
Bounded Situation Calculus Action Theories
(Extended Abstract)

Giuseppe De Giacomo
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Yves Lespérance
York University
Toronto, Canada

lesperan@cse.yorku.ca

Fabio Patrizi
Sapienza Università di Roma

Roma, Italy
patrizi@dis.uniroma1.it

Abstract

We define a notion of bounded action theory in the situa-
tion calculus, where the theory entails that in all situations,
the number of ground fluent atoms is bounded by a constant.
Such theories can still have an infinite domain and an infinite
set of states. We argue that such theories are fairly common in
applications, either because facts do not persist indefinitely or
because one eventually forgets some facts, as one learns new
ones. We discuss various ways of obtaining bounded action
theories. The main result of the paper is that verification of an
expressive class of first-order µ-calculus temporal properties
in such theories is in fact decidable. This paper is an abridged
version of (De Giacomo, Lespérance, and Patrizi 2012).

Introduction
The Situation Calculus (McCarthy and Hayes 1969; Reiter
2001) has proved to be an invaluable formal tool for under-
standing the subtle issues involved in reasoning about action.
Its comprehensiveness allows us to place all aspects of dy-
namic systems in perspective. Basic action theories let us
capture change as a result of actions in the system (Reiter
1991), while high level languages such as Golog (Levesque
et al. 1997) and ConGolog (De Giacomo, Lespérance, and
Levesque 2000) support the representation of processes over
the dynamic system. Aspects such as knowledge and sens-
ing (Scherl and Levesque 2003), probabilities and utilities
(Boutilier et al. 2000), and preferences (Bienvenu, Fritz, and
McIlraith 2006), have all been addressed.

The price of such a generality is that decidability results
for reasoning in the situation calculus are rare, e.g., (Ter-
novskaia 1999) for an argument-less fluents fragment, and
(Gu and Soutchanski 2007) for a description logic like 2
variables fragment. Obviously, we have the major feature of
being able to rely on regression to reduce reasoning about
a given future situation to reasoning about the initial sit-
uation (Reiter 2001). Generalizations of this basic result
such as just-in-time histories (De Giacomo and Levesque
1999) can also be exploited. However, when we move to
temporal properties, virtually all results are based on as-
suming a finite number of states, although there are excep-
tions such as (Claßen and Lakemeyer 2008; De Giacomo,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Lespérance, and Pearce 2010), who develop incomplete fix-
point approximation-based methods.

Here, we present an important new result on decidabil-
ity of the situation calculus, showing that verification of
bounded action theories is decidable. Bounded action the-
ories are basic action theories (Reiter 2001), where it is
entailed that in all situations, the number of ground fluent
atoms is bounded. In such theories, the object domain re-
mains nonetheless infinite, as is the domain of situations.

But why should we believe that practical domains con-
form to this boundedness assumption? While it is often as-
sumed that the law of inertia applies and that ground fluent
atoms persist indefinitely in the absence of actions that af-
fect them, we all know that pretty much everything eventu-
ally decays and changes. We may not even know how the
change may happen, but nevertheless know that it will. An-
other line of argument for boundedness is epistemic. Agents
remember facts that they use and periodically try to confirm
them, often by sensing. A fact that never gets used is even-
tually forgotten. If a fact can never be confirmed, it may be
given up as too uncertain. Given this, it seems plausible that
an agent’s knowledge would always remain bounded.

While these philosophical arguments are interesting and
relate to some deep questions about knowledge representa-
tion, one may take a more pragmatic stance, and this is what
we do here. We identify some interesting classes of bounded
action theories and show how they can model typical exam-
ple domains. We also show how we can transform arbitrary
basic action theories into bounded action theories, either by
blocking actions that would exceed the bound, or by having
persistence (frame axioms) apply only for a bounded num-
ber of steps.

