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Abstract 
The DARPA Mind’s Eye program seeks to develop in 
machines a capability that currently exists only in animals: 
visual intelligence. This paper describes a Neural-Symbolic 
Cognitive Agent that integrates neural learning, symbolic 
knowledge representation and temporal reasoning in a 
visual intelligent system that can reason about actions of 
entities observed in video. Results have shown that the 
system is able to learn and represent the underlying 
semantics of the actions from observation and use this for 
several visual intelligent tasks, like recognition, description, 
anomaly detection and gap-filling. 

 Introduction1 
The DARPA Mind’s Eye program seeks to develop in 
machines a capability that currently exists only in animals: 
visual intelligence (Donlon, 2010). In particular, this 
program pursues the capability to learn generally 
applicable and generative representations of action 
between objects in a scene, directly from visual inputs, and 
then reason over those learned representations. A key 
distinction between this research and the state of the art in 
machine vision is that the latter has made continual 
progress in recognizing a wide range of objects and their 
properties, what might be thought of as the nouns in the 
description of a scene. The focus of Mind’s Eye is to add 
the perceptual and cognitive underpinnings for recognizing 
and reasoning about the verbs in those scenes, enabling a 
more complete narrative of action in the visual experience.  

The Neural-Symbolic Cognitive Agent (NSCA) is a 
cognitive model that is able to: perform learning of 
complex temporal relations from uncertain observations, 
reason probabilistically about the knowledge that has been 
learned, and represent the agent's knowledge in a logic-
based format (de Penning, Garcez, Lamb, & Meyer, 2011).  

This paper describes the application and results of the 
NSCA as part of a Visual Intelligence (VI) system, called 
CORTEX that is able to learn and reason about actions in 
order to; i) recognize actions based on properties of 
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detected objects, ii) describe these actions in natural 
language, iii) detect anomalies and iv) fill-in gaps (e.g. 
video blackouts by missing frames, occlusion by moving 
objects, or entities receding behind objects).  

A key requirement of visual intelligence in the context 
of Mind's Eye is the ability to describe the cognitive 
underpinnings of the reasoning process. Our objective is 
not only to provide accurate classifications but to provide 
descriptions of the process that can help explain the 
reasoning and shed new light into this important aspect of 
cognition. Hence, the use of NSCA with its knowledge 
extraction capacity will provide the descriptions that are 
required. 

Learning and Reasoning 
The NSCA (depicted in Figure 1) uses a Recurrent 
Temporal Restricted Boltzmann Machine (RTRBM) that 
can encode temporal relations as a joint probability 
distribution on beliefs B (represented by the visible units), 
hypotheses H (represented by the hidden units) and their 
probabilities in the previous time Ht-1 (represented by 
recurrent connections in the hidden units).  

With the RTRBM, deduction is similar to Bayesian 
inference, where for all hypotheses H, the probability is 
calculated that the hypotheses are true given the observed 
beliefs b and the previously applied hypotheses Ht-1 (i.e. 
P(H|B=b,Ht-1)). From this posterior probability 
distribution, the RTRBM selects the most likely 
hypotheses h using random Gaussian sampling, i.e. h ~ 
P(H|B=b,Ht-1). Via abduction the RTRBM then infers the 
most likely beliefs based on h by calculating the 
conditional probability (i.e. P(B|H=h)). The differences 
between the observed and inferred beliefs are then used by 
the NSCA to determine the implications of the applied 
hypotheses, which are, in case of CORTEX, the recognized 
actions. Induction of new relations can be obtained by 
using these differences to improve the correlation between 
the selected hypotheses h and the observed beliefs b. It 
does so by updating the weights in the RTRBM using 
Contrastive Divergence and Backpropagation-Through-
Time (Sutskever & Hinton, 2008).   
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Figure 1. The Neural-Symbolic Cognitive Agent Architecture 
 

The NSCA architecture also enables the modelling of 
higher-order temporal relations using the probabilities on 
hypotheses (depicted as the current state of ‘mind’ in 
figure 1) of lower-level NSCAs as observations. Such a 
layered network of NSCAs is called a Deep Belief 
Network (or Deep Boltzmann Machine when RBMs are 
used) and is capable of meta-level learning and reasoning 
(Salakhutdinov, 2009). 
 

 
Figure 2. Detected entities (1, 5, 11, 16, 23) with 
object classification (car 1 and car 16). 

