
Planning with Global Constraints
for Computing Infrastructure Reconfiguration

Herry Herry and Paul Anderson
School of Informatics

University of Edinburgh
Edinburgh, UK

Abstract

This paper presents a prototype system called SFplan-
ner which uses an automated planning technique to gen-
erate workflows for reconfiguring a computing infras-
tructure. The system allows an administrator to specify
a configuration task which consists of current state, de-
sired state and global constraints. This task is compiled
to a grounded finite-domain representation as the input
for the standard (unmodified) Fast-Downward planner
in order to automatically generate a workflow. The ex-
ecution of the workflow will bring the system into the
desired state, preserving the global constraints at every
stage of the workflow.

Introduction
The growing size and complexity of computing infrastruc-
tures has increased awareness of the need for system config-
uration tools. These help system administrators to manage
large scale systems, such as data centers, by automating the
configuration tasks in order to satisfy a particular specifica-
tion.

Out of several proposed approaches, the declarative ap-
proach has become widely accepted as the most appropriate
solution - the administrator describes the “desired” state of
the system and the tool computes the necessary actions to
bring the system from its current state into the desired state.
Most of the currently popular tools apply a broadly declar-
ative approach - for example, Puppet (Puppet Labs 2012),
BCFG (Desai et al. 2003) and LCFG (Anderson and Scobie
2002).

However, none of the above tools make any guarantees
about the order of the actions when implementing a configu-
ration change. (Herry, Anderson, and Wickler 2011) demon-
strates that the actions are often executed in an essentially in-
determinate order which is highly likely to bring the system
into a state that violates some essential constraints.

One approach to this problem has been the use of pro-
visioning tools - the administrator defines and stores work-
flows so they can be invoked and scheduled automatically by
a central controller to satisfy the ordering constraint. IBM
Tivoli Provisioning Manager (IBM Corp. 2012), Microsoft

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Opalis (Microsoft Corp. 2012) and ControlTier (DTO So-
lutions 2012) are examples which provide this capability.
Unfortunately, this still requires that the workflows are com-
puted manually. Even in a small system, a very large number
of workflows could be required to cater for every eventually.
In addition, choosing an appropriate workflow to suit a par-
ticular desired state is not always obvious.

SmartFrog (Goldsack et al. 2009) is a configuration tool
which has been augmented with “behavioural signatures” to
support a different approach. This allows us to explicitly de-
fine state-dependencies between system components, and a
change of state in one component may depend on changes
of state in other components. This could produce a cascad-
ing effect of state changes with a particular order. However,
we must compute the state-dependencies manually which is
error-prone and time consuming.

In our previous work (Herry, Anderson, and Wickler
2011), we proposed a solution based on automated planning
techniques which generates workflows “on the fly”. This
allows us to define the current state as well as the desired
state, together with a set of constraints defined in actions.
The workflow is generated and executed to implement the
transitions of the system without violating the specified con-
straints. Unfortunately, this system does not allow the ad-
ministrator to define global constraints i.e. constraints that
must be satisfied either in the intermediate and goal states1.
All constraints must be defined explicitly as preconditions
associated with some actions. A change to a constraint
forces us to modify the actions.

Clearly, we could modify the action in order to satisfy the
global constraints, but in real situations this is impractical;
the specification is commonly written by a software engineer
or expert who has a deep knowledge of the software which
the administrator does not have. Determining whether an ac-
tion must be modified or not may be as hard as the planning
itself, since the constraints for execution could require arbi-
trary states to be achieved by previous actions. In addition, a
modification may not be allowed due to a lack of permission
or a license violation, for example.

This paper describes a prototype system called SFplanner

1Global and goal constraints in SFp are equivalent to the al-
ways and at end modalities of state trajectory constraints in PDDL3
(Gerevini and Long 2005) respectively.