The main result of the paper is that verification of an ex-
pressive class of first-order (FO) µ-calculus temporal prop-
erties in bounded action theories is in fact decidable. This
means that we can check whether a system or process spec-
ified over such a theory satisfies some specification even if
we have an infinite domain and an infinite set of situations or
states. In a nutshell, we prove our results by focussing on the
active domain of situations, i.e., the set of objects for which
some atomic fluent hold; we know that the set of such active
objects is bounded. We show that essentially we can abstract
situations whose active domains are isomorphic into a sin-
gle state, and thus, by suitably abstracting also actions, we

16

Cognitive Robotics
AAAI Technical Report WS-12-06

can obtain an abstract finite transition system that satisfies
exactly the same formulas of our variant of the µ-calculus.

This work is of interest not only for AI, but also for other
areas of CS. In particular, there has recently been some at-
tention paid in the field of business processes and services
to including data into the analysis of processes (Hull 2008;
Gerede and Su 2007; Dumas, van der Aalst, and ter Hof-
stede 2005). Interestingly, while we have verification tools
that are quite good for dealing with data and processes sep-
arately, when we consider them together, we get infinite-
state transition systems, which resist classical model check-
ing approaches to verification. Lately, there has been
some work on developing verification techniques that can
deal with such infinite-state processes (Deutsch et al. 2009;
Bagheri Hariri et al. 2011; Belardinelli, Lomuscio, and Pa-
trizi 2011). In particular (Belardinelli, Lomuscio, and Pa-
trizi 2011) brings forth the idea of exploiting state bounde-
ness to get decidability for CTL. In this paper, we build on
this idea, making it flourish in the general setting of the sit-
uation calculus, extending the verification method to the µ-
calculus, allowing for incomplete information, and exploit-
ing the richness of the situation calculus for giving sufficient
conditions for boundedness that can easily be used in prac-
tice.

This paper is an abridged version of (De Giacomo,
Lespérance, and Patrizi 2012).

Preliminaries
The situation calculus (McCarthy and Hayes 1969; Reiter
2001) is a sorted predicate logic language for represent-
ing and reasoning about dynamically changing worlds. All
changes to the world are the result of actions, which are
terms in the language. We denote action variables by lower
case letters a, action types by capital letters A, and action
terms by α, possibly with subscripts. A possible world his-
tory is represented by a term called a situation. The constant
S0 is used to denote the initial situation where no actions
have yet been performed. Sequences of actions are built us-
ing the function symbol do, where do(a, s) denotes the suc-
cessor situation resulting from performing action a in situa-
tion s. Besides actions and situations, there is also the sort of
objects for all other entities. Predicates and functions whose
value varies from situation to situation are called fluents, and
are denoted by symbols taking a situation term as their last
argument (e.g., Holding(x, s)). For simplicity, and w.l.o.g.,
we assume that there are no functions other than constants
and no non-fluent predicates. We denote fluents by F and
the finite set of primitive fluents by F . The arguments of
fluents (appart the last argument which is of sort situation)
are assumed to be of sort object.

Within the language, one can formulate action theories
that describe how the world changes as the result of the
available actions. Here, we concentrate on basic action the-
ories as proposed in (Pirri and Reiter 1999; Reiter 2001).
We also assume that there is a finite number of action types.
Moreover, we assume that the terms of object sort are in
fact a countably infinite set N of standard names for which
we have the unique name assumption and domain closure.
As a result a basic action theory D is the union of the

following disjoint sets: the foundational, domain indepen-
dent, (second-order, or SO) axioms of the situation calculus
(Σ); (FO) precondition axioms stating when actions can be
legally performed (Dposs); (FO) successor state axioms de-
scribing how fluents change between situations (Dssa); (FO)
unique name axioms for actions and (FO) domain closure on
action types (Dca); (SO) unique name axioms and domain
closure for object constants (Dcoa); and axioms describing
the initial configuration of the world (D0). A special predi-
cate Poss(a, s) is used to state that action a is executable in
situation s; precondition axioms in Dposs characterize this
predicate. The abbreviation Executable(s) means that ev-
ery action performed in reaching situation s was possible in
the situation in which it occured. In turn, successor state
axioms encode the causal laws of the world being modeled;
they take the place of the so-called effect axioms and provide
a solution to the frame problem.

