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Abstract

For the long term co-existence of robots with us in com-
plete harmony, they will be expected to show socio-
cognitive behaviors. In this paper, taking inspiration
from child development research and human behavioral
psychology we will identify the basic but key capabili-
ties: perceiving abilities, effort and affordances. Further
we will present the concepts, which fuse these com-
ponents to perform multi-effort ability and affordance
analysis. We will show instantiations of these capabili-
ties on real robot and will discuss its potential applica-
tions for more complex socio-cognitive behavior.

When looked through the socio-cognitive window, the AI
(Artificial Intelligence) hence the Artificial Agents should
be able to take into account high level factors of other agents
such as help and dependence, (Miceli, Cesta, and Rizzo
1995). Here the agents social reasoning and behavior is de-
scribed as their ability to gather information about others
and of acting on them to achieve some goal. Which obvi-
ously means such agents should not exist in isolation, in-
stead must fit in with the current work practice of both peo-
ple and other computer systems (artificial agents), (Bobrow
1991). While exploring this ’fit’, works on social robots
such as (Breazeal 2003), and survey of socially interactive
robots such as (Fong, Nourbakhsh, and Dautenhahn 2003)
altogether outline various types of social embodiment. This
could be summarized as social interfaces to communicate;
sociable robots, which engage with humans to satisfy inter-
nal social aims; socially situated robots, which must be able
to distinguish between ’the agents’ and ’the objects’ in the
environment; socially aware robots, situated in social en-
vironment and aware about the human; socially intelligent
robots that show aspects of human style social intelligence.

Ability While exploring the key cognitive building blocks
of these social embodiment, we get hints from the research
on child development, such as (Carpendale and Lewis 2006).
It suggests that visuo-spatial perception, i.e. perceiving oth-
ers’ ability to see and reach, comes out to be an important
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aspect of cognitive functioning. Very basic forms of social
understandings, such as following others’ gaze and point-
ing as well as directing others’ attention by pointing, be-
gin to revel in children as early as at the age of 12 months,
(Carpendale and Lewis 2006). At 12-15 months of age chil-
dren start showing the evidence of an understanding of oc-
clusion of others’ line-of-sight (Dunphy-Lelii and Wellman
2004), (Caron et al. 2002); and an adult is seeing something
that they are not, when looking to locations behind them
or behind barriers (Deak, Flom, and Pick 2000), for both:
spaces (Moll and Tomasello 2004) and objects (Csibra and
Volein 2008). Once equipped with such key cognitive abil-
ities, children show basic social interaction behaviors, such
as intentionally producing visual percept in another person
by pointing and showing things and interestingly from the
early age of 30 months, they could even deprive a person
of a pre-existing percept by hiding an object from him/her
(Flavell, Shipstead, and Croft 1978). Further studies such as
(Rochat 1995), suggest that from the age of 3 years, children
are able to perceive, which places are reachable by them and
by others, as the sign of early development of allocentrism
capability, i.e. spatial decentration and perspective taking.
Evolution of such basic socio-cognitive abilities of visuo-
spatial reasoning in children enable them to help, co-operate
and understand the intention of the person they are interact-
ing with.

Effort Perceiving the amount of effort required for a task
is another important aspect of a socially situated agent. It
play role in effort balancing in a co-operative task as well
as provides a basis for offering help pro-actively. A so-
cially situated robot should be able to perceive the effort
quantitatively as well as qualitatively in a ’meaningful’ way
understandable by the human. An accepted taxonomy of
such ’meaningful’ symbolic classification of effort could be

Figure 1: Effort based taxonomy of reach action
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adapted from the research of human movement and behav-
ioral psychology, (Gardner et al. 2001), (Choi and Mark
2004), where different types of reach actions of the human
have been identified and analyzed. Fig. 1, shows taxonomy
of such reaches involving simple arm-shoulder extension
(arm-and-shoulder reach), leaning forward (arm-and-torso
reach) and standing reach, which could easily be adapted
to qualify the effort associated with other abilities and tasks.

