. Further, it should be
able to perform some sensing actions, say, to ensure that an
object was really delivered and the reception was acknowl-
edged by the recipient. It is obvious that encoding all this in
a fixed pre-programmed robot controller is harder than using
a declarative description of the world, describing the actions
with their effect and let the controller work out the details.

In the field of cognitive robotics, such controllers are in-
tensively studied and there is a number of well-working
approaches. One of the most successful ones is Golog
(Levesque et al. 1997) and its descendants (see e.g.
(Levesque and Lakemeyer 2008) for an overview of differ-
ent Golog derivates). Golog applications range from robotic
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soccer via service robots to gamebots in interactive com-
puter games and webagents (e.g. (Ferrein and Lakemeyer
2008; McIlraith and Son 2002)). All these languages share
that they have a formal domain specification and some form
of a programming component which could be used to control
a robot or agent. We call the combination of a formal domain
specification with a programming component action-based
programming. In the case of Golog, the programming com-
ponent is based on the imperative programming paradigm,
hence we speak of action-based imperative programming.

In this paper we present the outline of the language YAGI
which stands for Yet Another Golog Interpreter. But why
would we need yet another Golog interpreter? As experi-
enced Golog programmers having taught Golog in class as
well, the shortcomings of Golog’s run-time environment for
real-world robotics and agent applications become obvious.
Run-time systems for Golog are usually implemented in
Prolog. The problem is that features of Prolog are implicitly
used inside Golog, and the distinction between Golog and
Prolog is only obvious to the expert. Students are struggling
with that distinction. Another drawback is that it is not easy
to integrate a Golog interpreter into one’s own agent project.
Advanced knowledge about how the interpreter works is re-
quired. This, in particular, is holding many potential users
back from giving such an action-based programming lan-
guage a chance in their projects.

While previous related work was concerned with ex-
tending the language (e.g. (Levesque and Pagnucco 2000;
Giacomo et al. 2009; Boutilier et al. 2000; De Giacomo,
Levesque, and Sardiña 2001; Pham 2006; Grosskreutz and
Lakemeyer 2003)) or defining a formal semantics with su-
perior properties (Lakemeyer and Levesque 2004; Claßen
and Lakemeyer 2006), in this paper we define an easy-to-
use new robot programming language following the action-
based programming approach. The aim is to define a stand-
alone interpreter similar to Golog which moreover integrates
useful features from other action-based languages. With
YAGI, we want to combine the benefits of a principled do-
main specification with a clean, small and simple program-
ming language, which does not exploit any side-effects from
the embedding host language. The contributions of this pa-
per are the following: (1) we define a (non-exhaustive) list
of requirements that categorizes useful features for action-
based programming languages; (2) we give the syntax and
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semantics for YAGI, a Golog-based interpreter that aims for
some of the basic requirements listed in (1) while also pro-
viding the ground for meeting more of these requirements in
future extensions.

While there exists no implementation yet, the syntax and
semantics show that we can express a restricted class of sit-
uation calculus basic action theories and Golog-like pro-
grams in a uniform language with familiar programming
constructs. To the best of our knowledge, it is the first time
that a non logic-based language for specifying both a Golog
domain and a Golog program is defined in a formal way.

Also, the semantics of YAGI are motivated by recent re-
sults showing that progression of basic action theories can
be practical under restrictions that are common in applica-
tion domains, such as the local-effect assumption (Vassos,
Lakemeyer, and Levesque 2008). The idea then is that YAGI
functions as an “on-line” interpreter, parsing and handling
each line of code separately, and progressing, that is, up-
dating, the internal representation after each step. As each
line of code may be a code listing that includes the usual
nondeterministic features of Golog, the standard regression
semantics are used in order to identify an appropriate execu-
tion before executing and progressing.

The rest of the paper is organized as follows. In the next
section, we formulate a number of general requirements for
action-based agent and robot programming languages. We
proceed to give some prerequisites for our work, namely the
situation calculus and Golog. Then, we discuss the function-
ality of YAGI using some simple examples, and proceed to
introduce the formal syntax and semantics. Finally, we con-
clude with a discussion on the requirements met by this first
version of YAGI, and related and future work.

