

Efficiently Merging Symbolic Rules into Integrated Rules

Jim Prentzasa, Ioannis Hatzilygeroudisb
a Democritus University of Thrace, School of Education Sciences

Department of Education Sciences in Pre-School Age
68100 Nea Chili, Alexandroupolis, Greece

dprentza@psed.duth.gr

b University of Patras, School of Engineering
Department of Computer Engineering & Informatics

26500 Patras, Greece
ihatz@ceid.upatras.gr

Abstract

Neurules are a type of neuro-symbolic rules integrating
neurocomputing and production rules. Each neurule is
represented as an adaline unit. Neurules exhibit
characteristics such as modularity, naturalness and ability to
perform interactive and integrated inferences. One way of
producing a neurule base is through conversion of an
existing symbolic rule base yielding an equivalent but more
compact rule base. The conversion process merges symbolic
rules having the same conclusion into one or more neurules.
Due to the inability of the adaline unit to handle
inseparability, more than one neurule for each conclusion
may be produced. In this paper, we define criteria
concerning the ability or inability to convert a rule set into a
single neurule. Definition of criteria determining whether a
set of symbolic rules can (or cannot) be converted into a
single, equivalent but more compact rule is of general
representational interest. With application of such criteria,
the conversion process of symbolic rules into neurules
becomes more time- and space-efficient by omitting useless
trainings. Experimental results are promising.

 Introduction
There have been efforts combining neural and symbolic
approaches (Garcez, Broda and Gabbay 2002). Neural
networks and symbolic rules have complementary
advantages and disadvantages (Hatzilygeroudis and
Prentzas 2004) and their combination constitutes a popular
research trend. Neurules (Hatzilygeroudis and Prentzas
2010, Prentzas and Hatzilygeroudis 2011) are a type of
integrated rules combining symbolic rules (of propositional
type) and neurocomputing (adaline approach). In contrast

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to other approaches, neurules give pre-eminence to the
symbolic part of the integration. Therefore, they retain the
naturalness and modularity of symbolic rules in a large
degree. Neurules can be produced either from symbolic
rules or from empirical data (Hatzilygeroudis and Prentzas
2000, 2001). Also a neurule-based system possesses an
interactive inference mechanism (Hatzilygeroudis and
Prentzas 2010).
 A neurule base may be produced from a symbolic rule
base by applying a conversion process (Hatzilygeroudis
and Prentzas 2000). Conversion does not involve
refinement of the symbolic rule base, but creates an
equivalent knowledge base. This means that the
conclusions drawn from the neurule base are the same as
those drawn from the symbolic rule base, given the same
inputs. Each produced neurule usually merges two or more
symbolic rules with the same conclusion. Therefore, the
size of the produced neurule base is less than that of the
symbolic rule base as far as both the number of rules and
the number of conditions are concerned. This results in
improvements to the efficiency of the inferences from the
neurule base, compared to those from the symbolic rule
base as shown in (Hatzilygeroudis and Prentzas 2000). The
conversion process tries to merge all symbolic rules having
the same conclusion into a single neurule. However, this is
not always possible, due to the inability of the adaline unit
to handle inseparability, and thus more than one neurule
for each conclusion may be produced.

In this paper, we define criteria concerning the ability or
inability to convert a rule set to a single neurule which is
an equivalent but more compact rule-based approach. With
application of such criteria, the conversion process of
symbolic rules to neurules becomes more efficient by

27

Neural-Symbolic Learning and Reasoning
AAAI Technical Report WS-12-11

avoiding trainings not directly producing neurules. The
definition of such criteria is of general representational
interest. Various approaches have been presented
concerning the reduction of the size of rule bases and/or
the production of compact rule bases. Such approaches
have been presented in the context of rule extraction from
neural networks (Chorowski and Zurada 2011), learning
rules from datasets (Riid and Rustern 2011) and
evolutionary computing (Shi, Shi and Gao 2009). Our
approach lies in a neuro-symbolic context that provides
integrated inference, involves available symbolic rules
elicited from experts or produced from datasets and
reduces rule base size through conversion to an equivalent
and more compact formalism by merging symbolic rules.