Affordance In cognitive psychology, Gibson (Gibson
1986) refers affordance as what an object offers. Gibson
defined affordances as all action possibilities, independent
of the agent’s ability to recognize them. Whereas in Hu-
man Computer Interaction (HCI) domain, Norman (Nor-
man 1988) defines affordance as perceived and actual prop-
erties of the things, that determines how the things could
be possibly used. He tightly couples affordances with past
knowledge and experience. In robotics affordances has been
viewed from different perspectives: agent, observer and en-
vironment; hence the definition depends upon the perspec-
tive, (Şahin et al. 2007). Irrespective of shift of definition,
affordance is another important aspect for a socially situated
agent for performing day-to-day cooperative human-robot
interactive manipulation tasks. Affordance could be learnt
(Gibson 2000) as well as could be used to learn action selec-
tion (Lopes, Melo, and Montesano 2007).

Contribution
Bottom-up Social Embodiment Approach Inspired from
child developmental research and emergence of social be-
havior, we adapt the approach to grow the robot as ”social”
by developing basic key components, instead of taking ’a’
complex social behavior and top down realizing its compo-
nents. Our choice of bottom up approach serves the objec-
tive of this paper: exploring and building a foundation for
designing more complex socio-cognitive, by providing open
’nodes’ Below we describe the contribution of the paper re-
flecting this bottom up approach.

In this paper we will enrich the scope of abilities, af-
fordances and efforts by incorporating the complementary
aspects. Further we will fuse these components to develop
new concepts to facilitate a more ’aware’ human-robot in-
teraction and interactive manipulation. Fig. 2 summarizes
the concept building contribution of the paper. The scope
of this paper is to describe the main constructs of the fig. 2,
their significance and to illustrate the result for real human-
robot interaction scenarios. Below we will first summarize
the main conceptual contribution of the paper.

Perspective Taking to Perceive Non-Abilities As shown
in the visuo-spatial perspective taking block of figure 2, we
have equipped the robot to not only perceive what is visible
and reachable, but also which object or place is deprived to
be seen or reached by an agent and why (as shown in the sub-
components: obstructed, unreachable, invisible and hidden).

Effort Hierarchy To qualify agent’s effort in a human un-
derstandable and meaningful way, we have conceptualized
an effort hierarchy, as shown in effort analysis block (fig. 2).

Multi-Effort Ability and Non-ability Analysis In the do-
main of Human-Robot Interaction, visuo-spatial perspective
taking has already been studied. Specially the ability to per-
ceive what other agent is seeing has been embodied and used
in various ways, (Breazeal et al. 2006), (Trafton et al. 2005).
But mostly the focus is on analyzing agent’s abilities to see
objects from the current state of the agent. As an attempt
to make the robot more ’aware’ about other agent’s capa-
bilities, by fusing visuo-spatial perspective taking with the
effort hierarchy, we have developed the concept of Mighta-
bility Analysis as shown in fig. 2.

Agent-Agent Affordance Analysis We have enriched the
notion of affordance by including inter-agent task perfor-
mance capability, i.e. what an agent can afford to do for other
agent (give, show...), as shown in Affordance Analysis block
of fig. 2.

What an Environment Offers: Multi-Effort based Affor-
dance Analysis We have incorporated effort and visuo-
spatial abilities with affordances to equip the robot with rich
reasoning about the environment (consists of agents and ob-
jects, places) could offer all together by incorporating dif-
ferent possible efforts of agents, as shown in Mightability
based affordance analysis block. In this context we will in-
troduce the concepts of Taskability Graph, Manipulability
Graph and fuse them to construct Object Flow Graph. This
will serve as a basis for generating shared plan, as well as
for grounding the agent, action or object to the environmen-
tal changes.

The technical implementation detail of each component is
beyond the scope of the paper, however we will illustrate the
results in real human-robot interactive scenario. Next section
will describe the concepts, and the instantiations, followed
by the discussion on potential applications and conclusion.

Concept Description and Illustrative
Instantiation

Perceiving Non-Abilities
We have identified three concepts about visibility of X (ob-
ject or place) from an agent’s perspective:

• Visible: X is directly seen by the agent.

• Occluded: X is in the field of view of the agent, but cur-
rently not seen, because some other object or agent is oc-
cluding it.

• Invisible: X is not in the field of view of the agent. So,
either the agent will be required to put some effort or the
X should be displaced.

Similarly for the ability to reach, corresponding concepts
are:

• Reachable: agent can directly reach X just by stretching
arm.

• Obstructed: X is withing the stretching arm reach region
of the agent but currently the agent could not reach it,
because some other object or the agent is obstructing it.
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Figure 2: We have identified a subset of basic socio-cognitive abilities: Visuo-Spatial Perspective Taking, Effort Analysis,
Affordance Analysis. We have enriched their scope and fused them to build a base, which will serve for developing complex
socio-cognitive abilities for the robots to co-exist in human centered environment with better harmony.