One of the key features of basic action theories is the exis-
tence of a sound and complete regression mechanism for an-
swering queries about situations resulting from performing a
sequence of actions (Pirri and Reiter 1999; Reiter 2001). In
a nutshell, the regression operator R∗ reduces a formula φ
about some future situation to an equivalent formula R∗[φ]
about the initial situation S0, by basically substituting fluent
relations with the right-hand side formula of their succes-
sor state axioms. Here, we shall use a simple one-step only
variant R of the standard regression operator R∗ for basic
action theories. Let φ(do(α, s)) be a formula uniform in the
situation do(α, s). In essence, a formula φ(s) is uniform in a
situation term s if s is the only situation term it contains; see
(Reiter 2001) for a formal definition. Then R[φ(do(α, s))]
stands for the one-step regression of φ through the action
term α, which is itself a formula uniform in s.

In most of this paper, we assume complete information
about S0, and view D0 as a finite set of facts (under the
closed world assumption (CWA) (Reiter 1982)) that we call
the initial database. At the end, we relax this assumption
and show that our results can be generalized to the incom-
plete information case.

Bounded Action Theories
Let b be some natural number. We use the notation
|{~x | φ(~x)}| ≥ b to stand for the FOL formula:

∃~x1, . . . , ~xb.φ(~x1) ∧ · · · ∧ φ(~xb) ∧
∧

i,j∈{1,...,b},i6=j

~xi 6= ~xj .

We also define (|{~x | φ(~x)}| < b)
.
= ¬(|{~x | φ(~x)}| ≥ b).

Using this, we define the notion of a fluent F (~x, s) in sit-
uation s being bounded by a natural number b as follows:

BoundedF,b(s)
.
= |{~x | F (~x, s)}| < b.

The notion of situation s being bounded by a natural number
b is defined as follows:

Boundedb(s)
.
=

∧
F∈F

BoundedF,b(s).

We say that an action theory D is bounded by b if
D |= ∀s.Executable(s) ⊃ Boundedb(s).

We shall see that for bounded action theories verification of
sophisticated temporal properties is decidable.

17

Obtaining Bounded Action Theories by Blocking
We observe that the formulaBoundedb(s) is an FO formula
uniform in s and hence it is regressable for basic action the-
ories. This allows us to introduce a first interesting class of
bounded action theories. Indeed, from any basic action the-
ory, we can immediately obtain a bounded action theory by
simply blocking the execution of actions whenever the result
would exceed the bound.

Let D be a basic action theory. We define the bounded
basic action theory Db by replacing each action precondi-
tion axiom in D of the form Poss(a(~x), s) ≡ Φ(~x, s) by a
precondition axiom of the form

Poss(a(~x), s) ≡ Φ(~x, s) ∧R[Boundedb(do(a(~x), s))]

Theorem 1 Let D be a basic action theory with the initial
database D0 such that D0 |= Boundedb(S0), for some b,
and let Db be the basic action theory obtained as discussed
above. Then, Db is bounded by b.

Proof (sketch). By induction on executable situations.

Example 1 Suppose that we have a camera on a cell phone
or PDA. We could model the storage of photos on the device
using a fluent PhotoStored(p, s), meaning that photo p is
stored in the device’s memory. Such a fluent might have the
following successor state axiom:

PhotoStored(p, do(a, s)) ≡ a = takePhoto(p)
∨ PhotoStored(p, s) ∧ a 6= deletePhoto(p)

We may also assume that action takePhoto(p) is always
executable and that deletePhoto(p) is executable in s if p is
stored in s:

Poss(takePhoto(p), s) ≡ True
Poss(deletePhoto(p), s) ≡ PhotoStored(p, s).

Now such a device would clearly have limited capacity
for storing photos. If we assume for simplicity that photos
come in only one resolution and file size, then we can model
this by simply applying the transformation discussed above.
This yields the following modified precondition axioms:

Poss(takePhoto(p), s) ≡
|{p′ | PhotoStored(p′, s)}| < b− 1

Poss(deletePhoto(p), s) ≡ PhotoStored(p, s) ∧
|{p′ | PhotoStored(p′, s)}| < b+ 1.