General Requirements
In this section we give a list of different requirements
for a language following the action-based programming
paradigm. It is not expected that a particular language sat-
isfies all the listed requirements as some may be compet-
ing or incompatible. The idea is that this list provides a
formal ground for discussing and comparing action-based
imperative-deliberative programming languages, including
YAGI, the language we introduce in the next sections.

Non-functional requirements
Q1: Familiarity: the language is based on concepts that are

widely used in software programming frameworks such
as variables, functions/methods, and objects.

Q2: Embeddedness: a program can be easily embedded into
the familiar software programming frameworks such as
Java and C++.

Q3: Interoperability: a program of the language can easily
exchange information in a standard format or through
familiar software programming constructs.

Q4: Transparency: no concepts of the underlying seman-
tics, e.g., fluents or states, are apparent in the language
unless they account for a practical requirement.

Functional requirements
F1: Action-based: the language features constructs that al-

low the specification of a set of available actions along
with their preconditions and effects.

F2: Imperative: the language features constructs known
from general-purpose imperative programming such as
loops and conditionals.

F3: Goal-oriented: the language features constructs that al-
low the specification of deliberative execution that fol-
lows a planning approach for achieving a specified goal.

F4: Arithmetic: the language features constructs that han-
dle the four basic binary operations of arithmetic, i.e.,
addition, subtraction, multiplication, division.

F5: Projection: the language features constructs for spec-
ifying projection conditional expressions that test
whether a condition is true after the execution of a se-
quence of actions.

F6: Queries: the language features constructs for specifying
queries. These are similar to conditional expressions
but instead of testing whether the condition is true, they
identify all the values of an included variable for which
the condition is true.

F7: Null values: the language features constructs for speci-
fying unknown values for variables.

F8: Probabilistic values: the language features constructs
for specifying that a variable value is supported with a
degree of probability.

F9: Disjunctive values: the language features constructs for
specifying that the value of a variable is not known but
can only be one of a list of possibilities.

F10: Interval-based values: the language features constructs
for specifying that the value of a variable is not known
but can only be one of the values included in an interval.

F11: Sensing: the language features an account to perform
knowledge-gathering actions (active sensing) or sup-
ports some form of updating sensor values in the back-
ground (passive sensing).

F12: Decision-theoretic: the language features constructs for
allowing the specification of deliberative execution that
follows a decision-theoretic approach.

Situation calculus prerequisites
The situation calculus is a second order language with equal-
ity which allows for reasoning about actions and their ef-
fects (McCarthy and Hayes 1969; Reiter 2001). The world
evolves from an initial situation due to primitive actions. A
possible world history, which is simply a sequence of ac-
tions, is represented by a first-order term called a situation.
The constant S0 is used to denote the initial situation and a
distinguished binary function symbol do(a, s) is used to de-
note the successor situation to s resulting from performing
action a. The changing properties of the world are repre-
sented with fluents, that is, relations with a situation term as
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their last argument and whose truth value vary from situa-
tion to situation. There is also a special predicate Poss(a, s)
used to state that action a is executable in situation s.

Within this language, one can specify action theories that
describe how the world changes as the result of the available
actions. A basic action theory D has the following form
(Reiter 2001): D = Σ ∪ Dssa ∪ Dap ∪ Duna ∪ DS0

.1

• Σ is a set of domain independent foundational axioms
which formally define legal situations.

• Dssa is a set of successor state axioms (SSAs), one
for each fluent symbol F , of the form F (~x, do(a, s)) ≡
ΦF (~x, a, s). SSAs specify the conditions under which the
fluent holds at situation do(a, s) as a function of s.

• Dap is a set of action precondition axioms, one per action
symbol A, of the form Poss(A(~y), s) ≡ ΠA(~y, s).

• Duna holds unique-names axioms for actions: A(~x) 6=
A′(~y), and A(~x)=A(~y) ⊃ ~x=~y, for each pair of distinct
action symbols A and A′.

• DS0 describes the initial situation.