• Unreachable: X is not withing reach region of the agent.
So, either the agent will be required to put some effort or
the X should be displaced.

Occluded and Obstructed differ from Invisible and Un-
reachable in the sense, for the former it is possible to pro-
duce the visual percept or facilitate the reach for agent Ag
for object or Place X by making changes in the other parts
of the environment without involving the Ag and X.

In (Pandey and Alami 2010), we have presented how the
reachable and visible places by an agent are calculated. We
will refrain from giving here the detail. In summary, from a
given posture, for calculating the visible place, a ray trac-
ing based approach is used from eye to the points in the
workspace. And for calculating the reachable places, the
arm-length with constraints of shoulder joints limits has
been used. Below we will briefly describe the computa-
tion of complementary aspects: occluding (preventing to see
something) and obstructing (preventing to reach something)
objects.

If an agent Ag can not see an object O, which is otherwise
in the field of view of Ag, the robot finds the occluding ob-
ject, i.e. the objects which are depriving Ag to see O. For this
a ray is traced back from the point p ∈ P i : i = 1...n, uni-
formly samples on the object, to the agent’s eye E. Then the
points on the ray, which do not belong to free space and O

are extracted. Further the objects belonging to these points
are extracted, which in-fact are the occluding objects.

We say an object, which is within the arm length of the
agent, to be obstructed from reaching if it fails the basic
reachability test: if there are other objects on the line join-
ing the shoulder joint and the object. This is an acceptable
assumption, supported by human movement and behavioral
psychology research, which suggests that our prediction to
reach a target depends on the distance of the target rela-
tive to the length of the arm, (Rochat 1995), (Carello et al.
1989) and in-fact play as a key component in actual move-
ment planning. We prefer to avoid performing more expen-
sive whole body generalized inverse kinematics based reach-
ability testing until the final stages of task planning, where
it is really required. Hence obstructing objects are detected
in similar way as explained earlier for occluding objects,
where the ray is traced from object to the agent’s shoulder.
Similarly the occluding objects for hidden and unreachable
places are found.

It is important to note that such perspective taking are per-
formed from a particular state of the agent. That state could
be the current state or a virtual state by applying a particular
action, which will be clear in next section.
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Effort Analysis
We have conceptualized an effort hierarchy based on the
body part involved, as follows:

• Head/Arm Effort: Involves just turning the head around to
see or just stretching out the arm to reach something.

• Torso Effort: Involves the upper body part only, e.g. lean
torso forward, turn torso.

• Whole Body Effort: Involves whole body motion but no
displacement, e.g. changing posture from sitting to stand-
ing or from standing to sitting, turning around the whole
body.

• Displacement Effort: Involves displacement.

The symbolic level of effort increases from Head/Arm to
Displacement effort. This effort hierarchy also grounds the
agent’s movement to a ’meaningful’ effort. The robot fur-
ther associates descriptors like left, right. As the robot rea-
sons on 3D model of the agents with joints’ information it
further compares two efforts of same symbolic level, based
on change in joint values or relative displacement.

Mightability Analysis: Multi-Effort Viuso-Spatial
Perspective Taking
In (Pandey and Alami 2010), we have presented the con-
cept of Mightability Maps, which stands for ”Might be Able
to...”. There we used a set of virtual states of the agent to
perform visuo-spatial perspective taking for points (cells in
the workspace). In this paper we will more generalize the
concept by using the effort hierarchy instead of predefined
set of states as well as analyzing also for objects instead of
just the points in the space. This we term as Mightability
Analysis. The idea is to performs all the visuo-spatial rea-
soning shown in fig. 2, not only from the current state of the
agent, but also from a sates, which the agent might attain if
he/she/it will put a particular effort.

For performing Mightability Analysis, corresponding to
each effort level there is a set of virtual actions. The robot
applies AV an ordered list of such virtual actions, to make
the agent virtually attain a state and then estimates the abili-
ties by respecting the environmental and postural constraints
of the agent. Currently the set of virtual actions are:

AV ⊆
{
Ahead

V , Aarm
V , Atorso

V , Aposture
V , Adisplace

V

}
(1)

where,
Ahead

V ⊆ {Pan Head, T ilt Head} (2)

Aarm
V ⊆ {Stretch Out Arm (left|right)} (3)

Atorso
V ⊆ {Turn Torso, Lean Torso} (4)

Aposture
V ⊆ {Make Standing,Make Sitting} (5)

Adisplace
V ⊆ {Move To} (6)

Figure 3: Agent-Object Grasp affordance: Autonomously
generated grasp and analysis of simultaneous dual grasp.