The resulting theory is bounded by b (assuming the original
theory is bounded by b in S0).

Note that this way of obtaining a bounded action theory
is far from realistic in modeling the actual constraints on
the storage of photos. One could develop a more accurate
model, taking into account the size of photos, the mem-
ory management scheme used, etc. This would also yield
a bounded action theory, though one whose boundedness is
a consequence of a sophisticated model of memory capacity.

Example 2 Let’s extend the previous example by supposing
that the device also maintains a contacts directory. We could

model this using a fluent InPhoneDir(name, number,
photo, s), with the following successor state axiom:

InPhoneDir(na, no, p, do(a, s)) ≡
a = add(na, no, p) ∨ InPhoneDir(na, no, p, s) ∧
a 6= deleteName(na) ∧ a 6= deleteNumber(no)

We could then apply our transformation to this new theory to
obtain a bounded action theory, getting precondition axioms
such as the following:

Poss(add(na, no, p), s) ≡ PhotoStored(p, s) ∧
|{p′ | PhotoStored(p′, s)}| < b ∧
|{〈na, no, p〉 | InPhoneDir(na, no, p, s)}| < b− 1

The resulting theory blocks actions from being performed
whenever the action would result in a number of tuples in
some fluent exceeding the bound.

We observe that this kind of bounded action theories are
really modeling a capacity constraint on every fluent,1 which
may block actions from being executed. As a result, an ac-
tion may be executable in a situation in the original theory,
but not executable in the bounded one. Thus an agent may
want to “plan” to find a sequence of actions that would make
the action executable again. In general, to avoid dead-ends,
one should carefully choose the original action theory on
which the bound is imposed, in particular there should al-
ways be actions that remove tuples from fluents.

Effect Bounded Action Theories
Let’s consider another sufficient condition for boundedness.
Recall that the general form of successor state axioms is:

F (~x, do(a, s)) ≡ Φ+
F (~x, a, s) ∨ (F (~x, s) ∧ ¬Φ−F (~x, a, s))

We say that fluent F is effect bounded if:

|{~x | Φ+
F (~x, a, s) ∧ ¬F (~x, s)}| ≤ |{~x | Φ−

F (~x, a, s) ∧ F (~x, s)}|,

i.e., for every action and situation, the number of tuples
added to the fluent is less than or equal to that deleted.

We say that a basic action theory is effect bounded if every
fluent F ∈ F is effect bounded.

Theorem 2 Let D be an effect bounded basic action
theory with the initial database D0 such that D0 |=
Boundedb(S0), for some b. Then D is bounded by b.

Proof (sketch). By induction on executable situations.

Note that if the initial database is a finite set of facts, as we
are assuming up to now, then it is guaranteed that there exists
a b such that D0 |= Boundedb(S0).

Example 3 Many axiomatizations of the Blocks World are
not effect bounded. For instance, suppose that we have flu-
ents OnTable(x, s), i.e., block x is on the table in situation

1The bound b applies to each fluent individually, so the total
number of tuples in a situation is bounded by |F|b. One could in-
stead impose a global capacity bound on the total number of tuples
in a situation, but this would require addition in the language.

18

s, and On(x, y, s), i.e., block x is on block y in situation s,
with the following successor state axioms:

OnTable(x, do(a, s)) ≡ a = moveToTable(x)
∨OnTable(x, s) ∧ ¬∃y.a = move(x, y)

On(x, y, do(a, s)) ≡ a = move(x, y) ∨On(x, y, s) ∧
¬∃z.(z 6= y ∧ a = move(x, z)) ∧ a 6= moveToTable(x)

Then, performing the action moveToTable(B1) will result
in a net increase in the number of objects that are on the
table (assuming that the action is executable and that B1 is
not already on the table). Thus, fluent OnTable is not effect
bounded in this theory.

