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Abstract

A major challenge of pervasive context-aware comput-
ing and intelligent environments resides in the acquisi-
tion and modelling of rich and heterogeneous context
data. Decisive aspects of this information are the ongo-
ing human activities at different degrees of granularity.
We conjecture that ontology-based activity models are
key to support interoperable multilevel activity repre-
sentation and recognition. In this paper, we report on
an initial investigation about the application of proba-
bilistic description logics (DLs) to a framework for the
recognition of multilevel activities in intelligent envi-
ronments. In particular, being based on Log-linear DLs,
our approach leverages the potential of highly expres-
sive description logics with probabilistic reasoning in
one unified framework. While we believe that this ap-
proach is very promising, our preliminary investigation
suggests that challenging research issues remain open,
including extensive support for temporal reasoning, and
optimizations to reduce the computational cost.

Introduction
The spectacular progress of low-cost and low-power sens-
ing has given rise to appealing computing fields. Designated
as pervasive computing, this new paradigm is witnessing an
increasing interest and a growing research community. Es-
pecially, the concept of emerging intelligent environments is
progressively evolving into a commonplace. Such environ-
ments necessitate context awareness to support and assist the
user with reactive and proactive services. Ongoing human
activities are a decisive aspect of such contextual informa-
tion. Hence, many researchers have been recently concerned
with automatically recognizing human activities from light-
weight dense sensing. Accordingly, several approaches have
been proposed that can be classified as data-driven, knowl-
edge based, or hybrid approaches. A multitude of works
tried to apply diverse machine learning algorithms to rec-
ognize human activities. The majority proposed supervised
learning methods such as Hidden Markov Models (Patter-
son et al. 2005) and conditional Random Fields (Buettner
et al. 2009). The bottleneck of obtaining large amounts of
training data has motivated some recent works to explore
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weakly supervised learning (Stikic and Schiele 2009) as well
as unsupervised learning (Gu et al. 2010).

Despite being well suited for simple activities, data-driven
techniques have a number of problems with the recognition
of complex high-level activities. Their poor portability as
well as the severe scalability problems they face, make them
hardly deployable in other environments. Adding new ac-
tivities without newly training and possibly designing the
given model remains also out of reach. Furthermore, these
techniques are generally doomed to a flat representation of
human activities which contradicts their hierarchical nature.
Finally, the lack of formal semantics prevents data-driven
models from encoding the inherent common-sense knowl-
edge underlying human activities.

As an alternative to data-driven approaches, some re-
searchers adopted different logical modelling and reasoning
algorithms to address human activity recognition. These in-
clude (Cirillo et al. 2009) where general predefined rules are
used to recognize activities based on a constraint-based tem-
poral reasoning framework (OMPS). In (Bouchard, Giroux,
and Bouzouane 2006), the authors leverage action descrip-
tion logics and lattice theory for plan recognition to predict
human behaviour. Despite their ability to cope with some
of the limitations of data-driven approaches, rule-based sys-
tems suffer from many restrictions, including limited sup-
port for uncertainty and temporal reasoning.

Combining both paradigms has been the motivation of
our previous works (Helaoui, Niepert, and Stuckenschmidt
2011) and (Riboni and Bettini 2011). In the former, we ap-
plied Markov Logic Networks to unite both logical state-
ments as well as probabilistic ones in one single framework.
This allows to address the uncertain aspect of human activi-
ties and integrate crucial background knowledge. Due to the
specific rules and the learning phase, the same system can
not be reused under different settings. The capability of thor-
oughly exploiting the semantic features between the context
and the activities leaves much to be desired. In the latter,
we proposed a loosely coupled technique to integrate super-
vised learning methods with DLs. We defined an ontology
to formally model the semantics of activities, and exploited
ontological reasoning to refine the prediction of the machine
learning algorithm based on the current context. While use-
ful for improving the recognition rates of simple actions,
that method was not well suited to recognize complex ac-
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tivities, since the ontological language lacked support for
uncertainty and temporal reasoning.