This paper is organized as follows. First, main aspects
concerning neurules are outlined. The following section
discusses criteria for efficiently merging symbolic rules
into neurules. Experimental results are then presented.
Finally, it concludes.

Neurules: Syntax and Semantics
Neurules are a kind of integrated rules. The form of a
neurule is depicted in Figure 1a. Each condition Ci is
assigned a number sfi, called its significance factor.
Moreover, each rule itself is assigned a number sf0, called
its bias factor. Internally, each neurule is considered as an
adaline unit (Figure1b). The inputs Ci (i=1,...,n) of the unit
are the conditions of the rule. The weights of the unit are
the significance factors of the neurule and its bias is the
bias factor of the neurule. Each input takes one of the
following discrete values: [1(true), -1(false), 0(unknown)].

The output D, which represents the conclusion of the
rule, is calculated via the standard formulas:

�
�

���
n

i
iiCsfsfaafD

1
0),((1)

� �
�
�
	

�
�

�
0 ,1
0 ,1

aif
aif

af (2)

where a is the activation value and f(x) the activation
function, which is a threshold function. Hence, the output
can take one of two values (‘-1’, ‘1’) representing failure
and success of the rule respectively. The significance
factor of a condition represents the significance (weight) of
the condition in drawing the conclusion. The LMS learning
algorithm is used to compute the values of the significance
factors as well as the bias factor of a neurule. Examples of
neurules are shown in Tables 2 and 4.

The general syntax of a neurule (in a BNF notation,
where ‘< >’ denotes non-terminal symbols) is:

<rule>::= (<bias-factor>) if <conditions> then
<conclusion>

<conditions>::= <condition> | <condition>,<conditions>
<condition>::= <variable> <l-predicate> <value>
(<significance-factor>)
<conclusion>::= <variable> <r-predicate> <value> .

where <variable> denotes a variable, that is a symbol
representing a concept in the domain, e.g. ‘sex’, ‘pain’ etc
in a medical domain, and <l-predicate> denotes a symbolic
or a numeric predicate. The symbolic predicates are {is,
isnot}, whereas the numeric predicates are {<, >, =}. <r-
predicate> can only be a symbolic predicate. <value>
denotes a value; it can be a symbol (e.g. “male”, “night-
pain”) or a number (e.g “5”). <bias-factor> and
<significance-factor> are (real) numbers

 (a) (b)

Figure 1. (a) Form of a neurule (b) corresponding adaline unit

Merging Symbolic Rules into Neurules
One way of producing a neurule base (NRB) is by
conversion from a (propositional type) symbolic rule base
(SRB). A symbolic rule consists of a conjunction of
conditions and a conclusion. Examples of symbolic rules
are shown in Tables 1 and 3 where “,” (as already
mentioned) denotes conjunction. Existing SRBs (of
propositional type) can be easily transformed into an SRB
of the above syntax and then converted to an NRB. An
SRB may be the result of direct knowledge elicitation from
experts or the product of an automated knowledge
acquisition method. In this way, existing SRBs can be
exploited for the production of neurules.

The conversion of an SRB to an NRB is achieved by
applying the conversion algorithm presented in
(Hatzilygeroudis and Prentzas 2000). Application of the
conversion algorithm does not result in a refinement of the
converted SRB. It creates an equivalent knowledge base
(NRB) whose size is less than that of SRB. The conversion
algorithm tries to merge all symbolic rules having the same
conclusion into one neurule. However, this is not always
possible, due to non-linearity problems, as explained later
in this section. In any case, each produced neurule usually
is the result of merging two or more symbolic rules.

We introduce the following definitions:

C1 C2 Cn

. . (sf1)
(sf2)

(sfn)

(sf0)
D (sf0) if C1 (sf1),

 C2 (sf2),

 …

 Cn (sfn)

 then D

28

• Two conditions Ci and Ck are related if they contain the
same variable.