However, it is easy to develop an alternative axiomatiza-
tion of the Blocks World that is effect bounded. Suppose
that we use only the fluent On(x, y, s) and the single action
move(x, y), where y is either a block or the table, which
is denoted by the constant Table. We can axiomatize the
domain dynamics as follows:

On(x, y, do(a, s)) ≡ a = move(x, y)
∨On(x, y, s) ∧ ¬∃z.(z 6= y ∧ a = move(x, z))

That is, x is on y after action a is performed in situation s
iff a is moving x onto y or x is already on y in situation s
and a does not involve moving x onto an object other than
y. We say that move(x, y) is executable in situation s iff x
is not the table in s, x and y are distinct, x is clear and on
something other than y in s, and y is clear unless it is the
table in s:

Poss(move(x, y), s) ≡ x 6= Table ∧ x 6= y ∧
¬∃z.On(z, x, s) ∧ ∃z.(z 6= y ∧On(x, z, s)) ∧
(y = Table ∨ ¬∃z.On(z, y, s))

Then it is easy to show that any occurence ofmove(x, y) in a
situation swhere the action is executable, adds 〈x, y〉 toO =
{〈x′, y′〉 | On(x′, y′, s)} while deleting 〈x, y′′〉 for some
y′′ s.t. y′′ 6= y, leaving |O| unchanged. Note that we must
require that x be on something in the action precondition
axiom to get this. Any action other than move(x, y) leaves
O unchanged. Thus On is effect bounded.

The precondition that x be on something for move(x, y)
to be executable means that we cannot move a new unknown
block onto another or the table. We must of course impose
restrictions on “moving new blocks in” if we want to pre-
serve effect boundedness. One way to do this is to add an
action replace(x, y), i.e. replacing x by y. We can specify
its preconditions as follows:

Poss(replace(x, y), s) ≡ x 6= Table ∧ y 6= Table ∧
x 6= y ∧ ¬∃z.On(z, x, s) ∧ ∃z.On(x, z, s) ∧
¬∃z.On(z, y, s) ∧ ¬∃z.On(y, z, s)

replace(x, y) is executable in situation s iff x and y are not
the table and are distinct, x is clear and on something in s,
and y is clear and not on something in s. We can modify the
successor state axiom for On to be:

On(x, y, do(a, s)) ≡ a = move(x, y) ∨
∃z.(a = replace(z, x) ∧On(z, y, s))
∨On(x, y, s) ∧ ¬∃z.(z 6= y ∧ a = move(x, z)) ∧
¬∃z.(z 6= y ∧ a = replace(x, z))

where On(x, y) becomes true if x replaces z and z was on
y in s, and On(x, y) becomes false if z replaces x and x
was on y in s. It is straightforward to show that this change
leaves On effect bounded.

Example 4 For another simple example (perhaps more
practical), let’s look at how we could specify the “favorite
web sites” menu of an internet application. We can assume
that there is a fixed number of favorite web sites positions
on the menu, say 1 to k. We can replace what is at posi-
tion n on the menu by the URL u by performing the action
replace(n, u). This can be axiomatized as follows:

FavoriteSites(n, u, do(a, s)) ≡ a = replace(n, u) ∨
FavoriteSites(n, u, s) ∧
¬∃u′.(u′ 6= u ∧ a = replace(n, u′))

Poss(replace(n, u), s) ≡
n ∈ [1..k] ∧ URL(u) ∧ ∃u′.FavoriteSites(n, u′, s)

It is easy to show that in this axiomatization, FavoriteSites
is effect bounded. No action, including replace(n, u),
causes the number of instances of the fluent to increase.