In this paper, we explore the convergence of our previous
works by the use of probabilistic DLs to exploit semantic
features of dense sensing for activity recognition. Compared
to symbolic activity recognition based on manual specifi-
cation of a set of rules, our approach aspires to facilitate
portability and interoperability of the recognition system. As
such, we propose to use ontologies as a commonly shared
conceptual knowledge description standard. To leverage the
full potential of DLs, we use the same unified language for
both modelling multi-level activities and their context and
probabilistically reasoning about them. This hybrid frame-
work is achieved through adoption of log-linear DLs as pro-
posed in (Niepert, Noessner, and Stuckenschmidt 2011).

The rest of the paper is structured as follows. In the next
section we describe related works. Then, we present our
overall recognition framework and techniques. Finally, we
conclude the paper with a discussion of our approach and
future work.

Related Work
In this section, we describe approaches closely related to
our work. Especially, we discuss those that utilize ontolo-
gies and semantic information to enable and improve activ-
ity recognition. There are only few works that keep both
semantic description of the activities and their recogni-
tion process tightly-coupled. Such an approach has been
adopted in (Chen, Nugent, and Wang 2011) and in (Springer
and Turhan 2009). Similarly to our work, the authors load
the current contextual information to populate their gener-
ated ontology then employ inference reasoner to obtain the
most specific equivalent activity or situation. Hence, activity
recognition can be mapped to equivalency and subsumption
reasoning. Especially, Chen el al. proceed to an incremen-
tally specific recognition of the activities through the pro-
gressive activation of the sensors. Neither works, however,
address the inherent uncertainty aspect in human activities.
Apart from some experiments with noisy sensor data, both
systems do only reason with facts and implicitly assume a
deterministic mapping from the context data to the activi-
ties’ descriptions.

Bridging the gap between such a purely symbolic ap-
proach and supporting uncertainty, was the concern of sev-
eral works recently. Following a lazy instance based ap-
proach, Knox et al (Knox, Coyle, and Dobson 2010) use
a vector of the sensors’ values to define their cases. A se-
mantically extended case base is created through extracting
ontological relationships between sensors, locations and ac-
tivities. This allows them to reduce the resulting number of
cases. Further efforts to exploit semantic information to im-
prove the recognition system are detected in (Yamada et al.
2007) and (Wang et al. 2007). Relying on the subsumption
hierarchy, the former involves ontology to handle unlearned
objects and map them into learned classes. At the recogni-
tion step, parametric mixture models are applied. In the lat-
ter, the subsumption hierarchy helps automatically inferring
probability distributions over the current actions given the

object in use. Thus, the integrated common-sense knowl-
edge is used to learn a Dynamic Bayesian Network-based
activity classifier. Other attempts to cope with uncertainty
involve applying a hierarchy Bayesian networks based on
the ontology’s instances such as in (Latfi, Lefebvre, and De-
scheneaux 2007). All these works dissociate the inference
step from the semantic model. This aspect limits the ability
of incorporating rich background and common sense knowl-
edge. It also strips the system from other advantages of sym-
bolic reasoning such as consistency check.

To the best of our knowledge, (Hong et al. 2009) is the
only ontology-based tightly-coupled human activity recog-
nition approach from dense-sensing. The authors model the
interrelationships between sensors, contexts and activities.
They use the resulting hierarchical network of ontologies
to generate evidential networks. Following Dempster-Shafer
theory of evidence, they calculate and define the heuristic
relationships between the network’s nodes in form of evi-
dential mappings. These mappings are used through seven
steps of evidential operations as inference process. Obvi-
ously, their evidential network discloses limited expressive-
ness compared to our DLs language. To the limitations also
belongs cardinality constraints for example. This, such as
other rich background knowledge, can be flexibly described
and respected through the reasoning and consistency check
process. Moreover, using a wide-spread language such as
OWL 2 (Grau et al. 2008) also offers the potential of using
existing ontologies as well as mining techniques for auto-
matic ontology learning.

