
 

 

 
 

Efficiently Merging Symbolic Rules into Integrated Rules  

Jim Prentzasa, Ioannis Hatzilygeroudisb 
a Democritus University of Thrace, School of Education Sciences 

Department of Education Sciences in Pre-School Age 
68100 Nea Chili, Alexandroupolis, Greece 

dprentza@psed.duth.gr 
 

b University of Patras, School of Engineering 
Department of Computer Engineering & Informatics 

26500 Patras, Greece 
ihatz@ceid.upatras.gr 

 
 

 
Abstract 

Neurules are a type of neuro-symbolic rules integrating 
neurocomputing and production rules. Each neurule is 
represented as an adaline unit. Neurules exhibit 
characteristics such as modularity, naturalness and ability to 
perform interactive and integrated inferences. One way of 
producing a neurule base is through conversion of an 
existing symbolic rule base yielding an equivalent but more 
compact rule base. The conversion process merges symbolic 
rules having the same conclusion into one or more neurules. 
Due to the inability of the adaline unit to handle 
inseparability, more than one neurule for each conclusion 
may be produced. In this paper, we define criteria 
concerning the ability or inability to convert a rule set into a 
single neurule. Definition of criteria determining whether a 
set of symbolic rules can (or cannot) be converted into a 
single, equivalent but more compact rule is of general 
representational interest. With application of such criteria, 
the conversion process of symbolic rules into neurules 
becomes more time- and space-efficient by omitting useless 
trainings. Experimental results are promising. 

 Introduction   
There have been efforts combining neural and symbolic 
approaches (Garcez, Broda and Gabbay 2002). Neural 
networks and symbolic rules have complementary 
advantages and disadvantages (Hatzilygeroudis and 
Prentzas 2004) and their combination constitutes a popular 
research trend. Neurules (Hatzilygeroudis and Prentzas 
2010, Prentzas and Hatzilygeroudis 2011) are a type of 
integrated rules combining symbolic rules (of propositional 
type) and neurocomputing (adaline approach). In contrast 
                                                 
Copyright © 2012, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

to other approaches, neurules give pre-eminence to the 
symbolic part of the integration. Therefore, they retain the 
naturalness and modularity of symbolic rules in a large 
degree. Neurules can be produced either from symbolic 
rules or from empirical data (Hatzilygeroudis and Prentzas 
2000, 2001). Also a neurule-based system possesses an 
interactive inference mechanism (Hatzilygeroudis and 
Prentzas 2010). 
 A neurule base may be produced from a symbolic rule 
base by applying a conversion process (Hatzilygeroudis 
and Prentzas 2000). Conversion does not involve 
refinement of the symbolic rule base, but creates an 
equivalent knowledge base. This means that the 
conclusions drawn from the neurule base are the same as 
those drawn from the symbolic rule base, given the same 
inputs. Each produced neurule usually merges two or more 
symbolic rules with the same conclusion. Therefore, the 
size of the produced neurule base is less than that of the 
symbolic rule base as far as both the number of rules and 
the number of conditions are concerned. This results in 
improvements to the efficiency of the inferences from the 
neurule base, compared to those from the symbolic rule 
base as shown in (Hatzilygeroudis and Prentzas 2000). The 
conversion process tries to merge all symbolic rules having 
the same conclusion into a single neurule. However, this is 
not always possible, due to the inability of the adaline unit 
to handle inseparability, and thus more than one neurule 
for each conclusion may be produced.  

In this paper, we define criteria concerning the ability or 
inability to convert a rule set to a single neurule which is 
an equivalent but more compact rule-based approach. With 
application of such criteria, the conversion process of 
symbolic rules to neurules becomes more efficient by 
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avoiding trainings not directly producing neurules. The 
definition of such criteria is of general representational 
interest. Various approaches have been presented 
concerning the reduction of the size of rule bases and/or 
the production of compact rule bases. Such approaches 
have been presented in the context of rule extraction from 
neural networks (Chorowski and Zurada 2011), learning 
rules from datasets (Riid and Rustern 2011) and 
evolutionary computing (Shi, Shi and Gao 2009). Our 
approach lies in a neuro-symbolic context that provides 
integrated inference, involves available symbolic rules 
elicited from experts or produced from datasets and 
reduces rule base size through conversion to an equivalent 
and more compact formalism by merging symbolic rules. 

This paper is organized as follows. First, main aspects 
concerning neurules are outlined. The following section 
discusses criteria for efficiently merging symbolic rules 
into neurules. Experimental results are then presented. 
Finally, it concludes. 