The FavoriteSites fluent is typical of many domain
properties/relations, such as the passengers in a plane, the
students in a class, or the cars parked in a parking lot, where
we can think of the relation as having a finite capacity, and
where we can reassign the objects that are in it. In some
cases, the capacity bound may be difficult to pin down, e.g.,
the guests at a wedding, altough the capacity is by no means
unbounded. As well, there are definitely examples where
we need an unbounded theory, e.g., to model a pushdown
automata that can recognize a particular context-free lan-
guage. The situation calculus is a very expressive language
that accomodates this, for instance, it has been used to model
Turing machines (Lin and Levesque 1998). One might ar-
guably want an unbounded “favorite sites” menu or contacts
directory, although this seems hardly practical. Another in-
teresting question is how such capacity constraints might
apply to a complex agent such as a robot that is modeling
its environment. Clearly, such a robot would have limita-
tions wrt how many environment features/objects/properties
it can memorize and track. Finally, note that the condition
|{~x | Φ+

F (~x, a, s)}| ≤ |{~x | Φ−F (~x, a, s)}| is not an FO for-
mula and it is difficult (in fact, undecidable) in general to de-
termine whether a basic action theory is effect bounded. But
as our examples illustrate, there are many instances where it
is easy to show that the bounded effects condition holds.

Fading Fluents Action Theories
Fading fluents action theories are based on the idea that in-
formation over time loses strength and fades away unless
it is reinforced explicitly. A fading fluents action theory
with fading length given by a natural number ` is an ac-
tion theory where a fluent F (~x, s) is defined by making use
of some auxiliary fluents Fi(~x, s), for 0 ≤ i ≤ ` where
F (~x, s)

.
=

∨
0≤i≤` Fi(~x, s) and the auxiliary fluents have

successor state axioms of the following special form:

F`(~x, do(a, s)) ≡ Φ+
F (~x, a, s) ∧ |{~x | ∃a.Φ+

F (~x, a, s)}| < b

19

and for 0 ≤ i < ` we have:

Fi(~x, do(a, s)) ≡ ¬Φ+
F (~x, a, s)∧Fi+1(~x, s)∧¬Φ−F (~x, a, s).

Thus, tuples are initially added to F`, and progressively lose
their strength, moving from Fi to Fi−1, each time an action
occurs that does not delete or re-add them. Eventually they
move out of F0 and are forgotten.

• Technically, a fading fluents action theory is a basic action
theory having as fluents only the auxiliary fluents.

• It is simple to obtain a fading fluent version of any basic
action theory.

• It is often convenient to include explicit refresh actions
refreshF (~x), whose effect, when applied to a situation
s, is simple to make F`(~x, do(refreshF (~x, s))) true, and
Fi(~x, do(refreshF (~x, s))) false for 0 ≤ i < `. Similarly
it may be convenient to include forget actions forgetF (~x),
whose effect is to make Fi(~x, do(forgetF (~x, s))) false,
for all i.

Theorem 3 Let D be a fading fluents action theory with
fading length ` and initial database D0 such that D0 |=
Boundedb(S0), for some b. Then, D is bounded by b.

Proof (sketch). By induction on executable situations. For
the base case, we have that initially for each fluent, we
have at most b facts, hence S0 is bounded by b. For the
inductive case, by the inductive hypothesis we have that
Boundedb(s). Now, take an arbitrary action a(~t), and an ar-
bitrary fluent F . Then: (i) BoundedF`,b(do(a(~t), s)), since
positive effects are bounded by b in its successor state ax-
iom; and (ii) for all 0 ≤ i < `, since Fi depends on Fi+1 in
the previous situation in its successor state axioms, we have
thatBoundedFi,b(do(a(~t), s)) sinceBoundedFi+1,b(s) and
in the worst case the whole extension of Fi+1 in s is carried
over to Fi in do(a(~t), s).

Example 5 Imagine a sort of “vacuum cleaner world”
where a robotic vacuum cleaner may clean a room or re-
gion r. If a room/region is used, then it becomes unclean.
We could model this using a fluent IsClean(r, s) with the
following successor state axiom:

IsClean(r, do(a, s)) ≡ a = clean(r)
∨ IsClean(r, s) ∧ ¬a = use(r)

Clearly, cleanliness is a property that fades over time. By
applying the proposed transformation to this specification,
we obtain the following:

IsClean`(r, do(a, s)) ≡ a = clean(r) ∧ 1 < b

and for 0 ≤ i < ` we have:

IsCleani(r, do(a, s)) ≡ a 6= clean(r)
∧ IsCleani+1(r, s) ∧ a 6= use(r)

This is a somewhat more realistic model where after ` steps,
we forget about a room being clean.