• conds(Ri) denotes the set of conditions of rule Ri.
• A set of symbolic rules MS={R1, R2,…, Rm��� ���� �	�

called a merger set if all rules contain the same
conclusion.

• A non-merging rule is a symbolic rule with a unique
conclusion in the SRB.

• The closeness between two symbolic rules (R-closeness)
is defined as the number of their common conditions
(i.e. conditions having the same variable, predicate and
value).

• A least closeness pair (LCP) of rules in a merger set is a
of pair rules that have the minimum R-closeness.
The conversion algorithm is outlined as follows:
1. Group symbolic rules into (initial) merger sets.
2. For each merger set,

2.1 Construct a merger
2.2 Produce a training set for the merger
2.3 Train the merger individually
2.4 If training is successful, produce the

corresponding neurule.
2.5 Otherwise, split the merger set into two disjoint

subsets and execute recursively Steps 2.1-2.5 for
each subset.

The initial merger sets contain all rules of the SRB
having the same conclusion. A merger is a neurule having
as conditions all the conditions of the symbolic rules in the
corresponding merger set without duplications and
significance factors as well as bias factor set to a proper
initial value. For each merger, a training set is extracted
from the truth table of the combined logical function of the
rules in the set (the disjunction of the conjunctions of the
conditions of each rule) eliminating unacceptable training
patterns since certain conditions cannot be simultaneously
true or false (Hatzilygeroudis and Prentzas 2000).

Each merger is individually trained using the standard
LMS algorithm. Training of a merger may not be always
successful meaning that it cannot always find a set of
significance and bias factors that classify correctly all of
the training patterns. This is so, if the patterns of the
training set are inseparable (as in the case of the patterns
corresponding to the XOR function). When training fails,
the merger set is split into disjoint subsets producing more
than one neurule having the same conclusion.

Splitting a merger (sub)set is guided by an LCP (chosen
based on a strategy) of the merger set. Two merger subsets
are created each containing as its initial element one of the
rules of the LCP, called its pivot. Each of the other rules in
the set is distributed between the two subsets based on their
closeness to their pivots. That is, each subset contains
rules, which are closer to its pivot. If training fails, for a
merger of a merger subset, the corresponding subset is
further split into two other subsets, based on one of its

LCPs. This continues, until training succeeds or the merger
subset contains only one rule. This kind of splitting stems
from the observation that separable sets have rules with
larger average closeness than inseparable ones.

Table 1. A set of symbolic rules

R1
if patient is human0-20,
 fever is high,
 pain is night
then disease is inflammation

R3
if patient is human21-35,
 fever is medium,
 pain is continuous
then disease is inflammation

R2
if patient is human0-20,
 fever is no-fever,
 ant-reaction is medium,
 pain is night
then disease is inflammation

R4
if patient is human36-55,
 fever is high,
 pain is night
then disease is inflammation

Table 2. Neurules produced from the merger set in Table 1

NR1-R2-R4
(-5.6) if fever is high (8.7),
 pain is night (8.6),
 patient is human0-20 (8.2),
 patient is human36-55 (5.1),
 fever is no-fever (1.5),
 ant-reaction is medium (1.3)
 then disease is inflammation
NR3
(-2.0) if pain is continuous (1.1),
 fever is medium (0.8),
 patient is human21-35 (0.8)
 then disease is inflammation

As an example, we use the merger set shown in Table 1
that consists of four symbolic rules {R1, R2, R3, R4} taken
from a medical diagnosis rule base. The merger of this
merger set contains the nine distinct conditions of the four
rules. The training set of the merger is extracted from the
truth table of the combined logical function of the rules of
the merger set: F = (C1
 C2
 C3) � (C1
 C4
 C5
 C3) �
(C6
 C7
 C8) � (C2
 C3
 C9), where C1�patient is
human0-20, C2�fever is high, C3�pain is night, C4�fever is
no-fever, C5�ant-reaction is medium, C6�patient is
human21-35, C7�fever is medium, C8�pain is continuous,
C9�patient is human36-55. The training patterns of the
training set are inseparable and the initial merger set is split
in two subsets: MS1={R1, R2, R4} and MS2={R3}. The LCP
that guides splitting is (R1, R3). Training of the merger of
MS1 is successful and neurule NR1-R2-R4 is produced.
Rule R3 is converted to a neurule (i.e. NR3). So, from the
initial merger set of four symbolic rules, two neurules are
produced. Table 2 depicts the produced neurules.

