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Abstract

This paper documents extending the ELEXIR (Engine for
LEXicalized Intent Recognition) system (Geib 2009; Geib
and Goldman 2011) with a world model. This is a significant
increase in the expressiveness of the plan recognition system
and allows a number of additions to the algorithm, most sig-
nificantly conditioning probabilities for recognized plans on
the state of the world during execution. Since, ELEXIRfalls
in the family of gramatical methods for plan recognition in
viewing the problem of plan recognition as that of parsing,
this paper will also briefly discuss how this extension relates
to state of the art proposals in the natural language commu-
nity regarding probabilistic parsing.

Introduction
Prior work on the Engine for LEXicalized Intent Recog-
nition (ELEXIR) system (Geib 2009; Geib and Goldman
2011) has a significant limitation. ELEXIR views the prob-
lem of plan recognition wholly within the space of possible
action sequences. That is, given a sequence of observed ac-
tions, ELEXIR is only looking for the plan tree (taken from a
library of acceptable plans) whose yield (plan frontier), best
fits the observed sequence. In doing this, it only considers
the observed actions, not the environment in which they are
executed. However, the environment can play a crucial role
in differentiating the plans being followed. Consider the fol-
lowing very simple example. Suppose that we observe an
agent pullout their cellphone, open it, dial a number and talk
to someone. In the absence of information about the state,
we would be likely to assume that the person’s goal was talk-
ing to one of their friends. However, in a world state where
we know the agent is standing outside a building that is ob-
viously on fire, we should instead conclude that it is much
more likely that the agent was reporting a fire, a very un-
likely possibility if the building isn’t on fire. Thus, depend-
ing on the state of the world when the actions are executed
(in this case is the building on fire or not ), even the exact
same set of actions can result in significantly different prob-
abilities for hypotheses about the plans being executed.

In order to address this problem, ELEXIR must be ex-
tended to represent the state of the world and condition its
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plan hypotheses on the state model. Such conditioning is not
a new idea in the literature, although it is a new addition to
ELEXIR. Therefore, the rest of this paper will have the fol-
lowing structure. First, it will discuss previous work in con-
text sensitive plan recognition. Next it will provide a brief
overview of ELEXIR and its probability model. Next, it will
cover extending ELEXIR with a first order predicate state
model, and its use within the system’s probability model.
Finally, because ELEXIR views the problem of plan recog-
nition as one of parsing, it will discuss how this idea is dif-
ferent from the state of the art ideas in probabilistic parsing
and the potential for using ideas from this research area in
the future.

Prior Work
Graph based, and logical reasoning algorithms have been the
basis of a number of previous pieces of plan recognition re-
search(Kautz 1991; Carberry 1990; Litman 1986). Often
this work made heavy use of specialized non-probabilistic
reasoning about the state of the world . Further, this work
made invaluable strides in formalizing the reasoning neces-
sary for plan recognition. However, the general reasoning al-
gorithms and wide ranging inference used in these systems
increased the effort required to represent and maintain the
domain models and resulted in computationally inefficient
algorithms making these systems unusable for real world ap-
plication.

The last few years have seen a significant increase in the
use of probabilistic methods for plan recognition. Much of
the current work on probabilistic activity recognition uses
Hidden Markov Models (HMMs) and Conditional Random
Fields (CRFs) (Hoogs and Perera 2008; Liao, Fox, and
Kautz 2005; Vail and Veloso 2008). The probability compu-
tations used in these methods are based on models of prob-
abilistic transitions between states of the world. As such,
they generally are able to condition on any information rep-
resented in the state description and do not suffer from the
same limitation as ELEXIR. However, it is important to rec-
ognize that work in this area actually solves a subtly differ-
ent problem than is being addressed by ELEXIR. Activity
recognition focuses on assigning a single, usually unstruc-
tured, label to a sequence of observations (for example la-
beling frames of video). In contrast, ELEXIR solves the
problem of combining sequences of such low level activities
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into higher level plans.
In contrast to work using HMMs and CRFs, the work of

Bui and others(Bui, Venkatesh, and West 2002) on Hierar-
chical Hidden Markov Models does address the same prob-
lem as ELEXIR and is able to condition on the state tran-
sition models at each layer of the model hierarchy. How-
ever, such a close tie to the world state does come at a cost.
Their work is unable to consider multiple concurrent and in-
terleaved plans, and has a limited ability to represent plans
with loops, both capabilities of ELEXIR.