Representing and Recognizing Multilevel
Activities with Log-Linear DLs

In this section, we describe our technique for multilevel ac-
tivity recognition.

System overview
As shown by the following example, an activity recognition
system should be able to recognize activities at both coarse-
and fine-grained level of detail.

Example 1. Consider a healthcare system to remotely mon-
itor the activities of an elderly person. Recognized activities
are periodically communicated to a medical center, in or-
der to evaluate the evolution of the patient’s physical and
cognitive capabilities. A similar system should be able to
recognize not only high-level activities such as “preparing
breakfast” and “cleaning house”, but also the more specific
actions that compose those activities. For instance, it should
be possible, for the medical center, to inspect the simpler
activities that were executed during breakfast preparation
(e.g., washing fruit, cooking egg, fill a jug with milk, . . . ), to
better evaluate the patient’s behavior.

Figure 1 shows a multilevel decomposition of complex
activities (Level 1) in more specific components; we adopt
the structure proposed in (Lukowicz et al. 2010) for the Op-
portunity dataset. Level 2 represents simple activities, which
can be described as temporal sequences of manipulative ges-
tures and modes of locomotion (Level 3). Finally, Level 4
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Figure 1: Overview of the system for multilevel activity recognition

describes the atomic gestures that characterize manipulative
gestures.

As shown in Figure 1, atomic gestures may be recog-
nized through the application of supervised learning meth-
ods, based on data acquired from body-worn sensors (e.g.,
accelerometers to track movements of the body), environ-
mental sensors, and RFID tags to detect objects usage. In
order to achieve the goal of higher-level activity recogni-
tion, in our technique we propose the use of DLs to express
background knowledge about the domain, and to model the
relationships among high-level activities and their simpler
component actions. In order to cope with the uncertainty
of both context facts and activity definitions, we adopt log-
linear description logics (DLs), a probabilistic DL that has
been recently proposed in (Niepert, Noessner, and Stucken-
schmidt 2011).

Description Logics and Log-linear Description
Logics
Description logics are a commonly used representation for
knowledge bases. There are numerous tools and standards
for representing and reasoning with knowledge using DLs.
The DLs framework allows one to represent both facts about
individuals (concept and role assertions) as well as ax-
ioms expressing schema information. Log-linear DLs inte-
grate description logics with probabilistic log-linear mod-
els (Niepert, Noessner, and Stuckenschmidt 2011). In par-
ticular, Log-linear DLs allow to model both probabilitic and
deterministic dependencies between DL axioms through ex-
tending uncertain axioms with weights. Regarding the ex-
pressiveness of the language, Log-linear DL supports the
same operators of the well-known OWL 2 language.

The syntax of log-linear DLs is equivalent to that of the
underlying DL except that it is possible to assign weights
to general concept inclusion axioms (GCIs), role inclusion

axioms (RIs), and assertions. We explicitly allow assertions
(facts about individuals) in the knowledge base and we will
use the terms constraint box (CBox) and knowledge base
(KB) interchangeably. Moreover, for ease of presentation,
we will use the term axiom to denote GCIs, RIs, and con-
cept and role assertions. A log-linear knowledge base C =
(CD, CU) is a pair consisting of a deterministic CBox CD and
an uncertain CBox CU = {(c, wc)} with each c being an
axiom and wc a real-valued weight assigned to c. The de-
terministic CBox contains axioms that are known to hold
and the uncertain CBox contains axioms with weights. The
greater the weight of an axiom the more evidence there is for
it to hold. Each axiom can either be part of the deterministic
or the uncertain CBox but not both. The deterministic CBox
is assumed to be coherent and consistent.