44

Problem Solving Using Classical Planners 
AAAI Technical Report WS-12-12



c l a s s S e r v i c e {
r u n n i n g f a l s e
a c t i o n s t a r t {

p r e c o n d i t i o n { }
p o s t c o n d i t i o n {

$ t h i s . r u n n i n g t rue
}

}
a c t i o n s t o p {

p r e c o n d i t i o n { }
p o s t c o n d i t i o n {

$ t h i s . r u n n i n g f a l s e
}

}
}
c l a s s C l i e n t {

r e f e r a s ∗ S e r v i c e
a c t i o n c h a n g e R e f e r e n c e ( s a s ∗ S e r v i c e ) {

p r e c o n d i t i o n { }
p o s t c o n d i t i o n {

$ t h i s . r e f e r $s
}

}
}

Figure 1: Class definition in file class.sfp.

which has the ability to generate a workflow automatically
between two system states. In contrast to previous work, this
allows the administrator to define a set of global constraints
explicitly in the configuration specification. This specifica-
tion is compiled to a grounded finite-domain representation
(FDR) (Helmert 2009) as the input for the standard (unmod-
ified) Fast-Downward planner (Helmert 2006). After post-
processing, the generated workflow can achieve the desired
state while preserving the global constraints at every inter-
mediate stage.

We start by introducing a conceptual model of system
configuration, and we then describe the approach used by
SFplanner to find a solution to a planning task in this do-
main. This is followed by a more detailed description of
the SFplanner architecture. Finally, we present some experi-
mental results on the “cloud-burst problem”, and we discuss
some related work and possible future directions.

Modelling the System Configuration
Object-oriented models, such as the Common Interface
Model (CIM), have been widely used in industry to model
artifacts of computing infrastructure. We adapt a similar
approach to describe the configuration of the managed sys-
tem. Each system resource (artifact) is modelled as an ob-
ject which may have one or more attributes. Each attribute
may be assigned a value, and the collection of attribute/value
pairs represents the state of an object. An object may also
have one or more actions. The execution of an action may
change the object’s state by modifying its attribute values.

SFplanner has a domain specific language called SFp
which adopts this model. It is an extension of the SmartFrog
(SF) (Goldsack et al. 2009) language, which is a prototype-

# i n c l u d e f i l e ( ” c l a s s . s f p ” )
/ /−−− c u r r e n t s t a t e −−−//
web1 as S e r v i c e {

r u n n i n g t rue
}
web2 as S e r v i c e {

r u n n i n g f a l s e
}
pc1 as C l i e n t {

r e f e r $web1
}
pc2 as C l i e n t {

r e f e r $web1
}
pc3 as C l i e n t {

r e f e r $web1
}
/ /−−− goa l c o n s t r a i n t −−−//
c o n s t r a i n t g o a l {

$web1 . r u n n i n g f a l s e
}
/ /−−− g l o b a l c o n s t r a i n t −−−//
c o n s t r a i n t g l o b a l {

$pc1 . r e f e r . r u n n i n g t rue
$pc2 . r e f e r . r u n n i n g t rue
$pc3 . r e f e r . r u n n i n g t rue

}

Figure 2: An SFp configuration task.

based language, that allows us to define an object as a mem-
ber of particular class. In SF and SFp, each object may have
a set of attributes with primitive, non-primitive or reference
values. SF does not have any notation for declaring an ac-
tion. However in SFp, we can define actions on an object
which have parameters, preconditions and postconditions.
Furthermore, SFp also allows us to define the current state
of the system, as well as the goal and the global constraints,
as part of configuration task.

The SFp language allows the model of the system to be
divided into several modules represented by a set of files.
In creating the model, an administrator can use any mod-
ule simply by including the file which contains the corre-
sponding classes or resources into the main specification.
The module specification can be reused on another system
simply by including the specification in the software distri-
bution. A software engineer or expert can create a new class
(abstract resource) that inherits another class behaviour us-
ing the inheritance notation. This feature allows re-usability
of specifications which is a common practice in the real
world.2

Figure 2 shows a model of a system which consists of
two services (web1 and web2) and three clients (pc1, pc2
and pc3). It uses the class definition in figure 1 where each
service has an attribute running and two actions i.e. start and
stop. The client has an attribute refer with reference value

2There are some features under-development which are not
covered in this paper such as array/set data structures and creat-
ing/deleting objects in actions.