Example 6 Consider a robot that can move objects around.
We might model this using a fluent At(objet, location, s)
with the following successor state axiom:

At(o, l, do(a, s)) ≡ a = moveTo(o, l) ∨
a = observe(o, l) ∨At(o, l, s) ∧ a 6= takeAway(o) ∧
¬∃l′.l′ 6= l ∧ (a = moveTo(o, l′) ∨ a = observe(o, l′))

Here, moveTo(o, l) represents the robot’s moving object o
to location l. We also have an action observe(o, l) of observ-
ing that object o is at location l, a kind of exogenous action
that might be produced by the robot’s sensors. As well, we
have another exogenous action takeAway(o), representing
another agent’s taking object o to an unknown location l. If
the world is dynamic, most objects would not remain where
they are indefinitely, even if the robot is unaware of any-
one moving them. By applying the proposed transformation
to this specification, we obtain a theory where information
about the location of objects fades unless it is refreshed by
the robot’s observations or actions. After ` steps, the robot
forgets the location of an object that it has not observed or
moved (moreover, this happens immediately if the object is
taken away by another agent).

Example 7 As a final example, consider a softbot that keeps
track of which hosts are online. We might model this using
a fluent NonFaulty(host, s) with the following successor
state axiom:

NonFaulty(h, do(a, s)) ≡ a = pingS(h)
∨NonFaulty(h, s) ∧ a 6= pingF (r)

Here the action pingS(h) means that the host h has been
pinged successfully, and the action pingF (h) means that
the host h has not responded to a pinging within the allo-
cated time. As time passes, we may not want to assume
that currently non-faulty hosts will remain non-faulty. If we
apply the proposed transformation to this specification, we
obtain a theory where information about hosts being non-
faulty fades. The agent must ping the host successfully to
maintain its knowledge that the host is non-faulty.

An interesting natural example of such fading representa-
tions is the pheromones left by insects. Note that it is also
possible to model fading with time as opposed to fading with
the number of actions, though we have to bound how many
actions can occur between clock ticks.

Expressing Dynamic Properties
To express properties about Situation Calculus action the-
ories, we introduce a specific logic, inspired by the µ-
calculus (Emerson 1996; Stirling 2001), one of the most
powerful temporal logics, subsuming both linear time log-
ics, such as LTL and PSL, and branching time logics such
as CTL and CTL* (Baier, Katoen, and Guldstrand Larsen
2008). In particular, we introduce a variant of the µ-calculus,
called µL, whose syntax is as follows:

Φ ::= ϕ | ¬Φ | Φ1 ∧ Φ2 | 〈−〉Φ | Z | µZ.Φ

20

where ϕ is an arbitrary closed uniform situation-suppressed
(i.e., with all situation arguments in fluents suppressed) sit-
uation calculus FO formula, and Z is an SO (0-ary) pred-
icate variable. We use the following standard abbrevia-
tions: Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2), [−]Φ = ¬〈−〉¬Φ, and
νZ.Φ = ¬µZ.¬Φ[Z/¬Z]. As usual in the µ-calculus, for-
mulae of the form µZ.Φ (and νZ.Φ) must satisfy syntactic
monotonicity of Φ wrt Z, which states that every occurrence
of the variable Z in Φ must be within the scope of an even
number of negation symbols.

The fixpoint formulas µZ.Φ and νZ.Φ denote respectively
the least and the greatest fixpoint of the formula Φ seen as
a predicate transformer λZ.Φ (their existence is guaranteed
by the syntactic monotonicity of Φ). We can express arbi-
trary temporal/dynamic properties using least and greatest
fixpoint constructions. For instance, to say that it is possible
to achieve ϕ, where ϕ is a closed situation suppressed for-
mula, we use the least fixpoint formula µZ.ϕ ∨ 〈−〉Z. Sim-
ilarly, we can use a greatest fixpoint formula νZ.ϕ ∧ [−]Z
to express that ϕ always holds.