The simple semantics of log-linear DLs is based on prob-
ability distributions over coherent and consistent knowledge
bases. The weights of the axioms determine the log-linear
probability distribution. For a log-linear knowledge base
C = (CD, CU) and a CBox C′ with CD ⊆ C′ ⊆ CD ∪ {c :
(c, wc) ∈ CU}, we have that

PrC(C′) =

 1
Z exp

(∑
{c∈C′\CD} wc

) if C′ is coherent
and consistent;

0 otherwise

where Z is the normalization constant of the log-linear dis-
tribution PrC . An axiom with weight 0 that is not in conflict
with any other axiom has the marginal probability of 0.5.
Hence, the semantics of log-linear DLs leads to a distribu-
tion compatible with the open-world assumption.

Example 2. Let S and P be two concepts and let C =
(CD, CU), with CD = ∅ and CU = {〈S v P, 0.8〉, 〈P v
S,−1.0〉, 〈S u P v⊥, 0.4〉}. Then,

28



PrC(∅) = Z−1 exp(0) ≈ 0.17
PrC({S v P}) = Z−1 exp(0.8) ≈ 0.38
PrC({P v S}) = Z−1 exp(−1.0) ≈ 0.06

PrC({S u P v⊥}) = Z−1 exp(0.4) ≈ 0.25
PrC({S v P,P v S}) = Z−1 exp(−0.2) ≈ 0.14

PrC({S v P, S u P v⊥}) = 0
PrC({P v S, S u P v⊥}) = 0

PrC({P v S, S v P, S u P v⊥}) = 0

with Z = exp(0.8) + exp(0.4) + exp(0) + exp(−0.2) +
exp(−1.0) ≈ 5.90.

Maximum A-Posteriori Inference Under the given syn-
tax and semantics the first central inference task is the max-
imum a-posteriori (MAP) query: “Given a log-linear on-
tology, what is a most probable coherent ontology over the
same concept and role names?” In the context of probabilis-
tic DLs, the MAP query is crucial as it infers a most probable
classical ontology from a probabilistic one. The ELOG rea-
soner (Noessner and Niepert 2011) solves MAP queries by
transforming the probabilistic ontology into an integer linear
program. It iteratively queries a reasoner such as Pellet to
derive explanations for incoherences or inconsistencies and
adds those as constraints to the ILP, resolves, and so forth.

Context Representation

In our framework, we use log-linear DLs to represent con-
text data, including human activities. It is well known that
traditional ontological models of context have strong points
in terms of representation of heterogeneous context data,
interoperability, automatic reasoning, and representation of
complex relationships. However, they fall short in represent-
ing uncertain context facts, since the OWL language does
not natively support uncertain reasoning (Bettini et al. 2010).
The use of log-linear DLs allows us to naturally extend OWL
with uncertain reasoning, while retaining the expressiveness
of the original language. By using a unified language for
representing both activities and other context data, we ex-
ploit context information to recognize current activities by
maximum a-posteriori inference on the probabilistic ontol-
ogy instantiated with current context data.

Representation of Multilevel Activities

The use of a probabilistic DLs has two main advantages with
respect to existing approaches in representing activities: i)
use of ontological reasoning to derive higher-level activities
based on their component simple actions and current con-
text; ii) representation of the uncertainty about both activity
axioms and context facts through weights, which determine
their log-linear probability distribution. Multilevel activities,
as those shown in Figure 1, are represented by concepts,
which are associated to weighted axioms.

Example 3. Suppose that we want to represent the complex
activity “clean up” in terms of its component simple activi-
ties “put in dishwasher” and “clean table”. Hence, we can

add the following axioms to the knowledge base:
CLEANUP v COMPLEXACTIVITY u (1)

∀ HASACTOR.
(

PERSON u

∃ HASSIMPLEACTIVITY.PUTINDISHWASHER
)
, 1.8

CLEANUP v COMPLEXACTIVITY u (2)

∀ HASACTOR.
(

PERSON u

∃ HASSIMPLEACTIVITY.CLEANTABLE
)
, 1.5

Axiom (1) has weight 1.8, and essentially states that if a per-
son is currently putting things in the dishwasher, she is prob-
ably performing the complex activity “clean up”. Axiom (2)
is similar, apart that it has a slightly lower weight, and con-
siders activity “clean table” instead of “put in dishwasher”.
Note that the axioms weights can be manually defined based
on background knowledge, or automatically learned from a
training set of performed activities.