45



Figure 3: Steps for solving SFp configuration task.

to a service, and an action changeReference which changes
refer’s value to the service defined in the parameter.

An SFp configuration task is defined by specifying the
current state as well as the goal state and the global con-
straints. In figure 2, the current state of web1 and web2 is
running and stopped respectively, and pc1, pc2 and pc3 are
referring to web1. The goal constraint of the system is that
web1 is stopped. And its global constraint is that pc1, pc2
and pc3 must always refer to a running service.

Generating the Workflow
Intuitively, the state of a system which is defined in SFp can
be described by a set of state variables where each variable
represents an object’s attribute. Each variable has a finite
domain of possible values, and the action modifies its value
to attain the goal state. Formally, this can be described as a
normalised SFp configuration task.

This is similar to the definition of a planning task
in finite-domain representation (FDR task). In (Helmert
2009), an FDR task could be defined as a 5-tuple Π =
〈V, s0, sg, A,O〉 where:
• V = {v1, . . . , vn} is a set of state variables (fluents), each

is associated with a finite domain Dv . If d ∈ Dv we call
the pair v = d an atom.
A partial variable assignment over V is a function s on
some subset of V such that s(v) ∈ Dv , wherever s(v) is
defined. If s(v) is defined for all v ∈ V , s is called a state.

• s0 is a state called an initial state, and sg is a partial vari-
able assignment called the goal.

• A is a set of axioms over V .
• O is a set of operators, where an operator is a triple
〈name, pre, eff〉, where name is a unique symbol to dis-
tinguish an operator from others, and pre and eff are par-
tial variable assignments called preconditions and post-
conditions, respectively.
A global constraint in SFp configuration task could be

considered as a partial variable assignment. Thus, we could
define a normalised SFp configuration task as a 6-tuple
Θ = 〈V, s0, sg, sc, A,O〉 where:
• sc is a partial variable assignment called the global con-

straint.
Based on this definition, we can solve an SFp configura-

tion task by compiling it into an FDR task as the input for
the Fast-Downward planner (Helmert 2006) to find the solu-
tion3. Figure 3 illustrates a step-by-step process for solving

Figure 4: A raw workflow (top) and a final workflow (bot-
tom).

Figure 5: The generated workflow for SFp configuration
task defined in figure 2.

an SFp configuration task in SFplanner. The details of each
step can be summarized as follows:

1. Normalisation: transforms an SFp configuration task
into a normalised SFp configuration task. This involves
the following sub-steps:

(a) all objects’ attributes are identified and each of them is
replaced by an unique state variable;

(b) all possible values of a particular type, either primitive
or non-primitive, are populated and grouped into a fi-
nite domain. Then this domain is assigned to all state
variables which have this type;

2. Compilation: compiles a normalised SFp configuration
task into FDR task via several sub-steps i.e.:

(a) each action is translated into one or more grounded op-
erators, where each grounded operator is assumed to
violate the global constraint and cannot be selected (ex-
ecuted) if the previous state does not satisfy this con-
straint;

(b) compute a set of axioms which are related to the action
constraints as well as the goal and global constraints;

(c) an artificial grounded operator verify-global-op is in-
troduced which must be selected directly by the plan-
ner after selecting another grounded operator in order
to verify whether the resulting state satisfies the global
constraint, the global constraint is set as its prevail con-
dition, and its effect is to assign true to the state variable
satisfied-global;

(d) a new state variable satisfied-global with boolean type
is introduced as the flag of the global constraint. It
is assigned true by verify-global-op if the intermediate
or goal state satisfies the global constraint, otherwise
false;

(e) in the initial state, each state variable is assigned a
unique value as defined in the initial state of the nor-
malised SFp configuration task, while the variable
satisfied-global is assigned true;

3The compilation result is as normally produced by Fast-
Downward’s PDDL to FDR translator.