ELEXIR follows in the footsteps of Vilain’s (Vilain 1990)
early work on viewing plan recognition as parsing. However
this early work does not actually present an algorithm or im-
plemented system for plan recognition. The ELEXIR sys-
tem is closest in spirit to that of Pynadath and Wellman (Py-
nadath and Wellman 2000). They provide a method for plan
recognition based on probabilistic context free grammars
(PCFGs). However unlike ELEXIR, Pynadath and Wellman
do not directly parse the observations to produce derivations.
Instead, they use the structure of plans captured in a PCFG
to build a restricted Dynamic Bayes Net (DBN) to model
the underlying generative process of plan construction and
execution. They then use the resulting DBN to compute a
distribution over the space of possible plan expansions that
could be currently under execution. In order to build their
DBN, they are only able to handle a limited class of loops,
and their treatment of loops must ignore the number of iter-
ations of the loop, two limitations not shared by ELEXIR.

Instead of these methods, the work described here will
follow the current work in probabilistic natural language
parsing by conditioning the application of gramatical rules
used to define the set of acceptable plans (and hence the pos-
sible hypothesis) on the state of the world. In order to see
this, the next section will briefly review the ELEXIR system.

Plans as Grammars in ELEXIR
Following other work on gramatical methods for plan recog-
nition, ELEXIR(Geib 2009) views the problem as one of
parsing a sequence of observations, based on a formal gram-
mar that captures the possible plans that could be observed.
In the case of ELEXIR, the plans are represented using a
particular lexicalized grammar called Combinatory Catego-
rial Grammars (CCG) (Steedman 2000). Unlike more tra-
ditional grammars, like context free or regular grammars,
where the constraints specific to a language are spread be-
tween the rules of the grammar and the lexicon, lexicalized
grammars move all language-specific information into rich
data-structures called categories. Such categories are associ-
ated, by the lexicon, with individual observables (the termi-
nals of traditional grammars). Further lexicalized grammars
and use a small set of language independent rules to com-
bine lexical categories for parsing. Thus, parsing lexical-
ized grammars abandons the application of multiple gram-
mar rules in favor of assigning a lexical category to each
observation and combining the categories to build a parse.

To represent a set of possible plans in a CCG, each observ-
able action is associated with a set of syntactic categories,
defined recursively as:

Atomic categories : A finite set of basic action categories.
C = {A, B, ...}.

Complex categories : ∀Z ∈ C, and non empty set
{W, X, ...} ⊂ C then Z\{W, X, ...} ∈ C and Z/{W, X, ...} ∈ C.

Complex categories represent functions that take a set of ar-
guments ({W, X, ...}) and produce a result (Z). The direction
of the slash indicates where the function looks for its argu-
ments. We require the argument(s) to a complex category be
observed after the category for forward slash, or before it for
backslash in order to produce the result.

To provide some intuitions, the semantics of the \ is
roughly that of a sub-plan that must precedes the present
category and the semantics of / is sub-plan that must suc-
ceed the current category to produce the result. Therefore,
an action with category A\{B} is a function that results in
performing a plan for A when a plan with category B has
already been performed. Likewise, A/{B} is a function that
results in performing A if a plan with category B is executed
later.

Consider the phone call example. A very simplified lexi-
con for the observable actions of getting the phone, opening
it, placing a call, and talking could be:

CCG: 1

dial(Cellphone) :=((REPORT/{T })\{G})\{O} |
((CHAT/{T })\{G})\{O}.

talk(Cellphone) :=T.
get(Cellphone) :=G.

open(Cellphone) :=O.