Figure 4: Object-Agent affordance. (a) Robot finds the
places where the human on middle can put something onto.
Note that the robot is able to find the top of the box also as a
potential support plane. (b) Similarly it finds that something
can be put into the pick trashbin and the places from where
the human on right can put into. In both cases, the maximum
allowed effort level was Arm Effort.

Affordance Analysis
As mentioned earlier, we have assimilated different notions
of affordances as well as introduced the notion of ”agent-
agent affordance”. As shown in fig. 2, we conceptualize four
categories of affordance analysis:

(i) Agent-Object Affordance: This suggests what an agent
could potentially do to an object in a given situation and
state. Currently the robot is equipped to find affordance to
Take, Point and Carry. An agent take an object if there exists
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Figure 5: Example scenario with two humans, and a PR2
robot. There are different objects, reachable and visible by
different agents with different effort levels.

at least one collision free grasp, and the object is reachable
and visible from a given state of the agent. We have a ded-
icated grasp planner which could autonomously find set of
possible grasps for the gripper/hand of robot/human, for 3D
object of any shape (Saut, Sahbani, and Perdereau 2011). If
the agent has to take an object from another agent, existence
of simultaneous grasps, as shown in fig. 3 is tested. Another
agent object affordance is to point to an object. In the cur-
rent implementation an object is said to be point-able by an
agent if it is not hidden and not blocked. The blocked is per-
ceived in similar way as obstructed as explained earlier, but
the test of whether the object is within the reach length of
agent or not is relaxed. An agent can carry an object if he
can afford to take it and the weight of the object is within
acceptable range. Currently the weight information is man-
ually provided as the object property.

Before moving further we would like to introduce fig. 5,
which will be used to illustrate the main concepts through
real results. The scenario shows two humans and a robot,
PR2. The robot construct and update, in real time, the 3D
model of the world by using Kinect based human detection
and tag based object localization and identification through
stereo vision, integrating in our 3D visualization and plan-
ning platform Move3D.

(ii) Object-Agent Affordance: This type of affordance
suggests what an object offers to an agent in a given situ-
ation, currently implemented for to puton, to putinto affor-
dances. The robot autonomously finds horizontal supporting
facet and horizontal open side, if exists, of any object. For
this the robot extracts planar top by finding the facet hav-
ing vertical normal vector from the convex hull of the 3D
model of the object. The planner top is uniformly sampled
into cells and an virtual small cube (currently used of dimen-
sion of (5cm x 5cm x 5cm)) is placed at each cell. As the cell
already belongs to a horizontal surface and is within the con-
vex hull of the object, so, if the placed cube collides with the
object, it is assumed to be a cell of support plane. Otherwise
the cell belongs to an open side of the object from where
something could be put inside the object. Fig. 4a shows the
automatically extracted places on which human on the mid-
dle can put something. Fig. 4b shows the places from where

the human on the right can put something inside the pink
trashbin. In this example, analysis has been done for the ef-
fort level of Arm Effort. Note that fig. 4 is 3D model built
and updated online for a scenario similar to fig. 5

(iii) Agent-Location Affordance: This type of affordance
analysis suggests what an agent can afford with respect to a
location. Currently there are two such affordances: can the
agent move to a particular location and can the agent point
to a particular location. For move-to, the agent is first placed
at that location, tested for collision free placement and then
existence of a path is tested. For point-to a location, similar
approach is used as point to an object, discussed above.