A major issue with our approach is that the description
logic underlying Log-linear DL (which has essentially the
same expressiveness of OWL 2 (Grau et al. 2008)) does not
natively support temporal reasoning. This is a serious limi-
tation, since reasoning with temporal intervals is needed to
recognize many human activities. Consider, for instance, the
simple activity “put in dishwasher” depicted in Figure 1. A
possible situation describing that activity is: “the individual
takes an object, walks to the dishwasher, opens its door, puts
the object inside, and closes the dishwasher door”. Other
definitions for the same activity may exist, based on the indi-
vidual’s habits. For instance, many objects may be put inside
the dishwasher while its door is left open. In order to express
these temporal relationships among activities and actions,
we should be able to reason with temporal intervals. Unfor-
tunately, this kind of reasoning is not naturally supported
by the description logic underlying Log-linear DL, due to
some restrictions to the language operators that are neces-
sary for preserving the decidability of ontological reasoning
problems. This shortcoming is shared by any activity recog-
nition system strictly based on OWL 2. On the contrary, DLs
for interval-based temporal languages, like the one presented
in (Artale and Franconi 1998), are well suited for reasoning
with the temporal characteristics of activities and actions,
but lack support for some expressive operators that are ad-
mitted in OWL 2, which are needed to model complex con-
text data. An alternative approach we are considering is to
exploit an external reasoner to perform temporal reasoning,
while maintaining the whole expressiveness of our ontologi-
cal language. We further discuss this issue in the last section
of this paper.

Our Ontology for the Opportunity Dataset
As a testbed for our technique, we chose to use the dataset
acquired within the Opportunity EU research project (Activ-
ity and Context Recognition with Opportunistic Sensor Con-
figurations)1. The dataset has been acquired in a smart home

1http://www.opportunity-project.eu/
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Figure 2: A snapshot of our ontology

with dense sensing equipments (72 sensors of 10 modalities,
including accelerometers, RFID tags attached to objects, and
environmental sensors for audio and video). A number of
multilevel activities in an “early morning” setting has been
acquired by 12 subjects. Gestures and activities are struc-
tured similarly as shown in Figure 1. The dataset is presented
in detail in (Lukowicz et al. 2010).

The Opportunity dataset provides labels for atomic ges-
tures (Level 4). The goal of our experiments will be to eval-
uate the feasibility of our technique to recognize gestures
and activities at Levels 3, 2, and 1 starting from atomic ges-
tures. For the sake of these experiments, we will assume
that a state-of-the-art method is used to recognize activi-
ties at Level 4 based on raw context data. For our experi-
ments, we have developed an ontology for representing the
multilevel activites considered in the Opportunity dataset.
The ontology has been developed using the Protégé OWL
editor (Knublauch et al. 2004); axioms weights have been
added as annotations to axioms definitions. Figure 2 shows
a snapshot of our ontology.

Determining Axioms Weights
According to our log-linear model, the marginal probability
of an axiom is the sum of the probabilities of each consis-
tent and coherent ontology in which that axiom holds. We
adopt the association rules learning principle to obtain a-
priori probabilities of individual axioms: We first expand
our training data with the corresponding multi-level activ-
ity labels. This is achieved based on the concept definitions
provided in the TBox. Each of these axioms is considered
as a rule. For example, considering the lowest activity level,
the Atomic Gesture would be the antecedent and the Manip-
ulative Gesture the consequent. After deleting the consec-
utive duplicate events, we determine the support value for
the considered rules which actually coincide with the prob-
ability values of the corresponding axioms. In the example
above, the obtained support value corresponds to the condi-
tional probability of Manipulative Gesture given an Atomic
Gesture. Since the semantics of log-linear DLs is based on
log-linear probability distributions, we compute the a-priori
weights by taking the logit of the a-priori probabilities.