Neurules: Syntax and Semantics 
Neurules are a kind of integrated rules. The form of a 
neurule is depicted in Figure 1a. Each condition Ci is 
assigned a number sfi, called its significance factor. 
Moreover, each rule itself is assigned a number sf0, called 
its bias factor. Internally, each neurule is considered as an 
adaline unit (Figure1b). The inputs Ci (i=1,...,n) of the unit 
are the conditions of the rule. The weights of the unit are 
the significance factors of the neurule and its bias is the 
bias factor of the neurule. Each input takes one of the 
following discrete values: [1(true), -1(false), 0(unknown)].  

The output D, which represents the conclusion of the 
rule, is calculated via the standard formulas: 
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where a is the activation value and f(x) the activation 
function, which is a threshold function. Hence, the output 
can take one of two values (‘-1’, ‘1’) representing failure 
and success of the rule respectively. The significance 
factor of a condition represents the significance (weight) of 
the condition in drawing the conclusion. The LMS learning 
algorithm is used to compute the values of the significance 
factors as well as the bias factor of a neurule. Examples of 
neurules are shown in Tables 2 and 4. 

The general syntax of a neurule (in a BNF notation, 
where ‘< >’ denotes non-terminal symbols) is: 

<rule>::= (<bias-factor>) if <conditions> then 
<conclusion> 

<conditions>::= <condition> | <condition>,<conditions> 
<condition>::= <variable> <l-predicate> <value> 
(<significance-factor>) 
<conclusion>::= <variable> <r-predicate> <value> . 

where <variable> denotes a variable, that is a symbol 
representing a concept in the domain, e.g. ‘sex’, ‘pain’ etc 
in a medical domain, and <l-predicate> denotes a symbolic 
or a numeric predicate. The symbolic predicates are {is, 
isnot}, whereas the numeric predicates are {<, >, =}. <r-
predicate> can only be a symbolic predicate. <value> 
denotes a value; it can be a symbol (e.g. “male”, “night-
pain”) or a number (e.g “5”). <bias-factor> and 
<significance-factor> are (real) numbers 
 

 

 

 

 
 
 
 
 
            (a)                                          (b) 

Figure 1. (a) Form of a neurule (b) corresponding adaline unit 

Merging Symbolic Rules into Neurules 
One way of producing a neurule base (NRB) is by 
conversion from a (propositional type) symbolic rule base 
(SRB). A symbolic rule consists of a conjunction of 
conditions and a conclusion. Examples of symbolic rules 
are shown in Tables 1 and 3 where “,” (as already 
mentioned) denotes conjunction. Existing SRBs (of 
propositional type) can be easily transformed into an SRB 
of the above syntax and then converted to an NRB. An 
SRB may be the result of direct knowledge elicitation from 
experts or the product of an automated knowledge 
acquisition method. In this way, existing SRBs can be 
exploited for the production of neurules. 

The conversion of an SRB to an NRB is achieved by 
applying the conversion algorithm presented in 
(Hatzilygeroudis and Prentzas 2000). Application of the 
conversion algorithm does not result in a refinement of the 
converted SRB. It creates an equivalent knowledge base 
(NRB) whose size is less than that of SRB. The conversion 
algorithm tries to merge all symbolic rules having the same 
conclusion into one neurule. However, this is not always 
possible, due to non-linearity problems, as explained later 
in this section. In any case, each produced neurule usually 
is the result of merging two or more symbolic rules. 

We introduce the following definitions:  

C1 C2 Cn 

. . (sf1) 
(sf2) 

(sfn) 

(sf0) 
D (sf0) if C1 (sf1), 

           C2   (sf2), 

               … 

            Cn (sfn) 

        then D 
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• Two conditions Ci and Ck are related if they contain the 
same variable. 

• conds(Ri) denotes the set of conditions of rule Ri. 
• A set of symbolic rules MS={R1, R2,…, Rm��� ���� �	�

called a merger set if all rules contain the same 
conclusion.  

• A non-merging rule is a symbolic rule with a unique 
conclusion in the SRB. 

• The closeness between two symbolic rules (R-closeness) 
is defined as the number of their common conditions 
(i.e. conditions having the same variable, predicate and 
value).  