29

Mergability Criteria
An aspect of interest in the above process concerns
introduction of criteria concerning the ‘mergability’ of a
merger set that is, determining whether a merger set can
(or cannot) be converted (or merged) into a single neurule
without using training. By determining in advance whether
a merger set cannot be converted into a single neurule,
training of the corresponding merger can be omitted. In
such cases, splitting could be directly performed, without
training the mergers. So, the time required to convert a
symbolic rule base into a neurule base would decrease,
since certain trainings would be omitted.

In the aforementioned example (rules of Table 1), three
trainings concerning the mergers of merger (sub)sets {R1,
R2, R3, R4}, {R1, R2, R4} and {R3} were performed. Two of
the trainings, those corresponding to merger subsets {R1,
R2, R4} and {R3}, were successful and resulted in the
production of neurules. By avoiding the training
corresponding to merger set {R1, R2, R3, R4} and simply
splitting the set to subsets {R1, R2, R4} and {R3},
conversion would have taken less time.

Besides conversion time gains, determining whether a
merger set can be converted into a single neurule is of
general interest from a representational point of view.
More specifically, it would be interesting to determine
criteria of whether a set of symbolic rules can (or cannot)
be converted to a single, equivalent but more efficient
neuro-symbolic rule. This is attempted in the following.

A merger corresponding to a merger set containing a
single symbolic rule can be successfully trained since its
training set corresponds to a conjunction and is separable.
So, the interest goes to merger sets containing at least two
symbolic rules. It should be mentioned that the rules in a
merger set may contain an unequal number of conditions.
We define criteria guided from experimental results. The
criteria are based on R-closeness of rule pairs in a merger
set. In certain criteria, we distinguish between merger sets
with rules that contain related conditions and merger sets
with rules that do not contain related conditions. Some
criteria apply to both types of merger sets. Examples
regarding specific merger sets are also given for the
defined criteria. The defined criteria involve merger sets
with rules containing at least two conditions.

It should be mentioned that in order to be able to merge
a set of rules into a single neurule, corresponding rules
should have certain common conditions. More specifically,
a pair of symbolic rules without any common condition
cannot be merged into a single neurule. Therefore, merger
sets containing one or more pairs of such rules cannot be
converted into a single neurule. So, we introduce the
following criterion:
Mergability criterion 1. A merger set MS={R1, R2,…,Rm},
���, |conds(Ri���2 �Ri�MS, cannot be converted to a

single neurule if � (Ri, Rk), Ri,Rk�MS with R-closeness(Ri,
Rk)=0, ��	��
������, 	
��

Criterion 1 is satisfied by the merger set {R1, R2, R3, R4}
of the rules in Table 1, given that R-closeness(R1,R3)=0, R-
closeness(R2,R3)=0 and R-closeness(R3,R4)=0. Therefore,
this merger set cannot be converted into a single neurule.

According to criterion 1, a requirement that a merger set
MS={R1, R2,…,Rm�����
�	��
���	���	���	������������
������
converted into a single neurule is the satisfaction of the
condition: R-closeness(Ri, Rk)>0 � ���� �����������������
order to identify specific positive values for R-closeness of
rule pairs in a merger set that might have an effect on the
mergability of a merger set, we conducted a number of
experiments. We started with merger sets containing only
two rules and then investigated merger sets with at least
three rules.