 

Application to Visual Intelligence 
For the Mind’s Eye implementation of the NSCA in the 
CORTEX system the beliefs are based on observations of 
event properties (in total 134, e.g. movement up, size 
increasing, relative distance decreasing) of detected entities 
(see Figure 2). These properties are determined from raw 
video input (i.e. pixels) by the CORTEX pre-processor, 
which uses state-of-the-art visual processors 
(Felzenszwalb, Girshick, McAllester, & Ramanan, 2010; 
Radke, Andra, Al-Kofahi, & Roysam, 2005) to describe for 
each entity and video frame the probabilities of the event 
properties being active (see Figure 3).  

To learn more generalized (i.e. first logic) relations that 
are independent from the number of entities, the NSCA 
will use beliefs that denote for each frame and event 
property the maximum probability over all entities, e.g. 

. Later on we will 
describe how it is still possible to identify specific entities 
based on these generic beliefs (see Description).  
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Figure 3. Beliefs on event properties (y-axis) for each video frame (x-axis), where blue is low probability and red is high 
probability. Yellow line depicts the current displayed frame 201 (see Figure 2). 

 
During learning, the CORTEX system also includes 

human annotations on actions  (e.g. Chase, Fall, Dig) in 
the observations, such that the NSCA can learn the 
temporal relations between the beliefs on event properties 
and actions (i.e. induction).  

After learning, the NSCA can use the temporal 
knowledge encoded in the RTRBM to deduce hypotheses 
applicable to the current situation given the observed event 
properties p and the previous state of the hypotheses Ht-1, 
i.e. P(H|B=p,Ht-1). Then by selecting the most probable 
hypotheses h (using Gaussian sampling), the NSCA can 
abduce the related actions v from the RTRBM using its 
inference mechanism (i.e. v=P(B|H=h)).  

The RTRBM’s fast stochastic inference mechanism 
makes it possible for the NSCA, which is currently 
implemented in Java, to operate in real-time and deal with 
the uncertainties in real-world environments. 

Temporal Knowledge Representation 
As described in (de Penning et al., 2011) the NSCA can 
also encode and extract temporal knowledge about 

relations between beliefs on event properties and actions in 
the form of temporal logic clauses. This is a major 
advantage of the NSCA, compared to traditional machine 
learning, and allows us to reuse existing knowledge on 
actions, update the knowledge using the RTRBM, and 
extract the updated knowledge in symbolic form. For 
example, some temporal relations learned by the NSCA in 
CORTEX are: 
 
0.737: H24 ↔ moving ˄ moving_fast ˄ nr_entities_3 ˄ chase ˄ flee ˄ 
follow ˄ go ˄ leave ˄ pass ˄ run ˄ •H0 ˄ •H1 ˄ •H2 ˄ •H3 ˄ •H4 ˄ 
•H5 ˄ •H6 ˄ •H8 ˄ •H11 ˄ •H12 ˄ •H13 ˄ •H14 ˄ •H15 ˄ •H16 ˄ •H17 
˄ •H19 ˄ •H20 ˄ •H21 ˄ •H22 ˄ •H23 ˄ •H24 ˄ •H25 ˄ •H27 ˄ •H29 
˄ •H31 ˄ •H32 ˄ •H33 ˄ •H34 ˄ •H36 ˄ •H37 ˄ •H38 ˄ •H39 ˄ •H40  
 
0.561: H27 ↔ moving ˄ distance_rel_close ˄ moving_same_direction ˄ 
carry ˄ exit ˄ go ˄ have ˄ hold ˄ leave ˄ walk ˄ •H0 ˄ •H2 ˄ •H3 ˄ 
•H4 ˄ •H6 ˄ •H8 ˄ •H11 ˄ •H12 ˄ •H13 ˄ •H14 ˄ •H17 ˄ •H19 ˄ •H21 
˄ •H22 ˄ •H23 ˄ •H24 ˄ •H25 ˄ •H27 ˄ •H29 ˄ •H30 ˄ •H31 ˄ •H32 
˄ •H33 ˄ •H34 ˄ •H38 ˄ •H39 ˄ •H42 ˄ •H43 ˄ •H44 ˄ •H45 ˄ •H47 
˄ •H48 
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Figure 4. Depicts for each of the 48 actions (y-axis) and video frame (x-axis) the system response from the NSCA 
(upper line) and the temporal annotations (lower line), where blue is low probability and red is high probability. Yellow 
line depicts the current displayed frame 201 (see Figure 2). 