• A least closeness pair (LCP) of rules in a merger set is a 
of pair rules that have the minimum R-closeness. 
The conversion algorithm is outlined as follows: 
1. Group symbolic rules into (initial) merger sets. 
2. For each merger set,  

2.1 Construct a merger 
2.2 Produce a training set for the merger 
2.3 Train the merger individually 
2.4 If training is successful, produce the 

corresponding neurule. 
2.5 Otherwise, split the merger set into two disjoint 

subsets and execute recursively Steps 2.1-2.5 for 
each subset. 

The initial merger sets contain all rules of the SRB 
having the same conclusion. A merger is a neurule having 
as conditions all the conditions of the symbolic rules in the 
corresponding merger set without duplications and 
significance factors as well as bias factor set to a proper 
initial value. For each merger, a training set is extracted 
from the truth table of the combined logical function of the 
rules in the set (the disjunction of the conjunctions of the 
conditions of each rule) eliminating unacceptable training 
patterns since certain conditions cannot be simultaneously 
true or false (Hatzilygeroudis and Prentzas 2000).  

Each merger is individually trained using the standard 
LMS algorithm. Training of a merger may not be always 
successful meaning that it cannot always find a set of 
significance and bias factors that classify correctly all of 
the training patterns. This is so, if the patterns of the 
training set are inseparable (as in the case of the patterns 
corresponding to the XOR function). When training fails, 
the merger set is split into disjoint subsets producing more 
than one neurule having the same conclusion. 

Splitting a merger (sub)set is guided by an LCP (chosen 
based on a strategy) of the merger set. Two merger subsets 
are created each containing as its initial element one of the 
rules of the LCP, called its pivot. Each of the other rules in 
the set is distributed between the two subsets based on their 
closeness to their pivots. That is, each subset contains 
rules, which are closer to its pivot. If training fails, for a 
merger of a merger subset, the corresponding subset is 
further split into two other subsets, based on one of its 

LCPs. This continues, until training succeeds or the merger 
subset contains only one rule. This kind of splitting stems 
from the observation that separable sets have rules with 
larger average closeness than inseparable ones. 

 
Table 1. A set of symbolic rules 

R1 
if patient is human0-20, 
   fever is high, 
   pain is night 
then disease is inflammation 

R3 
if patient is human21-35, 
   fever is medium, 
   pain is continuous 
then disease is inflammation 

R2 
if patient is human0-20, 
   fever is no-fever, 
   ant-reaction is medium, 
   pain is night 
then disease is inflammation 

R4 
if patient is human36-55, 
   fever is high, 
   pain is night 
then disease is inflammation 

 
Table 2. Neurules produced from the merger set in Table 1 

NR1-R2-R4 
(-5.6) if fever is high (8.7), 
              pain is night (8.6), 
              patient is human0-20 (8.2), 
              patient is human36-55 (5.1), 
              fever is no-fever (1.5), 
              ant-reaction is medium (1.3) 
          then disease is inflammation 
NR3 
(-2.0) if pain is continuous (1.1), 
             fever is medium (0.8), 
             patient is human21-35 (0.8) 
          then disease is inflammation 

 
As an example, we use the merger set shown in Table 1 
that consists of four symbolic rules {R1, R2, R3, R4} taken 
from a medical diagnosis rule base. The merger of this 
merger set contains the nine distinct conditions of the four 
rules. The training set of the merger is extracted from the 
truth table of the combined logical function of the rules of 
the merger set: F = (C1 
 C2 
 C3) � (C1 
 C4 
 C5 
 C3) � 
(C6 
 C7 
 C8) � (C2 
 C3 
 C9), where C1�patient is 
human0-20, C2�fever is high, C3�pain is night, C4�fever is 
no-fever, C5�ant-reaction is medium, C6�patient is 
human21-35, C7�fever is medium, C8�pain is continuous, 
C9�patient is human36-55. The training patterns of the 
training set are inseparable and the initial merger set is split 
in two subsets: MS1={R1, R2, R4} and MS2={R3}. The LCP 
that guides splitting is (R1, R3). Training of the merger of 
MS1 is successful and neurule NR1-R2-R4 is produced. 
Rule R3 is converted to a neurule (i.e. NR3). So, from the 
initial merger set of four symbolic rules, two neurules are 
produced. Table 2 depicts the produced neurules. 
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Mergability Criteria 
An aspect of interest in the above process concerns 
introduction of criteria concerning the ‘mergability’ of a 
merger set that is, determining whether a merger set can 
(or cannot) be converted (or merged) into a single neurule 
without using training. By determining in advance whether 
a merger set cannot be converted into a single neurule, 
training of the corresponding merger can be omitted. In 
such cases, splitting could be directly performed, without 
training the mergers. So, the time required to convert a 
symbolic rule base into a neurule base would decrease, 
since certain trainings would be omitted. 