We noticed that any merger set MS={R1, R2} with only
two rules can be converted into a single neurule if R-
closeness(R1, R2)=min(|conds(R1)|, |conds(R2)|) – 1. We
also noticed that any merger set MS={R1, R2,…,Rm}, ��
�
can be converted into a single neurule if the merger set of
each pair {Ri, Rk} can be converted to a single neurule, �
����� ������� ������� �	� ���������� ��� ���� �����!��"�� ���	�
condition is less strict for merger sets with rules that have
related conditions. However, merger sets whose rules do
not have any related conditions can be converted into a
single neurule only if the merger set of each pair of rules
can itself be converted into a single neurule. Therefore, we
introduce the following criterion:
Mergability criterion 2. A merger set MS={R1, R2,…,Rm},
���, |conds(Ri���2 �Ri�MS, whose rules do not have any
related conditions can be converted into a single neurule
only if R-closeness(Ri, Rk) = min(|conds(Ri)|, |conds(Rk)|) –
1, � 	
�
���	��
�������

For instance, this second criterion is satisfied by the
merger set {R1, R2, R3, R4} of rules in Table 3. So, the
merger set can be converted into a single neurule (shown in
Table 4). Notice that those four symbolic rules do not have
related conditions.

As mentioned, a merger set MS={R1, R2,…,Rm��� ��
�
whose rules have related conditions can be converted into a
single neurule even if R-closeness(Ri,Rk) <
min(|conds(Ri)|, |conds(Rk)|) – 1 for some rules Ri, Rk�������
��������������#��	��	�	������
	����$������$�����"������$�	�
are excluded from the merger’s training set as invalid.

So, criterion 2 for mergers with rules having related
conditions becomes as follows:
Mergability criterion 2A. A merger set MS={R1, R2,…,Rm},
���, |conds(Ri���2 �Ri�MS, containing rules having
related conditions can be converted into a single neurule if
R-closeness(Ri,Rk) = min(|conds(Ri)|, |conds(Rk)|) – 1, �
	
�
���	��
�������

Furthermore, experiments showed that a merger set
containing rules with related conditions, with most pairs of

30

rules (Rm, Rj) having R-closeness(Rm, Rj)=min(|conds(Rm)|,
|conds(Rj)|) – 1 and with certain pairs of rules (Ri, Rk)
having R-closeness(Ri, Rk)=min(|conds(Ri)|, |conds(Rk)|) –
2 can be converted into a single neurule. So, we introduce
the following two criteria.

Table 3. A set of rules that do not contain related conditions

R1
if var1 is A1,
 var3 is C1,
 var5 is F3,
 var7 is H2
 var6 is G1
 var9 is J1
then output is D

R3
if var1 is A1,
 var3 is C1,
 var5 is F3,
 var7 is H2,
 var8 is I1
then output is D

R2
if var1 is A1,
 var3 is C1,
 var4 is E3,
 var7 is H2
then output is D

R4
if var1 is A1,
 var2 is B1,
 var3 is C1
then output is D

Table 4. Neurule produced from the merger set in Table 3

NR1-R2-R3-R4
(-92.3) if var3 is C1 (58.8),
 var1 is A1 (55.6)
 var2 is B1 (37.5)
 var7 is H2 (22.5)
 var4 is E3 (12.4),
 var5 is F3 (8.3),
 var8 is I1 (4.4),
 var6 is G1 (1.5),
 var9 if J1 (1.0)
 then output is D

Mergability criterion 3. A merger set MS={R1, R2,…,Rm},
���
� |conds(Ri���3 �Ri�MS, containing rules having
related conditions cannot be converted to a single neurule
if the following is satisfied:
�(Ri,Rk), Ri,Rk�MS with R-closeness(Ri,Rk)<
min(|conds(Ri)|, |conds(Rk)|) – �
���	��
������
�	
��

Mergability criterion 4. A merger set MS={R1,R2,…,Rm},
���
� |conds(Ri���3 �Ri�MS, containing rules having
related conditions, cannot be converted into a single
neurule if the following are satisfied:
i) �Ri,Rk�MS, R-closeness(Ri, Rk�� �� �	����������i)|,
|conds(Rk)|) – �
���	��
������
�	
�����
ii) |SP1|<|SP2|, where SP1={(Ri, Rk): Ri, Rk�MS, R-
closeness(Ri, Rk)=min(|conds(Ri)|, |conds(Rk)|)-�
� ��	��
�
�����
� 	
��� ���� �P2={(Ri, Rk): Ri, Rk�MS, R-
closeness=min(|conds(Ri)|, |conds(Rk)|) – �
� ��	��
�
�����
�	
���

It should be mentioned that in case of merger sets with
rules having related conditions, the first criterion is
subsumed by the third criterion. In the following, we give
examples for the third and fourth criterion.

The third criterion is satisfied by the merger set {R1, R2,
R3, R4} of rules in Table 1. So, this merger set cannot be
converted into a single neurule.

Furthermore, by the merger subset {R1, R2, R4} neither
third nor fourth criterion is satisfied. More specifically,
condition (i) of the fourth criterion is satisfied. However,
SP1 = {(R1, R2), (R1, R4)} and SP2 = {(R2, R4)}, so |SP1| >
|SP2|, since |SP1|=2 and |SP2|=1. Thus, mergability criteria
cannot give indications that the merger set cannot be
converted into a single neurule. Indeed, after training,
neurule NR1-R2-R4 (shown in Table 2) is produced.

Conversion Process Improvement
By checking the satisfaction of the mergability criteria, the
conversion algorithm is improved, given that certain
(unnecessary) training effort may be omitted. This is based
on the indications about merger sets provided by the
mergability criteria, which are the following:
(a) A merger set can be converted into a single neurule

(satisfaction of the second criterion).
(b) A merger set cannot be converted into a single neurule

(satisfaction of the third or fourth criterion for merger
sets which contain rules having related conditions and
all rules have at least three conditions and; second
criterion is not satisfied for merger sets which contain
rules not having related conditions; satisfaction of first
criterion for merger sets containing certain rules with
two conditions).

(c) There is no indication that a merger set which contains
rules having related conditions cannot be converted into
a single neurule (first, third and fourth criterion are not
satisfied).

So, the conversion process has been revised to take into
account the indications provided by the mergability
criteria. This is done by embedding the following steps:
1. If the second criterion is satisfied by the merger set, then

the merger set can be converted to a single neurule.
2. Else if the rules in the merger set have no related

conditions, then the merger set cannot be converted to a
single neurule.

3. Else if the some rules in the merger set have two
conditions and the first criterion is satisfied, then the
merger set cannot be converted to a single neurule.

4. Else if the rules in the merger set have related conditions
and all rules have at least three conditions and the third
criterion is satisfied, then the merger set cannot be
converted to a single neurule.

5. Else if the rules in the merger set have related conditions
and all rules have at least three conditions and the fourth

31

criterion is satisfied, then the merger set cannot be
converted to a single neurule.

6. Else if none of the above is satisfied, then there is no
indication from the mergability criteria that the specific
merger set cannot be converted to a single neurule.

Experimental Results
Experiments were conducted to demonstrate the
improvement in the conversion process by applying the
defined criteria. More specifically, the criteria were applied
to indicate whether a merger set cannot be converted to a
single neurule and omit training effort. The conversion
process was applied to two symbolic rule bases concerning
medical diagnosis. The rules in the ensuing merger sets had
related conditions. We applied the first, third and fourth
criteria (in this order) to save useless trainings. We could
have avoided applying the first criterion, given that it is
subsumed by the third one, but we wanted to record the
percentage of merger sets satisfying it.