Where G,O,T,REPORT , and CHAT are basic categories,
and the observation of the action dial has two complex cat-
egories assigned to it by the lexicon: one for reporting a
fire and one for chatting to a friend. Note, that each ac-
tion in this simplified example lexicon has a single variable
argument. Therefore any observed action instance will have
bound such variables (ie. the variable argument “Cellphone”
will be bound to some particular object).1

ELEXIR uses three combinators (Curry 1977) defined
over pairs of categories, to combine CCG categories into
higher level plan structures:

rightward application: X/α ∪ {Y}, Y ⇒ X/α
leftward application: Y, X\α ∪ {Y} ⇒ X\α
rightward composition: X/α ∪ {Y}, Y/β ⇒ X/α ∪ β

where X and Y are categories, and α and β are possibly
empty sets of categories. To see how a lexicon and combi-
nators parse observations into high level plans, consider the
derivation in Figure 1 that parses the observation sequence:
get(ob j1), open(ob j1), dial(ob j1), talk(ob j1) using CCG:1.
Note that each observation’s argument is now bound to a
unique object identifier. As each observation is encountered,

1The action arguments are largely a distraction to this portion of
the discussion and they could be left off for clarity here. However,
since they will be used later in our discussion they are shown.
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get(obj1) open(obj1) dial(obj1) talk(obj1)
G O ((CHAT/{T})\{G})\{O} T

<
((CHAT/{T})\{G}

<
(CHAT/{T}

>
CHAT

Figure 1: Parsing Observations with CCG categories

it is assigned a category as defined in the lexicon. Combi-
nators (rightward and leftward application in this case) then
combine the categories.

To enable incremental parsing of multiple interleaved
plans, ELEXIR does not use an existing parsing algorithm.
Instead it uses a very simple two step algorithm based on
combinator application linked to the in-order processing of
each observation.

• Step 1: Before an observation can be added to the expla-
nation with a given category, it must be possible to use
leftward application to remove all of the category’s left-
ward looking arguments. We call such categories appli-
cable given the observed action and current explanation.

• Step 2: After each of the applicable categories for the ob-
servation has been added to a copy of the explanation,
ELEXIR applies all possible single combinators to each
pairing of the new category with an existing category.

This two step algorithm both restricts observations to take on
only applicable categories, and guarantees that all possible
combinators are applied. At the same time, it does not force
unnecessarily eager composition of observations that should
be held back for later use.

For the rest of this discussion it will be helpful to have
defined a few terms. First a parse or explanation of a se-
quence of observations is just an ordered sequence of (pos-
sibly complex) categories that result from executing the two
step algorithm just described. Each parse of the observa-
tions represents a distinct set of categories, or methods for
combining the categories, that can be used to account for the
observed actions. As such they “explain” the actions. For
the reminder of this paper we will use the terms “parse” and
“explanation” interchangeably.

For each of the categories in an explanation we can define
the goal or a root result of the category. In the case of basic
categories it is the category itself. For complex categories it
is the left-most inner result category. For example, we will
refer to REPORT as the goal or root result of the category:

((REPORT/{T })\{G})\{O}

With these tools in hand, we can imagine using a CCG
to define the set of acceptable plans, and the two step algo-
rithm to generate a set of possible explanations for a given
set of observed actions. However, in order to determine the
probability of a given goal these explanations must have an
accompanying probability model.

The Probability Model
Suppose that ELEXIR has built a complete and covering set
of explanations for the observations resulting in a number of
explanations. ELEXIR computes the conditional probability
of each goal as:
Definition 1.1

P(goal|obs) =

∑
{expi |goal∈expi}

P(expi ∧ obs)∑n
j=0 P(exp j ∧ obs)

where P(expi ∧ obs) is the probability of explanation expi
and the observations. Thus, the conditional probability for
any particular goal is the sum of the probability mass as-
sociated with those explanations that contain it divided by
the probability mass for all the explanations that can result
from the observations. This critically relies on computing
the probability for each explanation.