In the aforementioned example (rules of Table 1), three 
trainings concerning the mergers of merger (sub)sets {R1, 
R2, R3, R4}, {R1, R2, R4} and {R3} were performed. Two of 
the trainings, those corresponding to merger subsets {R1, 
R2, R4} and {R3}, were successful and resulted in the 
production of neurules. By avoiding the training 
corresponding to merger set {R1, R2, R3, R4} and simply 
splitting the set to subsets {R1, R2, R4} and {R3}, 
conversion would have taken less time. 

Besides conversion time gains, determining whether a 
merger set can be converted into a single neurule is of 
general interest from a representational point of view. 
More specifically, it would be interesting to determine 
criteria of whether a set of symbolic rules can (or cannot) 
be converted to a single, equivalent but more efficient 
neuro-symbolic rule. This is attempted in the following. 

A merger corresponding to a merger set containing a 
single symbolic rule can be successfully trained since its 
training set corresponds to a conjunction and is separable. 
So, the interest goes to merger sets containing at least two 
symbolic rules. It should be mentioned that the rules in a 
merger set may contain an unequal number of conditions. 
We define criteria guided from experimental results. The 
criteria are based on R-closeness of rule pairs in a merger 
set. In certain criteria, we distinguish between merger sets 
with rules that contain related conditions and merger sets 
with rules that do not contain related conditions. Some 
criteria apply to both types of merger sets. Examples 
regarding specific merger sets are also given for the 
defined criteria. The defined criteria involve merger sets 
with rules containing at least two conditions. 

It should be mentioned that in order to be able to merge 
a set of rules into a single neurule, corresponding rules 
should have certain common conditions. More specifically, 
a pair of symbolic rules without any common condition 
cannot be merged into a single neurule. Therefore, merger 
sets containing one or more pairs of such rules cannot be 
converted into a single neurule. So, we introduce the 
following criterion:  
Mergability criterion 1. A merger set MS={R1, R2,…,Rm}, 
���, |conds(Ri���2 �Ri�MS, cannot be converted to a 

single neurule if � (Ri, Rk), Ri,Rk�MS with R-closeness(Ri, 
Rk)=0, ��	��
������, 	
�� 

Criterion 1 is satisfied by the merger set {R1, R2, R3, R4} 
of the rules in Table 1, given that R-closeness(R1,R3)=0, R-
closeness(R2,R3)=0 and R-closeness(R3,R4)=0. Therefore, 
this merger set cannot be converted into a single neurule. 

According to criterion 1, a requirement that a merger set 
MS={R1, R2,…,Rm�����
�	��
���	���	���	������������
������
converted into a single neurule is the satisfaction of the 
condition: R-closeness(Ri, Rk)>0 � ���� �����������������
order to identify specific positive values for R-closeness of 
rule pairs in a merger set that might have an effect on the 
mergability of a merger set, we conducted a number of 
experiments. We started with merger sets containing only 
two rules and then investigated merger sets with at least 
three rules. 

We noticed that any merger set MS={R1, R2} with only 
two rules can be converted into a single neurule if R-
closeness(R1, R2)=min(|conds(R1)|, |conds(R2)|) – 1. We 
also noticed that any merger set MS={R1, R2,…,Rm}, ��
�
can be converted into a single neurule if the merger set of 
each pair {Ri, Rk} can be converted to a single neurule, � 
����� ������� ������� �	� ���������� ��� ���� �����!��"�� ���	�
condition is less strict for merger sets with rules that have 
related conditions. However, merger sets whose rules do 
not have any related conditions can be converted into a 
single neurule only if the merger set of each pair of rules 
can itself be converted into a single neurule. Therefore, we 
introduce the following criterion: 
Mergability criterion 2. A merger set MS={R1, R2,…,Rm}, 
���, |conds(Ri���2 �Ri�MS, whose rules do not have any 
related conditions can be converted into a single neurule 
only if R-closeness(Ri, Rk) = min(|conds(Ri)|, |conds(Rk)|) – 
1, � 	
�
���	��
������� 

For instance, this second criterion is satisfied by the 
merger set {R1, R2, R3, R4} of rules in Table 3. So, the 
merger set can be converted into a single neurule (shown in 
Table 4). Notice that those four symbolic rules do not have 
related conditions. 