 
Where a typical clause H1 � B1 �������	H1 denotes that 
hypothesis H1 holds at time t if and only if beliefs B1 and 
B3 hold at time t and hypothesis H1 holds at time t-1, where 
we use the previous time temporal logic operator 		 to 
denote t-1 (Lamb, Borges, & d’ Avila Garcez, 2007).  

Evaluation and Results 
During year one of the Mind’s Eye program, the NSCA 
has been applied as part of the CORTEX system to all four 
visual intelligence tasks identified for the program; 
recognition, description, anomaly detection and gap-filling. 
The following subsections describe in detail how the 
temporal knowledge learned by the NSCA has been used 
to reason in each of these tasks about actions and their 
spatiotemporal relations with entities and their event 
properties detected by the CORTEX system. Also the most 
significant results for the NSCA of the evaluations done in 
year one are described. A full description of results and 

comparison with other reasoning techniques can be found 
in (Bouma et al., 2012).  

Recognition 
In order to evaluate the NSCA on action recognition, it was 
trained with 78 beliefs on event properties (for each frame) 
and 48 beliefs on possible actions (for the whole clip) of 
3481 video clips and tested on a set of 2588 video clips 
containing samples from the training set, but also 
previously unseen variants of these samples and 
completely new exemplars.  

The  results, show that the NSCA with its RTRBM was 
unable to discriminate between all 48 possible actions (F1-
measure for the NSCA responses was 0.40, whereas the 
F1-measure of the average human response was 0.58, with 
F1-measure = 2 × True Positives / (2 × True Positives + 
False Positives + False Negatives)). Analysis showed that 
the RTRBM was able to learn good hypotheses on the 
training data and performed well for the more prevalent 
verbs, but for the less prevalent or highly semantic verbs 
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(e.g. bury, dig, kick, flee, haul, give) it did not. There are 
two possible reasons for this. First, the visual processing in 
CORTEX is still under development and often reports 
incorrect entities that introduce noise to the event 
properties. Secondly, the available verb annotations only 
described the actions present in the whole clip and not for 
each frame. This makes it harder for the RTRBM to learn 
temporal relations between event properties and verb 
annotations based on the state of the hypotheses in the 
previous frame. To investigate this another experiment has 
been done with temporal verb annotations for each frame 
that were available for a subset (~900 clips) of the training 
set.  

The results of the quantitative analysis had improved 
(F1-measure was 0.465), and a qualitative analysis showed 
that the NSCA learned better temporal representations of 
the actions present in the videos. 

As can be seen in Figure 4, the actions recognized by the 
NSCA not only correspond to the probability reported in 
the temporal annotations, but also correspond to right time 
frames (i.e. approach and arrive are almost in sync with the 
human annotation). Also we have seen that often the 
NSCA reports actions which have not been reported in the 
temporal annotations, but are clearly visible in the video 
(i.e. car 16 enters the scene, which was not annotated as 
such).   

Description 
Another very important visual intelligent task is to describe 
the observed actions in natural language. Mainly because 
the system must inform humans about the current situation 
as efficiently as possible. This requires that the system is 
not only able to recognize the observed actions, but also to 
relate these actions to the correct entities (e.g. persons, 
cars, object) in a scene to create a proper subject-verb-
object sentence. In order to do so, the NSCA uses the 
temporal knowledge encoded in the RTRBM and the 
recognized actions to abduce beliefs on related event 
properties for each action. Then based on the Mahalanobis 
distance (Mahalanobis, 1936) between the abduced event 
properties and those of the detected entities, the NSCA 
determines the related subject, direct and indirect object for 
each recognized action. As can be seen in Figure 5, the 
generated descriptions, which apply to the scene depicted 
in Figure 2, this results in action specific sentences that 
only refer to the entities to which the action applies (i.e. 
‘arrives’ applies to car 16 only and not to car 1, which is 
parked the whole scene).  
 To evaluate the descriptions produced by the NSCA, 
they were compared with human descriptions available 
from DARPA (~10 descriptions for 240 clips). This 
resulted in a union score of 39% (i.e. union score denotes 
the amount of combinations of reported verbs and related 

subject and object that have also been reported in at least 
one of the human descriptions for each clip).  
 In a later experiment this evaluation was repeated, but 
then with two modifications: To recognize the actions a 
model was used that was trained with temporal annotations 
(see Recognition) and instead of comparing event 
properties abduced for the whole clip, the event properties 
were abduced and matched with the detected entities for 
each frame in a clip. This resulted in a higher union score 
of 51%. 
 