On top of these action theories, logic-based programming
languages can be defined, which, in addition to the primitive
actions of the situation calculus, allow the definition of com-
plex actions. Golog (Levesque et al. 1997), the first situa-
tion calculus agent language, offers all the control structures
known from conventional programming languages (e.g., se-
quence, iteration, conditional, etc) plus some nondetermin-
istic constructs. It is due to these last control structures that
programs do not stand for complete solutions, but only for
sketches of them whose gaps have to be filled later, usually
at execution time.

α, primitive action
φ?, wait or test for a condition
δ1; δ2, sequence
δ1 | δ2, nondeterministic branch
π x. δ(x), nondeterministic choice of argument
δ∗, nondeterministic iteration
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
p(~θ). procedure call

The execution of Golog programs is formalized using
the special predicate Do(δ, s, s′), which says that program
δ when executed in situation s has s′ as a legal termi-
nating situation. Finding a legal execution for program δ
then amounts to finding a sequence of actions ~a such that
D |= Do(δ, S0, do(~a, S0)).

We now proceed to introduce YAGI.

YAGI by example
The basic ingredients of YAGI are the constructs fluent
and action. Before we introduce formally the syntax and
semantics of YAGI, we will go over the basic use of the lan-
guage using the simple elevator example from (Reiter 2001).

A fluent is similar to an associative array in that it asso-
ciates multi-dimensional keys to a value. A fluent associates

1For readability we typically omit leading universal quantifiers.

every key with a flat list of single values of either integer
or string type. In the simplest case when the key has 0 di-
mensions, a fluent is very similar to a variable with weak
typing. For example, in the following YAGI code the 0-
dimensional fluent currFloor is declared and a singleton
set is assigned to it’s 0-dimensional key:

fluent currFloor;
currFloor = {4};

This is intended to hold the current location of the elevator.
Similarly, on holds information about the floors where the
elevator button is pressed.

fluent on;
on = {3, 5};

The action construct is more like a function definition
with some structured parts that resemble a class definition.
The interoperability between YAGI programs and the host
programming environment is achieved using string signals.
The following YAGI code declares the action of turning off
the button of the elevator at the given floor.

action turnoff($n)
precondition:
$n in on

effect:
on -= {$n};

signal:
"Turn-off button at floor " + $n
end action

Note that the arguments of the action are essentially local
variables that can be used in the specification of the action.
Local variables can be introduced by other constructs, too,
as we will see later. They hold a single value of integer or
string type, and always start with the dollar sign so as to
distinguish them from fluents and facts, i.e., static fluents.

Except for normal assignment for fluents, YAGI features
special operators with set-operational semantics such as +=
and -=. For example in the effect above, on gets assigned
the original set of values minus the value of the variable $n.

The following YAGI code declares the action of the ele-
vator moving up to go to the given floor.

fact floors;
floors = {1, 2, 3, 4, 5, 6};
action up($n)
precondition:
exists $i in floors
such currFloor == {$i} and $i < $n

effect:
currFloor = {$n};

signal:
"Move up to floor " + $n

end action

Note that another local variable was introduced in the
exists block, which also required a set that specifies its
range. In the precondition we have two different compar-
isons. The left equivalence is set-based denoted by the
brackets around the variable. The right comparison is an
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odinary value-value comparison. Action down($n) is de-
clared in a similar way.

The elevator example also includes two actions with no
precondition and effects that signal the opening and closing
of the elevator door. These are declared in YAGI simply as
follows for the opening action and similarly for closing.

action open()
signal:
"Open elevator door"

end action

Except for primitive actions of this form, the elevator ex-
ample also specifies complex actions as procedures. The
next one is the action of moving to a given floor by either
going up or down.

proc goto($n)
if currFloor != {$n} then
choose

up($n);
or

down($n);
end choose

end if
end proc

In this complex action, choose specifies a nondeterminis-
tic choice between alternatives.