For an explanation, exp, of a sequence of n observa-
tions, σ1...σn, that results in m categories in the explanation,
ELEXIR computes the probability of the explanation as:
Definition 1.2

P(exp ∧ {σ1...σn}) =

m∏
i=1

P(root(ci))
n∏

j=1

P(cinit j|σ j)K

Where cinit j represents the initial category assigned in
this explanation to observation σ j and root(ci) repre-
sents the root result category of the ith category in the
explanation(exp) and K is a normalizing constant.

The second term captures the likelihood of each obser-
vation being given the lexical category it has been initially
assigned given the set of possible categories the lexicon al-
lows it to have. This is standard in natural language parsing
and assumes the presence of a probability distribution over
the possible categories each observation can have in the lexi-
con. In prior work, this term has been modeled by a uniform
distribution across all the possible categories (all the alter-
natives are considered equally likely.)

The first term is the prior probability of the agent hav-
ing the root goals present in the explanation. This is the
probability that the current categories in the explanation are
the agent’s root goals, and they will not be combined into
a larger goal. Note that this term is not included in tradi-
tional natural language parsing. For natural languages all
input streams are assumed to be a single sentence. There-
fore all observation streams result in a single common non-
terminal (usually “S” for sentence), and therefore, this kind
of probability term is not included in the parsing model.
However, since ELEXIR supports recognizing multiple, in-
terleaved plans such a term is a necessary part of the proba-
bility model.

Considering State
Taking context into account requires extending both of the
terms of Definition 1.2 to condition on the state of the world.
The question is which state of the world? There are com-
pelling reasons to consider, the state before any of the obser-
vations have been performed, one of the intermediate states
during the execution of the observed actions, and the state
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after the last observed actions. In this work we will actu-
ally argue for different answers for the two different terms in
Definition 1.2. We consider each of them in turn.

P(root(ci) As we have already argued, one of the stronger
pieces of evidence for the goals of the agent is the state of
the world before the plan is executed. More often than not,
the agent will be attempting to deliberately change the state
of the world. Thus, conditioning on the final state, or any of
the intermediate states would be inappropriate. If the agent
has been successful in its plans the state might already have
changed to that desired by the agent. Therefore, for the prob-
ability term for the root results of an explanation, we will
condition on the initial state of the world resulting in:

m∏
i=1

P(root(ci|s0))

Where s0 denotes the state of the world before any ob-
served actions. Note that, ELEXIR’s ability to recognize
multiple interleaved goals weakens this argument slightly.
If an agent has multiple goals, it is not at all clear that they
were all adopted at the same time. For example, consider
an agent with a goal, G0, that it has started executing a plan,
P0, to achieve. It is entirely possible that a state that occurs
during the course of the execution of the plan P0, call it si>0,
leads the agent to adopt a new goal, G1. Consider the case
of where an agent is planning on chatting to a friend. They
pick up the phone and open it. While preparing to call their
friend, they notice the building in front of them is on fire
and then adopt the goal of calling the fire department to re-
port the fire. In this case, conditioning on the initial state of
the world would suggest that the agent was calling a friend
because the existence of the fire is not represented in the ini-
tial state.

We can also imaging cases where the agent adopts a goal
and even a particular plan to achieve it, but does not begin
execution until much later. This would argue for condition-
ing on a state of the world that occurred significantly before
the beginning of the observed action sequence. In general,
this would argue for considering the process of goal adop-
tion in the agent, and conditioning the probability of the root
goal on the state that caused its adoption. Consider agreeing
to go to a concert several weeks in advance with a friend.
The goal is developed quite early, but it is not acted on until
much later. However, since a full treatment of goal adop-
tion is outside the scope of this paper, we will simplify these
considerations and assume that the agent acquires all of the
goals they are pursuing immediately before observations be-
gin. Therefore, we will condition all goals on the initial state
before any actions are observed, and simply note as future
work that this could be changed given a model of goal adop-
tion.