(iv) Agent-Agent Affordance: This type of affordance
analysis suggests which agent can perform which task for
which agent. Currently the robot is equipped to analyze the
basic Human-Robot Interactive manipulation tasks: Give,
Show, Hide, Put-Away, Make-Accessible, Hide-Away. For
this it uses the Mightability Maps of the agents (Pandey and
Alami 2010) involved. For a given effort level it solves the
following expression to get the candidate points by perform-
ing set operation on Mightability Maps:

PCnts
place = {pj : p ≡ (x, y, z) ∧ (pjholds∀ci ∈ Cnts)} (7)

where j=1 to n, the number of cells. The set of effort con-
straints Cnts = {ci : i = 1 . . .m} consists of tuple (m is
number of constraints):

ci = 〈ability : Ab, agent : Ag, effort : EAb
= (true|false)〉

(8)
Where Ab ∈ {see, reach}. Depending upon the nature of
the task and the desired/allowed effort level, the robot tests
for existence of commonly reachable and/or commonly vis-
ible places for cooperative tasks like give, make-accessible,
show, etc. Similarly it finds the places, which are reachable
and visible for one agent but invisible and/or unreachable for
another agent for competitive tasks like hide, put-away, etc.

Least Feasible Effort Analysis
For finding the least effort for an ability Ab ∈ {see, reach},
the robot sequentially applies the virtual actions presented in
eq. 1 starting from the least effort level, until the desired abil-
ity for that agent becomes true for the object or place of in-
terest. As shown in fig. 6a, the robot finds that the human on
the right Might be able to see the small tape (object B in fig.
5, which the robot finds to be hidden from the human’s cur-
rent perspective and the occluding object is the white box),
if he will put at least the Whole Body Effort. As shown, the
robot finds that the human will be required to stand up and
lean forward to see the small tape. The same human might
be able to even reach another object with Displacement Ef-
fort 6b, by moving to a place and then leaning forward. The
another human on the middle has to at least put Torso Effort
to reach the black tape in front of him, as he is required to
just lean forward.

Mightability Based Affordance Analysis
As long as the robot reasons only on the current states of the
agents, the complexity as well as the flexibility of coopera-
tive task planning is bounded in the sense if the agent cannot
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Figure 6: Least feasible effort analysis: (a) Whole Body Ef-
fort to see the small tape by the human 2 of fig. 5, who is
currently sitting on the sofa. (b) Displacement Effort to reach
another tape by human 2. (c) Torso Effort to reach black tape
by another human.

reach an object from current state, it means that agent can-
not manipulate that object; similarly if the agent cannot give
an object to another agent from his current state it means
he will not. But thanks to Mightability Analysis our robot is
equipped with rich reasoning of agents’ abilities from mul-
tiple states. This introduces another dimension: effort in the
cooperative manipulation task planning, as theoretically ev-
ery agent would be able to perform a task, only the effort
to do so will vary. This section will introduce the concepts
of different graphs which could easily incorporate effort in
planning for help and cooperation.

Taskability Graph Taskability graph represents agent-
agent affordances for different tasks. An edge of taskability

(a) Example Taskability Edge

(b) Edge Description (c) Effort Sphere

Figure 7: Explanation of a taskability edge: bigger the sphere
size, greater the effort to see and reach.

graph is directed from the performing agent and the target
agent and found based on maximum allowed effort levels of
both agents, and the requirement to balance the mutual ef-
fort, or to reduce the effort of one of the agent. Each edge
consists of the name of the task, the corresponding effort
levels of the agents involved, the candidate places where the
task could be performed, based on the allowed effort. Fig.
7 shows one edge of taskability graph, corresponding to the
affordance of PR2 to give an object to the human on the mid-
dle. The colored point cloud shows the candidate places for
the task.

Figure 8: Taskability Graph for different tasks for real sce-
nario of fig 5 based on effort balancing assuming equal so-
cial status and maximum allowed effort levels for each agent
as Arm Torso Effort
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Fig. 8 shows the taskability graph for 4 different tasks:
Give, Show, Hide, Make Accessible, for scenario of fig. 5
among all the agents in the environment. Assuming equal
social status for all the agent, the planner starts checking for
the feasibility of the task by testing for equal effort levels for
each agent, starting from the least effort level. To illustrate
that the situation and desire of individual can be incorpo-
rated in the generation of such grasp, we have restricted the
maximum desired effort level of each agent as Torso Effort
as they are sitting around a table and not willing to stand
or move. Hence, in the corresponding taskability graph, be-
tween human 2 and PR2 robot there is no possibility of give
and make accessible tasks, as there was no commonly reach-
able places with this effort level. This is reflected from the
taskability graph, having only two edges between them, for
hide and show tasks, where common reachab places by both
agents are not required.

Manipulability Graph As Taskability Graph encodes
what an agent might be able to do for another agent, Ma-
nipulability Graph represents agent-object and object-agent
affordances. Currently the robot construct Manipulability
Graphs for three tasks: Take, Putonto, and Putinto, as ex-
plained in affordance analysis section.