As mentioned, a merger set MS={R1, R2,…,Rm��� ��
�
whose rules have related conditions can be converted into a 
single neurule even if R-closeness(Ri,Rk) < 
min(|conds(Ri)|, |conds(Rk)|) – 1 for some rules Ri, Rk�������
��������������#��	��	�	������
	����$������$�����"������$�	�
are excluded from the merger’s training set as invalid. 

So, criterion 2 for mergers with rules having related 
conditions becomes as follows: 
Mergability criterion 2A. A merger set MS={R1, R2,…,Rm}, 
���, |conds(Ri���2 �Ri�MS, containing rules having 
related conditions can be converted into a single neurule if 
R-closeness(Ri,Rk) = min(|conds(Ri)|, |conds(Rk)|) – 1, � 
	
�
���	��
������� 

Furthermore, experiments showed that a merger set 
containing rules with related conditions, with most pairs of 
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rules (Rm, Rj) having R-closeness(Rm, Rj)=min(|conds(Rm)|, 
|conds(Rj)|) – 1 and with certain pairs of rules (Ri, Rk) 
having R-closeness(Ri, Rk)=min(|conds(Ri)|, |conds(Rk)|) – 
2 can be converted into a single neurule. So, we introduce 
the following two criteria. 

 
Table 3. A set of rules that do not contain related conditions 

R1 
if var1 is A1, 
   var3 is C1, 
   var5 is F3, 
   var7 is H2 
   var6 is G1 
   var9 is J1 
then output is D 

R3 
if var1 is A1, 
   var3 is C1, 
   var5 is F3, 
   var7 is H2, 
   var8 is I1 
then output is D 

R2 
if var1 is A1, 
   var3 is C1, 
   var4 is E3, 
   var7 is H2 
then output is D 

R4 
if var1 is A1, 
   var2 is B1, 
   var3 is C1 
then output is D 

 
Table 4. Neurule produced from the merger set in Table 3 

NR1-R2-R3-R4  
(-92.3) if var3 is C1 (58.8), 
                var1 is A1 (55.6) 
                var2 is B1 (37.5) 
                var7 is H2 (22.5) 
                var4 is E3 (12.4), 
                var5 is F3 (8.3), 
                var8 is I1 (4.4), 
                var6 is G1 (1.5), 
                var9 if J1 (1.0) 
            then output is D 

 
Mergability criterion 3. A merger set MS={R1, R2,…,Rm}, 
���
� |conds(Ri���3 �Ri�MS, containing rules having 
related conditions cannot be converted to a single neurule 
if the following is satisfied: 
�(Ri,Rk), Ri,Rk�MS with R-closeness(Ri,Rk)< 
min(|conds(Ri)|, |conds(Rk)|) – �
���	��
������
�	
�� 
 
Mergability criterion 4. A merger set MS={R1,R2,…,Rm}, 
���
� |conds(Ri���3 �Ri�MS, containing rules having 
related conditions, cannot be converted into a single 
neurule if the following are satisfied: 
i) �Ri,Rk�MS, R-closeness(Ri, Rk�� �� �	����������i)|, 
|conds(Rk)|) – �
���	��
������
�	
����� 
ii) |SP1|<|SP2|, where SP1={(Ri, Rk): Ri, Rk�MS, R-
closeness(Ri, Rk)=min(|conds(Ri)|, |conds(Rk)|)-�
� ��	��
�
�����
� 	
��� ���� �P2={(Ri, Rk): Ri, Rk�MS, R-
closeness=min(|conds(Ri)|, |conds(Rk)|) – �
� ��	��
�
�����
�	
��� 

It should be mentioned that in case of merger sets with 
rules having related conditions, the first criterion is 
subsumed by the third criterion. In the following, we give 
examples for the third and fourth criterion.  

The third criterion is satisfied by the merger set {R1, R2, 
R3, R4} of rules in Table 1. So, this merger set cannot be 
converted into a single neurule. 

Furthermore, by the merger subset {R1, R2, R4} neither 
third nor fourth criterion is satisfied. More specifically, 
condition (i) of the fourth criterion is satisfied. However, 
SP1 = {(R1, R2), (R1, R4)} and SP2 = {(R2, R4)}, so |SP1| > 
|SP2|, since |SP1|=2 and |SP2|=1. Thus, mergability criteria 
cannot give indications that the merger set cannot be 
converted into a single neurule. Indeed, after training, 
neurule NR1-R2-R4 (shown in Table 2) is produced. 