The Recognition Framework
At the time of writing, we are developing a prototype sys-
tem in Java to evaluate our activity recognition technique.

At first, the Java program adds to the assertional part of our
ontology an instance of PERSON, which represents the cur-
rent individual. Then, the program parses the Opportunity
dataset to acquire the atomic gestures executed by the indi-
vidual. Each gesture is added as an instance of its subclass
of ATOMICGESTURE, and a role HASATOMICGESTURE is
added, to relate the gesture with the individual. At each
new gesture, we use the ELOG reasoner to calculate the
most probable consistent ontology, given the current ges-
tures. Then, we use the Pellet2 reasoner for realizing the
ontology calculated by ELOG, in order to derive the spe-
cific manipulative gestures, simple, and complex activities
performed by the individual.

Discussion and Future Work
In this paper, we propose a tightly-coupled hybrid system for
human activity recognition. Our framework unites both sym-
bolic and probabilistic reasoning. This is achieved through
the adoption of highly expressive log-linear DLs to repre-
sent and reason about the current activity at different gran-
ularities and complexity levels simultaneously. This paper
outlines an initial implementation of the proposed frame-
work. It describes the recognition algorithm and illustrates
the concepts of our work through several examples. While
the full evaluation of the proposed approach awaits further
steps and experiments, our ontology-based approach com-
bines promising features to address human activity recog-
nition. The benefits of the proposed approach are manifold.
Unlike the majority of related works, it supports the inher-
ent uncertain nature of human activities without sacrifying
the advantages of ontological reasoning. These advantages
include consistency checking, the ability of integrating rich
background knowledge, and the simultaneous recognition of
coarse and fine-grained activities. The use of a standard de-
scription formalism enhances the portability and reusabil-
ity of the proposed system, and supports the representation
of heterogeneous and uncertain context data. Moreover, the
declarative nature of DLs reinforces the flexibility and intel-
ligibility of the system.

As pointed out earlier, however, there are some challeng-
ing open issues that need to be addressed. Currently, our ap-
proach does not support temporal reasoning, which is a key
requirement for human activity recognition. There are two
alternative approaches for enabling temporal reasoning in

2http://clarkparsia.com/pellet/
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a DL framework. The first one consists in the use of tem-
poral description logics, in which the temporal and termi-
nological domains are tightly coupled. A relevant instance
of these languages was proposed in (Artale and Franconi
1998), in which a temporal DL is used for reasoning about
actions and plans. Applied to human activity recognition,
actions essentially represents instantaneous activities (like
atomic and manipulative gestures), while plans represent
more complex activities, which are defined as temporally-
constrained sequences of actions. However, in order to pre-
serve decidability, the expressiveness of non-temporal oper-
ators is limited, and there is no support for reasoning with
uncertainty. The second approach consists in the use of a
loosely-coupled technique, in which time is treated as a con-
crete domain (Lutz and Milicic 2007). With this approach,
ontology instances are related to values of the temporal do-
main by functional properties, and an external reasoner is
used to deal with qualitative and/or quantitative relationships
among the time intervals corresponding to activities execu-
tions. We believe that the latter approach is a promising re-
search direction to follow. A further issue is that the compu-
tational time of activity recognition with a large knowledge
base (as the one for the dataset considered in this work) may
not be compatible with the requirements of ambient intel-
ligence systems. Computational costs could be reduced by
pruning, given the context at run time, those ontology ax-
ioms that are not involved in the activity derivation. Future
work also includes the validation of our approach with addi-
tional datasets that include richer context sources.
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