P(cinit j|σ j) This term is already conditioned on the ob-
served action, but we can relatively easily imagine condi-
tioning on the state of the world as well. Consider the case
where in we observe an agent picking up an umbrella, and
we know there are two plans that involve picking up the um-
brella: 1) preparing to go out in the rain 2) cleaning up by
putting the umbrella away, say in the closet. Further, sup-
pose as a result of the two plans, the plan lexicon has two

different categories for picking up the umbrella, one for each
of the two plans. In the absence of any other information,
we might assume that each of the possible categories are
equally likely. However, if we notice that the umbrella is al-
ready in the closest when the picking up action occurs, then
it should be very unlikely that the agent is cleaning and the
category for going out in the rain should be considered more
likely. Likewise if it were raining out and the agent is wear-
ing a coat again our intuition suggests that both plans are not
equally likely. It is more likely that the agent is going out-
side, and we would want to condition the probability of the
category we chose for the observed action on the state of the
world.

This argues for conditioning on the state immediately be-
fore execution of the action as well as the observed action
itself. This results in:

n∏
j=1

P(cinit j|σ j, s j)

where s j denotes the state of the world immediately before
the execution of the ith action. Bringing this together with
the previous term results in rewriting Definition 1.2 as:

Definition 1.3

P(exp ∧ {σ1...σn}) =

m∏
i=1

P(root(ci|s0))
n∏

j=1

P(cinit j|σ j, s j)K

The number of examples given here suggests the possi-
bility of conditioning these probability computations (and
thereby the associated choices in the explanation) on a vari-
ety of different problem features. We will return to discuss
this further, but first we need to discuss the practical impact
of using state within these computations.

Implementational Considerations
The kind of conditioning described above requires access to
the initial state of the world in order to condition the root
goals and it requires access to the state of the world before
each of the observed actions to condition the category se-
lection. A straightforward method to achieve this would be
to extend the defined inputs to the plan recognition problem
to include complete observations of the state of the world
before each of the observed actions (the initial state simply
being the state before the first observed action).

However, instead of requiring complete observations of
the state before each action, we have extended ELEXIR to
maintain its own internal model of the world. To do this we
require as input to the plan recognition problem, a model
of the initial state of the world, and a set of precondition-
effect rules for each action. When processing each action,
the precondition-effect rules and the previous state can be
used to produce a model of the following state (the state after
the action is executed). This allows ELEXIR to maintain
its own model of the state of the world and condition its
explanations based on this.

This was done so that plan recognition could be per-
formed in situations where constant monitoring of the state
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of the world is impractical either for engineering or phys-
ical reasons. For example, consider plan recognition in a
computer network security domain. While collecting audit
logs for a system is a common occurrence, storing a com-
plete trace of the state of the entire network over the entire
window of the audit would be prohibitively large. On the
other hand, not all of the state information will be needed by
ELEXIR to conditionalize. Frequently only a small number
of predicates will be needed to condition the explanation’s
probabilities correctly. In light of this, we believe that by
careful modeling of the initial state of the world and the ob-
servable actions, we can both limit the size and cost of the
state model being maintained for conditionalization while
still providing a model that is rich and accurate enough to
improve the results of plan recognition. With this in mind,
extending ELEXIR to make use of state requires extending
the knowledge contained in the domain description as well
as the addition of more computational machinery. We dis-
cuss each of these in turn, with examples to provide intu-
itions about their use.

Required Additional Domain Knowledge
Extending ELEXIR to account for context requires the addi-
tional of the following four pieces of domain knowledge.
1) Model of the initial state of the world: As we have
pointed out, in order for ELEXIR to maintain a model of the
state of the world as it evolves under the effects of the ob-
served actions, the system must be provided with a model
of the initial state from which to work. The representation
used for state models in this work is a limited first order log-
ical representation. The space of all possible state models
is defined by a set of terms built up from a closed set of
predicates (representing the relations and properties that can
be observed in the world) and a possibly empty list of ar-
guments representing the objects in the world (again taken
from a closed list). A model of a state of the world is defined
by a list of such terms that enumerate those specific relations
and properties that are true in the world. Note the terms in
these models are implicitly related by conjunction, and this
work will assume a closed world. Therefore and any term
not explicitly stated to be true in the model will assumed to
be false.