The next complex action uses the other actions to specify
how the elevator serves a given floor.

proc serve($n)
goto($n);
turnoff($n);
open();
close();

end proc

Finally, the next one is the main controller of the elevator
that nondeterministically picks one floor where the button is
pressed and serves it.

proc serveafloor()
pick $n from on such
serve($n);

end pick
end proc

The YAGI code we have seen essentially declares ele-
ments of the YAGI world of fluents. The first few lines de-
scribe the current state of the world, while the rest specify
primitive and complex actions. Now we will see how one in-
teracts with a stand-alone YAGI interpreter. Assuming that
the YAGI code we discussed is stored in “elevator.y”, we in-
voke the interpreter, import the file, and execute some code.

YAGI>> import("elevator.y");
YAGI>> currentFloor
{4}
YAGI>> up(5);
"Move up to floor 5"
YAGI>> currentFloor

{5}
YAGI>>

For every line of YAGI code we execute, the interpreter
searches for an appropriate realization of the code specified
and then executes the corresponding primitive actions. As
far as searching is concerned there is no difference with the
Golog interpreter specified in (Reiter 2001) (or subsequent
implementations). Nonetheless, the difference with YAGI is
that after a sequence of actions is found, the underlying basic
action theory that specifies the world of fluents gets updated
in order to reflect the actions that have been performed.

So we can choose how the interpreter deliberates about
finding which actions to execute by grouping the code into
lines appropriately. The next example illustrates this.

YAGI>> import("elevator.y");
YAGI>> serveafloor();
"Move up to floor 5"
"Turn-off button at floor 5"
"Open elevator door"
"Close elevator door"
YAGI>> serveafloor();
"Move down to floor 3"
"Turn-off button at floor 3"
"Open elevator door"
"Close elevator door"
YAGI>>

Note that for each floor served, the interpreter deliberated
separately about which actions to perform. Alternatively,
the following YAGI code would require that a viable plan
for serving two floors is found before execution takes place:

YAGI>> serveafloor(); serveafloor();

Finally, we can use declarations and assignments to chan-
ge the current specification of the YAGI world of fluents.

YAGI>> import("elevator.y");
YAGI>> currentFloor
{4}
YAGI>> up(5);
"Move up to floor 5"
YAGI>> on += {1};
YAGI>> on -= {5};
YAGI>> on
{1, 3}
YAGI>>

This is not sensing in that an unknown fluent may be
sensed to its actual value, and probably relates more to the
so-called exogenous events. In any case, this can be useful
for “altering” the value of fluents according to a passive or
active use of sensors that constantly provide a feed of values.

The syntax of YAGI
We now define the syntax of YAGI using BNF (Backus-Naur
Form) while also using {. . .} to denote zero or more repe-
titions and [. . .] to denote zero or one repetition. The fol-
lowing BNF shows how to declare fluents and facts, and
the syntax of basic expressions which evaluate to a single
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value or a set of values. Lexical 〈ID〉 tokens correspond
to appropriate names for fluents, facts, and variables, while
〈INT〉,〈STRING〉 correspond to values of that type.
〈setexpr〉 ::= 〈set〉 { (‘+’ | ‘-’) 〈set〉 }
〈set〉 ::= ‘{’ 〈value〉 { ‘,’ 〈value〉 } ‘}’
| 〈term〉
〈term〉 ::= 〈ID〉 { ‘[’ 〈value〉 ‘]’ }
〈valexpr〉 ::= 〈value〉 { (‘+’ | ‘-’) 〈value〉 }
〈value〉 ::= 〈INT〉
| 〈STRING〉
| 〈var〉
〈var〉 ::= ‘$’ 〈ID〉
〈fluent decl〉 ::= ‘fluent’ 〈ID〉 {‘[’‘]’}
〈fact decl〉 ::= ‘fact’ 〈ID〉 {‘[’‘]’}

The next BNF shows how logical expressions are built
based on variables, terms, and logical connectives.
〈formula〉 ::= atom
| ‘not’ ‘(’ 〈formula〉 ‘)’
| ‘(’ 〈atom〉 (‘and’ | ‘or’) 〈formula〉 ‘)’
| ‘exists’ 〈var〉 ‘in’ 〈setexpr〉)

‘such’ 〈formula〉
| ‘all’ 〈var〉 ‘in’ 〈setexpr〉)