Conversion Process Improvement 
By checking the satisfaction of the mergability criteria, the 
conversion algorithm is improved, given that certain 
(unnecessary) training effort may be omitted. This is based 
on the indications about merger sets provided by the 
mergability criteria, which are the following: 
(a) A merger set can be converted into a single neurule 

(satisfaction of the second criterion). 
(b) A merger set cannot be converted into a single neurule 

(satisfaction of the third or fourth criterion for merger 
sets which contain rules having related conditions and 
all rules have at least three conditions and; second 
criterion is not satisfied for merger sets which contain 
rules not having related conditions; satisfaction of first 
criterion for merger sets containing certain rules with 
two conditions). 

(c) There is no indication that a merger set which contains 
rules having related conditions cannot be converted into 
a single neurule (first, third and fourth criterion are not 
satisfied). 

So, the conversion process has been revised to take into 
account the indications provided by the mergability 
criteria. This is done by embedding the following steps: 
1. If the second criterion is satisfied by the merger set, then 

the merger set can be converted to a single neurule. 
2. Else if the rules in the merger set have no related 

conditions, then the merger set cannot be converted to a 
single neurule. 

3. Else if the some rules in the merger set have two 
conditions and the first criterion is satisfied, then the 
merger set cannot be converted to a single neurule. 

4. Else if the rules in the merger set have related conditions 
and all rules have at least three conditions and the third 
criterion is satisfied, then the merger set cannot be 
converted to a single neurule. 

5. Else if the rules in the merger set have related conditions 
and all rules have at least three conditions and the fourth 
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criterion is satisfied, then the merger set cannot be 
converted to a single neurule. 

6. Else if none of the above is satisfied, then there is no 
indication from the mergability criteria that the specific 
merger set cannot be converted to a single neurule. 

Experimental Results 
Experiments were conducted to demonstrate the 
improvement in the conversion process by applying the 
defined criteria. More specifically, the criteria were applied 
to indicate whether a merger set cannot be converted to a 
single neurule and omit training effort. The conversion 
process was applied to two symbolic rule bases concerning 
medical diagnosis. The rules in the ensuing merger sets had 
related conditions. We applied the first, third and fourth 
criteria (in this order) to save useless trainings. We could 
have avoided applying the first criterion, given that it is 
subsumed by the third one, but we wanted to record the 
percentage of merger sets satisfying it. 
 

Table 5. Rule base and conversion characteristics 
Rule Base and Conversion 

Characteristics RB1 RB2 

Number of symbolic rules in SRB 68 130 
Number of neurules in equivalent NRB 39 86 
Number of non-merging symbolic rules 18 37 
Number of initial merger sets (includes 
number of non-merging symbolic rules) 

28 59 

Number of total merger trainings 
(excluding sets with a single rule) 

24 51 

Number of merger sets having a single 
rule (excluding non-merging rules) 

4 26 

Number of merger trainings that would 
have failed (included in total merger 
trainings) 

7 28 

Number of merger trainings that would 
have failed (as indicated by criteria) 

7 
(4/3/0) 

28 
(1/20/6) 

 
Table 5 summarizes characteristics of the rule bases and 

the conversion process. The table depicts separately the 
number of non-merging symbolic rules and the number of 
merger sets that (after splitting) have a single rule. The 
number of produced neurules is the sum of the number of 
non-merging rules, the number of merger sets having a 
single rule and the number of total merger trainings 
subtracting the number of merger trainings that would have 
failed (not producing neurules). Entry “7 (4/3/0)” in the 
last row means on the one hand that in total the criteria 
indicate that seven trainings would have failed and on the 
other hand, four, three and zero of those trainings were 
indicated by the first, third and fourth criterion 
respectively. By applying the defined criteria, the merger 

trainings that would have failed are indicated and thus 
omitted. By applying the criteria, roughly 29% (7/24) and 
55% (27/49) of trainings respectively are omitted (not 
taking into account merger sets having a single rule). All of 
the three criteria are useful. Runtime savings were roughly 
90% (with upper limit of training epochs set to 300). 

Conclusion 
In this paper, we define criteria determining whether a set 
of symbolic rules having the same conclusion can (or 
cannot) be merged into a single neurule, a type of 
integrated rule. The conversion process of symbolic rules 
to neurules involves certain trainings not directly resulting 
in the production of neurules. A practical aspect of the 
criteria is to identify and omit such trainings. 

Our future research work involve additional experiments 
concerning other available symbolic rule bases from other 
domains. Also, further investigation for more criteria is on 
the agenda. Finally, we intend to test alternative conversion 
algorithms based on the defined criteria. 
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