We acknowledge, that this is a particularly limited and
well known representation for state models. For example it
can not support states with disjunction or even explicit nega-
tion of a term. There are much more expressive representa-
tions that could be used, however, logical expressiveness of-
ten comes at a high computational cost both for computing
model state progression and determining if a given term is
true in the state. Since the purpose of this work is to demon-
strate the viability of using state in such systems, the use of
more expressive state modeling languages is left as an area
for future work.

Consider the cell-phone calling example. Part of a very
simplified initial state model could be:

[ f ire, handEmpty, cellphone(ob j1), o f f (ob j1), ...]

Which among other things would tell us that there was a fire,
the agent’s hands were empty, that object1 is a cellphone and

that it is currently off.
2) Precondition-effect rules for each of the actions: For
each observable action, ELEXIR will require a set of
precondition-effect rules that defines how the modeled world
state evolves. In these precondition and effect rules we ex-
tend the representation of states with negation for individual
terms. That is, in any given rule, a precondition or effect is
defined as a set of, possibly negated, terms. In the case of
preconditions, non-negated terms must be listed in the mod-
eled world state and negated terms must not occur in the
modeled world state for the rule to be applicable.

Like traditional STRIPS rules(Fikes and Nilsson 1971)
for action projection, the terms in such a precondition can
also have variables as arguments that are bound either by
coreference to one of the observations arguments or when
the precondition is ground in the state model. Such vari-
ables can be used to guarantee that the same argument plays
a role in multiple terms in the precondition. Also like tradi-
tional STRIPS rules, if the condition is satisfied in the state
model, then to create a model of the state that results from
executing the action, all of the negated terms in the effect
are removed from the current state model and all of the non-
negated terms are added. This results in a new state model
that captures what should be true after the execution of the
action.

For example, consider the following rule for the action
openP with an argument X where the precondition is the
first set of terms and the effect is the second :

open(X) : [cellphone(X), o f f (X)], [!o f f (X), on(X)]

It specifies that if openP is performed on an object that is
a cellphone and that cellphone is initially o f f that in the
resulting state of the world, o f f is no longer true of the
cellphone and on is now true of the cellphone. Note, that
we assume the precondition-effect rules for each action have
non-overlapping preconditions such that only one rule’s pre-
condition is true in any given state model.
3) Probability distributions for the root categories of
the explanation conditioned on the state model: For
each possible root category, ELEXIR must have access to
P(root(c j)|s0). Therefore, domain specification must now
provide a set of root probability rules to define the condi-
tional probability distribution for each possible root result.
Each such rule is defined by a pair containing a condition
and a probability. The condition defines those state models
for which the rule holds, and the probability defines the con-
ditional probability of the agent having the category as one
of its goals in worlds where the condition is true. Like the
precondition-effect rules, the conditions in these rules are
allowed to use negated as well as unnegated terms.

The following example displays two root probability rules
for each of REPORT and CHAT :

REPORT :([ f ire], 0.99), ([! f ire], 0.01).
CHAT :([ f ire], 0.01), ([! f ire], 0.99).

These rules capture the idea that reporting a fire is much
more likely as a goal of the agent in world states where there
is a fire than in states were there is no fire. Likewise, calling
a friend is much less likely in a state with a fire than a state
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without a fire. Note we also allow the domain designer to
specify a default prior probability if none of the conditions
apply.
4) Distribution of the possible categories an observation
can take on: For each possible observable action ELEXIR
needs to know P(ciniti|σi, si). The domain designer does
this through a set category assignment rules made up out of
a condition and a probability distribution over the possible
categories. In each such rule, a condition is specified by a set
of negated and unnegated terms and the distribution specifies
the likelihood of each category given that the condition is
satisfied in the modeled state.