Table 5. Rule base and conversion characteristics
Rule Base and Conversion

Characteristics RB1 RB2

Number of symbolic rules in SRB 68 130
Number of neurules in equivalent NRB 39 86
Number of non-merging symbolic rules 18 37
Number of initial merger sets (includes
number of non-merging symbolic rules)

28 59

Number of total merger trainings
(excluding sets with a single rule)

24 51

Number of merger sets having a single
rule (excluding non-merging rules)

4 26

Number of merger trainings that would
have failed (included in total merger
trainings)

7 28

Number of merger trainings that would
have failed (as indicated by criteria)

7
(4/3/0)

28
(1/20/6)

Table 5 summarizes characteristics of the rule bases and

the conversion process. The table depicts separately the
number of non-merging symbolic rules and the number of
merger sets that (after splitting) have a single rule. The
number of produced neurules is the sum of the number of
non-merging rules, the number of merger sets having a
single rule and the number of total merger trainings
subtracting the number of merger trainings that would have
failed (not producing neurules). Entry “7 (4/3/0)” in the
last row means on the one hand that in total the criteria
indicate that seven trainings would have failed and on the
other hand, four, three and zero of those trainings were
indicated by the first, third and fourth criterion
respectively. By applying the defined criteria, the merger

trainings that would have failed are indicated and thus
omitted. By applying the criteria, roughly 29% (7/24) and
55% (27/49) of trainings respectively are omitted (not
taking into account merger sets having a single rule). All of
the three criteria are useful. Runtime savings were roughly
90% (with upper limit of training epochs set to 300).

Conclusion
In this paper, we define criteria determining whether a set
of symbolic rules having the same conclusion can (or
cannot) be merged into a single neurule, a type of
integrated rule. The conversion process of symbolic rules
to neurules involves certain trainings not directly resulting
in the production of neurules. A practical aspect of the
criteria is to identify and omit such trainings.

Our future research work involve additional experiments
concerning other available symbolic rule bases from other
domains. Also, further investigation for more criteria is on
the agenda. Finally, we intend to test alternative conversion
algorithms based on the defined criteria.

References
Chorowski, J., and Zurada, J.M. 2011. Extracting Rules from
Neural Networks as Decision Diagrams. IEEE Transactions on
Neural Networks 22:2435–2446.
d’Avila Garcez, A.S., Broda, K., and Gabbay, D.M. 2002.
Neural-Symbolic Learning Systems: Foundations and
Applications. In: Perspectives in Neural Computing. Berlin
Heidelberg: Springer-Verlag.
Hatzilygeroudis, I., and Prentzas, J. 2000. Neurules: Improving
the Performance of Symbolic Rules. International Journal on
Artificial Intelligence Tools 9:113–130.
Hatzilygeroudis, I., and Prentzas, J. 2001. Constructing Modular
Hybrid Knowledge Bases for Expert Systems. International
Journal on Artificial Intelligence Tools 10:87–105.
Hatzilygeroudis, I., and Prentzas, J. 2004. Neuro-Symbolic
Approaches for Knowledge Representation in Expert Systems.
International Journal on Hybrid Intelligent Systems 1:111–126.
Hatzilygeroudis, I., and Prentzas, J. 2010. Integrated Rule-Based
Learning and Inference. IEEE Transactions on Knowledge and
Data Engineering 22:1549–1562.
Prentzas, J., and Hatzilygeroudis, I. 2011. Neurules – A Type of
Neuro-Symbolic Rules: An Overview. In Hatzilygeroudis, I., and
Prentzas, J. (eds.), Combinations of Intelligent Methods and
Applications, Smart Innovation, Systems and Technologies, 8,
145–165. Berlin Heidelberg: Springer-Verlag.
Riid, A., and Rustern, E. 2011. An Integrated Approach for the
Identification of Compact, Interpretable and Accurate Fuzzy
Rule-Based Classifiers from Data. In Proceedings of the 15th
International Conference on Intelligent Engineering Systems,
101–107. IEEE.
Shi, L., Shi, Y. and Gao, Y. 2009. Clustering with XCS and
Agglomerative Rule Merging. In Lecture Notes in Computer
Science, 5788, 242–250. Berlin Heidelberg: Springer-Verlag.

32