‘such’ 〈formula〉
〈atom〉 ::= 〈valexpr〉 〈comp op〉 〈valexpr〉
| 〈setexpr〉 〈comp op〉 〈setexpr〉
| 〈value〉 ‘in’ 〈setexpr〉
| (‘true’ | ‘false’)
〈comp op〉 ::= ‘==’ | ‘!=’ | ‘<=’ | ‘>=’ | ‘<’ | ‘>’

The next BNF shows the basic assignment statement of
YAGI. Sets may be assigned to fluents and facts (indicated
as terms), while variables may only hold a single value.
〈assign〉 ::= 〈term〉 〈assign op〉 〈setexpr〉
| 〈var〉 〈assign op〉 〈valexpr〉
〈assign op〉 ::= ‘=’ | ‘+=’ | ‘-=’

The basic assignment along with conditional statements
and for-loops form blocks that are convenient for specifying
the value of fluents.
〈assignment〉 ::= 〈assign〉 ‘;’
| 〈for loop assign〉
| 〈conditional assign〉
〈for loop assign〉 ::= ’for’ 〈var〉 ‘in’ 〈setexpr〉 ‘do’

〈assignment〉 ‘end for’
〈conditional assign〉 ::= ‘if’ 〈formula〉 ‘then’ 〈assignment〉

[ ‘else’ 〈assignment〉 ] ‘end if’

These assignment blocks are used to specify the effects of
actions in the declaration of actions, as well as the current
state of the YAGI world of fluents, as we will see shortly.
〈action decl〉 ::= ‘action’ 〈ID〉 ‘(’〈varlist〉‘)’

‘precondition:’ 〈formula〉
‘effect:’ { 〈assignment〉 }
‘signal:’ 〈valexpr〉 ‘end action’

〈varlist〉 ::= 〈var〉 { ‘,’ 〈var〉 }
The YAGI statements follow closely the Golog paradigm,

including a construct for action execution, conditional con-
trol flow, testing whether a formula holds, performing a for-
loop, as well as a construct for nondeterministic control flow
and picking the value of a local variable from a set.

〈block〉 ::= { 〈statement〉 }
〈statement〉 ::= 〈action exec〉 ‘;’
| 〈pick〉
| 〈test〉 ‘;’
| 〈for loop〉
| 〈if then else〉
| 〈choose〉
〈action exec〉 ::= 〈ID〉 ‘(’ 〈arglist〉 ‘)’
〈arglist〉 ::= 〈value〉 { ‘,’ 〈value〉 }
〈pick〉 ::= ‘pick’ 〈var〉 ‘from’ 〈setexpr〉 ‘such’ 〈block〉

‘end pick’
〈test〉 ::= ‘test’ 〈formula〉 ‘;’
〈for loop〉 ::= ‘for’ 〈var〉 ‘in’ 〈setexpr〉 ‘do’ 〈block〉

‘end for’
〈if then else〉 ::= ‘if’ 〈formula〉 ‘then’ 〈block〉 [‘else’

〈block〉 ] ‘end if’
〈choose〉 ::= ‘choose’ 〈block〉 { ‘or’ 〈block〉 } ‘end choose’
〈search〉 ::= ‘search’ 〈block〉 ‘end search’

Finally, the next BNF shows procedure declaration and
the definition of a line of code in YAGI.
〈line〉 ::= 〈declaration〉 | { 〈statement〉 }
〈declaration〉 ::= 〈fluent decl〉 ‘;’
| 〈fact decl〉 ‘;’
| 〈action decl〉
| 〈proc decl〉
| 〈assignment〉
〈proc decl〉 ::= ‘proc’ 〈ID〉 ‘(’ 〈varlist〉 ‘)’ 〈block〉

‘end proc’

A working Java parser for YAGI that follows this BNF
can be found at the Google code project for YAGI: https:
//code.google.com/p/yagi/. Note that this parser currently
checks only for syntactical conformance.

The semantics of YAGI
In this section we specify situation calculus semantics for
well-formed YAGI code listings. The stand-alone YAGI in-
terpreter (or a virtual machine that is embedded in some pro-
gramming environment) operates as a persistent object that:

(i) holds a basic action theory that describes the YAGI
world of fluents and a set of Golog procedures that de-
scribe the YAGI procedures;

(ii) responds to the execution of a YAGI declaration by up-
dating the logical specification of the action theory and
the procedures;

(iii) responds to the execution of a line of YAGI statements
by finding an appropriate sequence of actions to per-
form as specified by Golog semantics, progressing the
current state of the world, and producing signals.