For example, consider the following category assignment
rules:

dial(X) : (([ f ire], [((REPORT/{T })\{G})\{O} = 0.9,
((CHAT/{T })\{G})\{O} = 0.1])

([! f ire], [((REPORT/{T })\{G})\{O} = 0.1,
((CHAT/{T })\{G})\{O} = 0.9]))

These two rules specify that in the case of fire, the action of
dial is much more likely to have REPORT as its root result
than CHAT , and the probabilities are reversed if there is no
fire. Note that the probabilities specified in each rule sum to
one.

Again we assume that the set of conditions for these rules
are non-overlapping so that at most one of them is satisfied
in any model state. If no condition-distribution rules are pro-
vided, or none of the conditions matches the current world
state, then the system defaults to a uniform distribution over
the actions categories.

Required Additions to ELEXIR’s Algorithm
The use of these four pieces of domain knowledge is rela-
tively straightforward. Three steps are added to the exist-
ing two step parsing algorithm. First we initialize the state
model with the initial state provided for the problem, and
then for each observation we executing the following algo-
rithm:
• begin loop

Step 1: Clone the explanations and apply all appli-
cable categories that are consistent with the next observed
action.

Step 2: Apply all possible single combinators to each
pairing of the new category with an existing category.

Step 3 (new): To compute the probability of the ob-
servation being given the category, search the category
assignment rules for a rule satisfied in the current state
model. That rule then specifies the probability distribu-
tion for each of the categories used for this action.

Step 4 (new): The precondition-effect rule for this
action that is satisfied in the current state model is used to
produce a new state model.

• end loop
• Step 5 (new): Once all of the observed actions have been

processed, we return to the initial state model and use the
root probability rules to determine the conditional proba-
bility of each of the root results of the explanation.

While the possible benefits of using this algorithm are sig-
nificant for some domains, there is a computational cost of
maintaining a world model of the kind described here, and
conditioning the probability of explanations and goals on it.
We note that while the system as described here has been
implemented, and anecdotal evidence suggests that the ad-
ditional cost of maintaining such a state model and condi-
tioning on it is not significant, we do not yet have enough
empirical evidence to quantify and discuss when such ben-
efits are achievable with minimal cost for real world sized
problem. We are currently in the process of testing of these
extensions to the ELEXIR system to determine the costs as-
sociated with this additional machinery.

Relation to Probabilistic Parsing
Recent prior work in probabilistic parsing for natural lan-
guage, has considered larger numbers of conditioning vari-
ables in the grammatical model(Collins 1997; Huang and
Sagae 2010) and even using such probabilistic models with
CCGs(Hockenmaier and Steedman 2002; Zhang and Clark
2009; 2011). This work suggests that in the action context
there are at least four possible things such grammars could
be conditioned on:
1. The observed action: this was part of the initial formula-

tion of the of the ELEXIR system.
2. The state of the world: this is the addition to ELEXIR

presented here.
3. The previously observed actions: this would allow the

system to condition the choice of a syntactic category
for one action based on, possibly multiple, previously ob-
served actions.

4. The categories assigned to previous actions: Like the pre-
vious case, this would allow ELEXIR to condition its
choice of the current category based on the categories
chosen for previous actions. It is worth noting that that
this would effectively allow the system to arbitrarily con-
dition on the existing structure of the currently hypothe-
sized plans. For example: we can imagine that the prob-
ability that an agent will take more objects on a short trip
could be conditioned on a prior decision to drive their own
car, rather than walking or taking the bus.

To the best of our knowledge, there are no parsing based plan
recognition systems that have used the last two of these pos-
sibilities, but there is every reason to suppose they will be as
effective in plan recognition as they are at natural language
parsing. Thus, while the current work does push forward
the work on the ELEXIR system, this related work already
highlights future directions for work in plan recognition.

Conclusions
This work extends the ELEXIR probabilistic plan recognizer
with a model that takes the state of the world into consider-
ation. ELEXIR is based on parsing the observations in a
maner very similar to that of natural language processing.
We have extended its probabilistic algorithm to condition-
ing the probability of the possible parses on the state. It has
also briefly described how the state propagation is handled,
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and finally it has outlined future directions in the form of
other possible conditioning variables in the natural language
literature that could be considered in this domain.
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