 
Figure 5. Generated descriptions for recognized 
actions. 

Anomaly Detection 
The main goal of this task is to recognize anomalies based 
on the semantics of recognized actions. Using the temporal 
knowledge encoded in the NSCA, probabilities on 
recognized actions were abduced for each video frame and 
compared to the actions in a normative clip. Then based on 
the differences, the anomalous segments were determined. 
With the NSCA this resulted in an accuracy of 79.0% 
when compared to annotations from DARPA. This was 
similar to the accuracy of the other evaluated reasoners 
(~80%) described in (Bouma et al., 2012). Note that these 
results were obtained without the use of the improved 
RTRBM model (i.e. that was trained with temporal 
annotations) used in the re-evaluations for recognition and 
description. This is also the case for gap-filling. Re-
evaluation of the NSCA in these tasks is considered as part 
of future work. 

Gap-filling 
This is the most difficult visual intelligent task and requires 
a combination of anomaly detection, recognition and 
description. Gap-filling is required when visual features are 
missing, because the camera blacks out, or entities are 
blocked by other objects, like buildings or fences. The 
CORTEX system must be able to fill in the gaps by 
detecting the missing features (i.e. anomaly detection), 
reason about possible actions and event properties during 
the gaps (i.e. recognition) and then give a proper 
description about these actions and related entities (i.e. 
description). This requires excellent performance on the 
other tasks, and therefore these tasks were the primary 
focus of attention in year one for the CORTEX team. 
Nonetheless, we still performed several experiments on the 
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gap-filling task during year one, since the main 
functionality required for gap-filling (e.g. robust tracking 
to determine the event properties and temporal reasoning) 
was already implemented in the system. We evaluated the 
generated descriptions with human descriptions provided 
by DARPA. The results were quite good, considering not 
much effort was put into optimizing the system for this 
task, and were similar to that of the descriptions generated 
for complete clips without gaps (i.e. union score of 39%).  

Conclusions 
The paper describes the application of a Neural Symbolic 
Cognitive Agent in the DARPA Mind’s Eye program to 
perform several complex visual intelligent tasks.  We have 
shown that the NSCA model is able to learn and reason 
about spatiotemporal actions and their underlying 
semantics from the properties of entities observed in visual 
input. Using a RTRBM, the NSCA is able to induce new 
knowledge from observations, deduce hypotheses 
applicable to the observed beliefs, and abduce new beliefs 
that describe the recognized actions in a video clip.  

Evaluation results have shown that the NSCA has still 
some difficulty with discriminating between all 48 possible 
actions. We have also shown that the use of temporal 
annotations in the training set improves somewhat the 
quantitative results, but more importantly it improves the 
descriptive power of the model which is reflected in the 
natural language description provided in the description 
task. This descriptive capability also allows the NSCA to 
extract the temporal knowledge encoded in the RTRBM in 
a temporal logic form enabling it to explain humans the 
cognitive underpinnings of its reasoning process (the 
‘why’). And so, the NSCA, combining both sub-symbolic 
learning and symbolic reasoning, fulfills one of the key 
requirements in the Mind’s Eye program: Visual 
Intelligence. 

Future Work 
As part of future work we are also considering the use of a 
NSCA to learn the event properties directly from the raw 
pixels in each video frame as RBMs have been reported to 
be good spatiotemporal feature detectors for visual input 
(Hinton, 2002, 2007; Mnih & Hinton, 2010). Then the 
event properties can be regarded as beliefs on hypotheses 
about temporal aspects in pixel patterns that can be 
observed as beliefs by higher-order NSCAs to reason about 
these hypotheses. This effectively creates a layered or deep 
belief network, which is more robust to changes in 
environmental conditions (e.g. lighting, camera position, 
type of objects).  

In addition to its practical dimension to CORTEX and 
potential for comparative analysis, the use of such deep 
network architecture (Salakhutdinov, 2009) within NSCA 
opens up some interesting research questions. For example, 
the RTRBM would be allowed to influence and possibly 
improve the visual feature detection based on encoded 
knowledge of actions and related event properties. 
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