In order to achieve this formalization we introduce a vari-
ant of the basic action theories that can represent the features
of YAGI. In particular, a YAGI-BAT is defined as follows:

D = Σ ∪ Dpres ∪ Dssa ∪ Dap ∪ Duna ∪ Dunc ∪ DS0

where Dpres is the set of axioms of Presburger arithmetic
(Enderton 1972), and Dunc is the set of unique-names ax-
ioms for some special constants that will be used to represent
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the string tokens of YAGI. We will now show how a YAGI
code listing specifies a YAGI-BAT that has complete knowl-
edge in the initial situation S0 and range-restricted effects in
the sense of (Vassos and Sardina 2011).

For simplicity, in our analysis we will omit the string sig-
nals that the interpreter produces, and we also assume that
each YAGI line of code does not raise any run-time errors.
Consider a function YAGISem that takes as input a sequence
of 〈line〉 instances 〈l1, . . . , ln〉 and returns a theory D′ over
language L′, defined recursively as follows.

The base case is when the interpreter is initialized. In
this case we assume that YAGISem(〈〉) is a theory D′ over a
situation calculus languageL′ that includes no fluent, action,
and constant symbols (except S0), and such thatDssa, Dap,
Duna, and Dunc are empty.

For any arbitrary sequence of 〈line〉 instances 〈l1, . . . , ln〉,
YAGISem(〈l1, . . . , ln〉) is the theory D′ over L′ that is com-
posed by D = YAGISem(〈l1, . . . , ln−1〉) over L, as follows.

• If ln is a 〈fluent decl〉 instance for an associative array F
with m dimensions, then L′ is L plus the (m+1)-ary flu-
ent F , andD′ is the same asD except that (i) all sentences
that mention F in D0,Dssa are removed, (ii) the closure
axiom ∀~x∀y.F (~x, y, S0) ≡ false is added to D0, and
(iii) the axiom F (~x, y, do(a, s)) ≡ F (~x, y, s) is added to
Dssa. Essentially, this declaration “initializes” F to hold
no information. The case of 〈fact decl〉 is similar.

• If ln is an 〈assignment〉 instance, we specifyD′ and L′ by
induction on the construction of the line ln. We show only
how the base case of 〈assign〉 is treated, as this forms the
main intuition, and the rest of the details follow similarly.
For 〈assign〉 that assigns the set of integers {v1, . . . , vk}
to key ~c form-dimensional array F , theoryD′ is the same
as D except that (i) sentences in D0 mentioning F are
removed, and (ii) the following closure axiom is added to
D0:∀~x∀y.F (~x, y, S0) ≡

∨k
i=1(~x = ~c ∧ y = v∗i ), where

v∗i is the term of Presburger arithmetic for integer vi.
The case is similar with string values. In this case each
string is represented as a constant with a name that is
identical to the string, and the appropriate unique-name
axioms for string constants are also added to Dunc.

• If ln is an 〈action decl〉 instance for an action A with m
parameters, then L′ is L plus the m-ary action symbol A,
and D′ is the same as D except that (i) all sentences that
mention A in Dap,Dssa are removed, (ii) the action pre-
condition axiom Poss(A(~y), s) ≡ ΠA(~y, s) is added to
Dap, where ΠA(~y, s) is constructed by the corresponding
〈formula〉 instance in the obvious way, and (iii) the suc-
cessor state axioms in Dssa are updated with respect to
the effect axioms specified by the 〈assignment〉 instances
in the effect part of the action declaration.
For each 〈assignment〉 instance, an effect axiom is spec-
ified by induction on the construction of 〈assignment〉.
We show only how the base case of 〈assign〉 is
treated, and the rest of the details follow simi-
larly. For 〈assign〉 that assigns the set of integers
{v1, . . . , vk} to key ~c for the m-dimensional array
F , the following positive effect axioms is constructed:

∨k
i=1(~x = ~c ∧ z = v∗i ) ⊃ F (~x, z, do(A(~y), s)), and the

negative axiom: ~x = ~c ∧ F (~x, z, s) ∧
∧k

i=1(z 6= v∗i ) ⊃
¬F (~x, z, do(A(~y), s)), where v∗i is a term of Presburger
arithmetic as above. Note that the interpreter requires that
only parameters of the action may be used as arguments
for the 〈term〉 instance in 〈assign〉, which implies that ~x, z
are included in ~y (or are bound to constants in the action
definition or the fluent definition in the DS0

), imposing a
range-restricted assumption (Vassos and Sardina 2011).

• If ln is a 〈proc decl〉 instance, then D,L remain un-
changed and a procedure is added to the set of Golog pro-
cedures (replacing the previous description if there was
one). Building the procedure is straightforward as YAGI
statements are weaker than Golog statements and can be
easily expressed using Golog constructs. Note also that
similarly to Golog, procedures are treated as macros that
expand into complex actions in a call-by-value manner.

• If ln is a sequence of 〈statement〉 instances, then L′ = L
and D′ is the same as D except that D0 is replaced by a
progression ofD0 with respect to an appropriate sequence
of actions ~α. This sequence is specified by the outcome of
the following entailment question: D |= ∃sDo(δ, S0, s),2
where δ is the Golog program that corresponds to ln.
If the entailment holds then ~α is extracted from the proof
procedure. Note that progression is always feasible and
the new D0 consists of axioms with the same structure as
D0 (i.e., of the form F (~x, y, S0) ≡ φ). This follows from
the fact that D is a special case of the theories examined
in (Vassos and Sardina 2011), except for the special treat-
ment of string constants and arithmetic terms.
If the entailment question does not hold, thenD′ isD (and
a signal indicating failure is produced).

Meeting the requirements
In this section, we will briefly summarize which of the for-
mal and non-formal requirements that we proposed in the
beginning are met by our first version of YAGI and which
of them will be met by the implementation that we envision,
as well as future versions. We start with the non-functional
requirements.

One of the main motivations for YAGI’s syntax was to
enable non-experts in the logical framework of the situation
calculus or Golog to intuitively program robot controllers.
In the approach taken here we focused on an intuitive syn-
tax that unlike Golog hides details of the underlying theory.
Therefore, we meet the requirements of familiarity (Q1) and
transparency (Q4).

2Note that YAGI has been specified so that the decidability of
this entailment can be guaranteed. This follows by the following
design choices: (i) there is complete knowledge in the initial situ-
ation, (ii) only bounded loops are allowed in the complex actions
of YAGI, (iii) procedures are handled as macros that follow a call-
by-value manner, (iv) YAGI includes a very simple notion of arith-
metic that only uses equality and addition, and by means of (i) re-
sults in (Reiter 2001) that show that ∃sDo(δ, S0, s) is equivalent to
a regressable sentence for Golog programs that use procedures as
macros (a first-order sentence in our case that only bounded loops
are allowed), (ii) the decidability of Presburger arithmetic.
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As for the requirement of embeddedness (Q2) we can only
mention our future plans at the current stage, as we still have
no implementation in place. However, we aim at developing
a platform-independent run-time system that is as easy em-
beddable following the LUA or Java run-time system. This
is different than the available Golog run-time systems which
heavily depend on Prolog.

Similarly, in terms of interoperability (Q3), we envision
that YAGI could interoperate with usual programming lan-
guages using a fixed set of basic types for variables that
can be shared in a similar way that remote objects work
in Common Object Request Broker Architecture (CORBA).
Nonetheless, in this first version of YAGI we only include
a generic type of interaction that is expressed with the
signal: keyword. This is included in the action specifi-
cation and allows the possibility to call operating/agent sys-
tems calls directly. The arguments of the signal slot will be
handed over directly to the operating system. This is quite
similar to available Golog run-time systems where such op-
erating system calls are handed over via Prolog’s C++ inter-
face to the operating system.