46



Figure 6: System Architecture of SFplanner

(f) the goal state consists of a partial variable assignment
as defined in the goal and global constraints of the
normalised SFp configuration task, and the variable
satisfied-global is assigned true;

3. Fast-Downward: generates the solution of the FDR task
by using the output of the previous step as the input of the
unmodified Fast-Downward planner. If a solution exists,
it will generate a raw workflow which not only achieves
the goal state but also satisfies the global constraint at ev-
ery intermediate step;

4. Postprocessing:

(a) removes the abstract operator verify-global-op (oc)
from the raw workflow as denoted in figure 4;

(b) generates the partial-order workflow from previously
generated total-order workflow using the approach de-
scribed in (Veloso, Perez, and Carbonell 1990) in order
to enable parallel execution;

(c) converts the workflow into JavaScript Object Notation
(JSON) format so that it can be easily processed by the
execution manager.

Figure 5 shows the generated workflow based on the SFp
configuration task shown in figure 2.

The Architecture of SFplanner
As shown in figure 6, SFplanner consists of six main com-
ponents: dashboard, planner, execution manager, execution
agent, monitoring manager and monitoring agent. The rela-
tionship between these components is as follows4:

• The action database (3) holds a set of actions which would
normally be defined by an expert, system engineer, soft-
ware engineer or other specialist.

• An open-source tool called facter is used as the mon-
itoring agent (10) which runs on each managed node.
The SFplanner monitoring manager (8) in a central con-
troller periodically pulls and aggregates information from
all agents in order to generate the overall current state of
the managed system.

4Each number represents the component in figure 6

• Using the SFplanner dashboard (1), the system adminis-
trator specifies and submits the goal and global constraints
(2) of the system.

• The planner (4) generates the workflow (7) in order to
deploy a new specification on the managed system. This
generated workflow is based on the available actions, the
current state, and the goal and global constraints.

• The execution manager (6) orchestrates the deployment of
the configuration changes by coordinating the execution
of actions with all the execution agents (9).

It is possible for a failure to occur during the execution
of a workflow, and SFplanner implements a pragmatic ap-
proach to handling such failures: each execution agent is
responsible for ensuring that each action is executed suc-
cessfully. Furthermore, it also has to detect and report any
failure to the execution manager. If a failure is reported,
the execution of the workflow is immediately discontinued.
The execution manager then sends a request to the planner
to generate an alternative workflow for later execution. A
notification is also shown in the dashboard so that the ad-
ministrator is informed of the failure, and can submit an al-
ternative goal and global constraints, if required.

SFplanner could be used as a fully-automated configu-
ration tool which can correct any drift in the configuration
without any human intervention. In figure 6, the dash line
arrows show a process loop which could be set to be exe-
cuted periodically by the administrator in order for SFplan-
ner to verify and correct any drift of the current state from
the goal and global constraints.

All components of SFplanner are implemented in Java,
except the Fast-Downward which is in C++. Some compo-
nents i.e. SFp-planner and SFp-dashboard have been pub-
lished as open-source software which is available for down-
load from the following URL:

http://homepages.inf.ed.ac.uk/s0978621/

Example
We simulated an example of a “cloud-burst” scenario on a 3-
tier web application: an organization wants to dynamically
migrate an application from its limited computing infrastruc-
ture to a public cloud in order to address a spike in demand
which cannot be handled internally.

47



(a) Current state (b) Goal state

Figure 7: The states of the cloud-burst problem.

We assume that the company has a private cloud infras-
tructure which runs two 3-tier web applications: web appli-
cation A consists of ws a, app a and db a running on virtual
machines vm1, vm2 and vm3 respectively. Web application
B consists of ws b, app b and db b installed (but not run-
ning) on virtual machines vm4, vm5 and vm6 respectively.
Web application B is a backup of web application A, so that
any client (pc1, pc2 or pc3) may use either of them.

Due to the limited resources of the physical machines in
the company’s private cloud, web application A may not
be able handle the spike of data processing demanded by
the clients which usually happens on the first week of each
month. Therefore, the administrator wants to migrate web
application A to the public cloud before the start of the spike
period. Figure 7 illustrates the initial state and the goal state
of the system.

Unfortunately, the workflow for the migration process is
not obvious, since the following constraints must not be vi-
olated:

1. The service must always available for 24-hours a day
without any down-time, including during the migration
process.

2. All components of a web application must be in the same
infrastructure when it serves the clients. This means that
in the final state, web a, app a and db a must be in the
same infrastructure (either the private or the public cloud).