Fig. 9 shows the manipulability graph encoding the abil-
ity and efforts for take and putinto affordances. To show that
different maximum effort levels can be assigned for different
affordances, we provided maximum allowed effort for take
as Displacement Effort whereas for putinto it has been as-
signed as Torso Effort. Hence the resulted graph shows that
human 2 can take the object on the right of the robot and
also can put something into the trashbin. But the human 1
can not put something into trashbin. Each edge shows the
corresponding efforts to see and reach the objects by green
and blue spheres. Note the difference among the effort levels
of all the agents to take the objects, e.g. one on the right of
the robot, successfully encoded in the Manipulability Graph.

Object Flow Graph By combining Taskability Graphs
and Manipulability graphs, we have developed the concept
of Object Flow Graph (OFG). It encodes all the possible

Figure 9: Manipulability Graph to take-object and for
Putinto affordance with maximum allowed effort levels as
Displacement and Torso Efforts respectively.

Figure 10: Object Flow Graph

ways in which objects could be manipulated among the
agents and across the places. Fig. 10 shows the OFG of the
current scenario of fig. 5. For constructing OFG, following
rules are used: (i) Create unique vertices for each agent in the
environment and for each object in the environment. (ii) For
each edge Et of taskability graph from performing agent PA
to target agent TA, introduce an intermediate virtual vertex
Vt and split Et into two edges, E1, connecting PA and Vt; and
edge E2, connecting Vt and TA. The direction of E1 and E2
depends upon the task: if the task is to give or make acces-
sible, E1 will be directed inward Vt and E2 will be directed
outward from Vt towards the TA. If the task is to hide or just
show the object, E2 will be directed towards the Vt from TA
also. This ensure that for hide or show tasks, the object will
not flow further from the performing agent and E2 is for the
purpose of grounding the task corresponding to that Vt and
TA. (iii) For each edge Emt of manipulability graph to take
an object, an edge is introduced in the OFG directing from
the object to the performing agent. (iv) For each edge Emp
of manipulability graph for putinto and puton affordances,
an edge is introduced in the OFG from the performing agent
to the container object or supporting place. Rule (ii) encodes
the flow of object between two agents and rules (iii) and (iv)
encode the possible flow of object corresponding to pick,
putinto, puton tasks. Further each edge will have a weight
depending upon the efforts of the performing and the target
agents in the parent graphs.

The novelty of object flow graph is: (i) It transforms a
human-robot interactive object manipulation task planning
problem into a graph search problem. (ii) It provides capa-
bility to reason on human/agents effort levels, and (iii) It
facilitates easy incorporation of preferences and social con-
straints in terms of desired/acceptable efforts.

Potential Applications
Once the robot is equipped with the capabilities to analyze
the potential flow of the object, i.e. has the Object Flow
Graph, it could be used for variety of purposes: To gen-
erate a shared cooperative plan for the task, to ground the
changes to the agent and the actions. For example if the task
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is to throw the object A of fig. 5 in the trashbin, the planner
has to just find the node corresponding to object A, and the
node corresponding to the trashbin. Then simply a shortest
path search algorithm between both nodes will give a plan
to perform the task. The planner can have different paths by
varying the desired criteria for overall or individual effort.
Similarly different constraints could be introduced, such as
making sure to involve an agent in the planned cooperative
task, or to exclude an agent, and so on. If an agent is having
back problem, just by restricting his effort level to Arm Ef-
fort will automatically propagate this in the framework and
his involvement will be restricted to the tasks affordable by
him. Similarly OFG could be used for grounding environ-
mental changes, to the probable agents and actions.

Conclusion and Future Work
We have explored key components for developing com-
plex socio-cognitive behaviors. From the needs of human
robot interaction, we have enriched the robot’s capabilities
to analyze abilities, effort and affordances in a human un-
derstandable manner. We have also introduced the notion
of agent-agent affordances and importance of perceiving
non-abilities. Further we have fused them to develop the
concepts of Mightability analysis, and to build object flow
graph, which converts effort based task planning problem
into graph search problem. All these make the robot more
’aware’ about the agent, and agent’s capabilities. An inter-
esting future work is integrating such rich knowledge with
the high level task planners, such as (Alili, Alami, and Mon-
treuil 2008) to effectively solve complex tasks cooperatively.
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