As far as the functional requirements are concerned, the
first version of YAGI that we present here provides a partial
account for the most basic requirements F1, F2, F3, and F4.
We intend to deal with the rest of the requirements in subse-
quent versions of YAGI, focusing first on requirements F5,
F6, F7, F11 and later on the more advanced F8, F9, F10,
F12. Note that the initial version of YAGI that we present
here is indeed limited to some basic programming constructs
and functionality, e.g., not including unbounded loops, in or-
der to ease the process of implementing a robust first version
of the system, which is our next immediate goal.

Related work
A number of related works to ours exist. There is for one,
a large number of extensions of Golog such as (Levesque
and Pagnucco 2000; Giacomo et al. 2009; Boutilier et al.
2000; De Giacomo, Levesque, and Sardiña 2001; Pham
2006; Grosskreutz and Lakemeyer 2003) or (Lakemeyer and
Levesque 2004; Claßen and Lakemeyer 2006). Recently,
some work went into alternative Golog run-time systems
(Ferrein 2010) or into approaches for embedding Golog
(Ferrein and Steinbauer 2010).

Our first version of YAGI focuses on a set of features that
relate to the basic specification of Golog (Levesque et al.
1997) and the on-line execution mode of Indi-Golog (De Gi-
acomo, Levesque, and Sardiña 2001). As we aimed for a
syntax and semantics that is compatible with the most basic
constructs of familiar programming languages, YAGI offers
a small subset of the full functionality offered by situation
calculus basic action theories and Golog programs. In par-
ticular, this version focuses on complete information in the
initial situation and actions with local-effects, among other
restrictions imposed by the syntax of YAGI. We should note
though that to the best of our knowledge, it is the first time
that a non logic-based language for specifying both a Golog
domain and a Golog program is defined in a formal way.

One important difference between YAGI and the Golog
extensions that handle on-line execution is that the seman-

tics of YAGI are specified with respect to progression. YAGI
functions as an on-line interpreter, parsing and handling
each line of code separately, and progressing the internal
representation after each step without keeping track of the
history. As each line of code may be a code listing that
includes the usual nondeterministic features of Golog, the
standard regression semantics are used in order to identify
an appropriate execution before executing and progressing.
Our intention is to arrive at equivalent semantics as the stan-
dard semantics that rely purely on regression, but offer an
alternative view that could be better suited for specifying
the behavior of implementations that rely on updating the
internal representation after action execution.

Of course, Golog is not the only available action-based
programming language. We briefly want to mention two
other examples: 3APL and FLUX. The agent model used
in 3APL (Hindriks et al. 1999) is strongly aligned along
BDI agent architectures (Bratman 1987). The basic ingredi-
ents of 3APL are basic actions, achievement goals, and test
goals which are classified as basic goals in the 3APL ter-
minology. Complex goals are composed from basic goals
with sequential composition or are connected via nonde-
terministic choices including loops and conditionals. They
found their approach on logic programming, and the rea-
soning paradigm is that of practical or means-end reasoning
(e.g. (Georgeff and Lansky 1986)).

Another related approach using action-based program-
ming is FLUX (Thielscher 2005). FLUX, which stands
for FLUent eXecutor, introduces a kind of run-time system
for the fluent calculus. Constrained logic programs encode
agent tasks based on the so-called FLUX kernel which im-
plements the state update axioms. The implementation of
the FLUX system relies on constrained logic programming,
with the user language being tightly coupled with the func-
tionality of the underlying Prolog environment. Note that
similar to the case of Golog implementations, this makes it
difficult for non-expert users to use.

Conclusions

In this paper we sketched the syntax and semantics of YAGI,
a novel approach to realize an action-based programming
language that is mostly inspired and based on Golog.
With YAGI we want to overcome several shortcomings
that come with the available run-time systems for Golog,
namely the fuzzy border between implementation and target
language, problems with the embeddability of existing
Golog interpreters, and difficulties in usage by people
without knowledge in logic or Prolog. While there exists
no implementation for YAGI yet, the syntax and semantics
show that we can express a restricted class of situation
calculus basic action theories and Golog-like programs in
a uniform language with familiar programming constructs.
Our next goal is to implement a robust system based on this
specification.
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