3. The firewall must be reconfigured to allow all LAN PCs
to be able to connect with web a on the public cloud.

To solve this problem, the administrator would use SF-
planner’s dashboard to specify the goal and global con-
straints. These are shown in figure 8. We can see that the
goal defines vm1, vm2 and vm3 to be in the public cloud,
while vm4, vm5 and vm6 are still in private cloud and they
are stopped. Port 8080 on firewall fw is open so that pc1, pc2
and pc3 can access ws a which is in the public cloud. Fur-
thermore, the global constraint section states that pc1, pc2
and pc3 must always refer to a running service.

Based on these facts, SFplanner generates a workflow
which consists of 34 actions: web application B is started
and all clients are redirected to refer to server B before mi-

c o n s t r a i n t g o a l {
$node1 . on $ p u b l i c c l o u d
$node2 . on $ p u b l i c c l o u d
$node3 . on $ p u b l i c c l o u d
$node4 . on $ p r i v a t e c l o u d
$node5 . on $ p r i v a t e c l o u d
$node6 . on $ p r i v a t e c l o u d
$node4 . r u n n i n g f a l s e
$node5 . r u n n i n g f a l s e
$node6 . r u n n i n g f a l s e
$pc1 . r e f e r $ws a
$pc2 . r e f e r $ws a
$pc3 . r e f e r $ws a
$fw . p o r t 8 0 8 0 . opened t rue

}
c o n s t r a i n t g l o b a l {

$pc1 . r e f e r . r u n n i n g t rue
$pc2 . r e f e r . r u n n i n g t rue
$pc3 . r e f e r . r u n n i n g t rue

}

Figure 8: The goal and global constraints defined in SFp.

grating all components of web application A to the public
cloud. After the migration process is finished, and before all
clients are redirected back to A, SFplanner opens port 8080
of the firewall fw so that all connection requests from clients
can be forwarded to ws a which is now in the public cloud.
Finally, all clients are redirected back to A and all compo-
nents (including the virtual machines) of web application B
are stopped. A complete generated workflow is illustrated in
figure 9.

To solve this configuration task, the planner was run on
a computer with a 2.16 GHz dual-core processor and 2 GB
of memory, but we only used a single core for computation.
We set Fast-Downward to use FF heuristic in the planning
process. After 10 tests, the planner was able to solve the
problem in average of 1.017 seconds. This included all steps
as described in figure 3.

A complete SFp configuration task for this problem which
includes the class definitions, the initial state, the goal con-
straint, and the global constraint is available from the fol-
lowing URL:

http://homepages.inf.ed.ac.uk/s0978621/cloud.sfp

and a complete version of the generated workflow can be ac-
cessed from the following URL:
http://homepages.inf.ed.ac.uk/s0978621/cloud.sfw

Related Work
There has been some previous work on the application of
automated planning for configuring computing infrastruc-
ture. In CHAMPS (Keller et al. 2004), the requested op-
erators are translated into a set of imperative tasks and orga-
nized as a workflow to satisfy the given constraints and max-
imize the degree of parallelism. The work in (El Maghraoui
et al. 2006) proposes translating the facts from Object Ori-
ented Configuration Management Database (OO CMDB) to
PDDL and uses a variant of Partial-Order Planner for plan-

48



Figure 9: The generated workflow for cloud-burst problem.

ning. Hagen (Hagen et al. 2009) introduces a hybrid planner
to generate the workflow from the facts on OO CMDB, and
(Hagen and Kemper 2010) uses a variant of state-space plan-
ner that directly plans over OO CMDB to generate the work-
flow. The work in (Levanti and Ranganathan 2009) demon-
strates an approach to simplify the interface to the planner
by presenting a set of tags as representation states and op-
erations - the user can then select one or more of these tags
which are then mapped into a workflow using SPPL planner.

Our previous work (Herry, Anderson, and Wickler 2011)
shows that an off-the-shelf planner can be used to automati-
cally generate the workflow for solving a configuration task.
It also demonstrates how a planner can be integrated with
declarative configuration tools.

The above approaches demonstrate the viability of auto-
mated planning for changes to the configuration of a com-
puting infrastructure. However, we are not aware of any
other system which supports global constraints in the plan-
ning process.

Conclusion and Future Work
This work has presented an experimental configuration tool
called SFplanner which can automatically compute a work-
flow for reconfiguring a computing infrastructure. The ex-
ecution of the generated workflow brings the managed sys-
tem into the desired state. Uniquely, the system supports
global constraints which can be used to preserve any neces-
sary properties of the system at every stage of the configura-
tion process.

However, in practice, a centralized workflow orchestra-
tion is not always ideal - for example, reconfiguration typ-
ically occurs as an autonomic reaction to failures. In this
case, it is likely that the system failure will also have dis-
rupted the ability of the central controller to communicate
effectively with all of the necessary components. To address
this, we are currently investigating a more distributed and
localised approach to workflow execution which still retains
the control of the centralized planning. This should allow
more autonomy for individual components and improve the
system’s resilience, as well as decreasing the response time.

Acknowledgments
We would like to thank Gerhard Wickler and Michael Rovat-
sos from University of Edinburgh, and Lawrence Wilcock
and Eric Deliot from HP Labs Bristol for their valuable feed-
backs. This research is fully supported by a grant from 2010
HP Labs Innovation Research Program Award.

References
Anderson, P., and Scobie, A. 2002. LCFG: The next gener-
ation. In UKUUG Winter Conference.
Desai, N.; Lusk, A.; Bradshaw, R.; and Evard, R. 2003.
BCFG: A Configuration Management Tool for Heteroge-
neous Environments. In Proceedings of IEEE International
Conference on Cluster Computing. IEEE Computer Society.
DTO Solutions. 2012. ControlTier.
El Maghraoui, K.; Meghranjani, A.; Eilam, T.; Kalantar,
M.; and Konstantinou, A. 2006. Model driven provision-
ing: Bridging the gap between declarative object models
and procedural provisioning tools. In Proceedings of the
ACM/IFIP/USENIX 2006 International Conference on Mid-
dleware, 404–423. Springer-Verlag New York, Inc.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in pddl3. Technical report, University of Brescia.
Goldsack, P.; Guijarro, J.; Loughran, S.; Coles, A.; Farrell,
A.; Lain, A.; Murray, P.; and Toft, P. 2009. The smart-
frog configuration management framework. ACM SIGOPS
Operating Systems Review 43(1):16–25.
Hagen, S., and Kemper, A. 2010. Model-Based Planning
for State-Related Changes to Infrastructure and Software as
a Service Instances in Large Data Centers. In 2010 IEEE
3rd International Conference on Cloud Computing, 11–18.
IEEE.
Hagen, S.; Edwards, N.; Wilcock, L.; Kirschnick, J.; and
Rolia, J. 2009. One is not enough: A hybrid approach for it
change planning. Integrated Management of Systems, Ser-
vices, Processes and People in IT 56–70.

49



Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5-
6):503–535.
Herry, H.; Anderson, P.; and Wickler, G. 2011. Automated
planning for configuration changes. In Proceedings of the
2011 LISA Conference. Usenix Association.
IBM Corp. 2012. Integrated Service Management software,
IBM Tivoli.
Keller, A.; Hellerstein, J.; Wolf, J.; Wu, K.; and Krishnan,
V. 2004. The CHAMPS system: Change management with
planning and scheduling. 1:395–408.
Levanti, K., and Ranganathan, A. 2009. Planning-based
configuration and management of distributed systems. In
Integrated Network Management, 2009. IM’09. IFIP/IEEE
International Symposium on, 65–72. IEEE.
Microsoft Corp. 2012. Microsoft Opalis.
Puppet Labs. 2012. Puppet.
Veloso, M. M.; Perez, M. A.; and Carbonell, J. G. 1990.
Nonlinear planning with parallel resource allocation. In
In Proceedings of the DARPA Workshop on Innovative Ap-
proaches to Planning, Scheduling, and Control, 207–212.
Morgan Kaufmann.

50