Next we turn to semantics. Since µL contains formulae
with predicate free variables, given a modelM of an action
theory D with domain S for sort situation, we introduce a
predicate variable valuation V , i.e., a mapping from predi-
cate variables Z to subsets of S. Then we assign semantics
to formulae by associating toM and V an extension function
(·)MV , which maps µL formulae to subsets of S as induc-
tively defined as follows (we include also key abbreviations
for clarity):

(ϕ)MV = {s ∈ S | M |= ϕ[s]}
(¬Φ)MV = S − (Φ)MV
(Φ1 ∧ Φ2)MV = (Φ1)MV ∩ (Φ2)MV
(〈−〉Φ)MV = {s ∈ S | ∃a.(a, s) ∈ PossM ∧

doM(a, s) ∈ (Φ)MV }
([−]Φ)MV = {s ∈ S | ∀a.(a, s) ∈ PossM ⊃

doM (a, s) ∈ (Φ)MV }
(Z)MV = V(Z)
(µZ.Φ)MV =

⋂
{E ⊆ S | (Φ)MV[Z/E] ⊆ E}

(νZ.Φ)MV =
⋃
{E ⊆ S | E ⊆ (Φ)MV[Z/E]}

Intuitively, the extension function (·)MV assigns to such
constructs the following meaning:

• The boolean connectives and quantification over individ-
uals have the expected meaning.

• The extension of 〈−〉Φ consists of the situations s such
that for some possible successor situation s′ , we have that
Φ holds in s′, while the extension of [−]Φ consists of the
situations s such that for all successor situations s′, we
have that Φ holds in s′.

• The extension of µX.Φ is the smallest subset Eµ of S such
that, assigning to Z the extension Eµ, the resulting exten-
sion of Φ is contained in Eµ. That is, the extension of
µX.Φ is the least fixpoint of the operator (Φ)MV[Z/E] (here
V[Z/E] denotes the predicate valuation obtained from V
by forcing the valuation of Z to be E).

• Similarly, the extension of νX.Φ is the greatest subset Eν
of S such that, assigning toX the extension Eν , the result-
ing extension of Φ contains Eν . That is, the extension of
νX.Φ is the greatest fixpoint of the operator (Φ)MV[X/E].

Notice that given a closed uniform situation-suppressed
situation calculus formula ϕ, slightly abusing notation, we
denote by ϕ[s] the corresponding formula with situation cal-
culus argument reintroduced and assigned to situation s. No-
tice also that when a µL formula Φ is closed (wrt predicate
variables), its extension (Φ)MV does not depend on the pred-
icate valuation V . The only formulas of interest in verifica-
tion are those that are closed.

Observe that we do not have actions as parameters of [−]·
and 〈−〉·. However we can easily remember the last ac-
tion performed, and in fact a finite sequence of previous ac-
tions. To do this, for each actionA(~x), we introduce a fluent
LastA(~x, s) with successor state axiom:

LastA(~x, do(a, s)) ≡ a = A(~x)

We can also remember the second last action by introducing
fluents SecondLastA(~x, s) with successor state axioms:

SecondLastA(~x, do(a, s)) ≡ LastA(~x, s)

Similarly for the third last action, etc.
In this way we can store a finite suffix of the history in the

current situation and write FO formulas relating the indi-
viduals in the parameters of actions occurring in the suffix.
E.g., we can write (assuming for simplicity that the men-
tioned fluents have all the same arity):

µZ.(∃~x.LastA(~x) ∧ SecondLastB(~x)) ∨ 〈−〉Z,

i.e., it is possible to eventually do B(~x) followed by A(~x)
for some ~x.

Observe also that our µL does not allow for quantification
across situations. However the expressiveness of bounded
action theories does mitigate this limitation. For instance,
we can easily introduce a finite number of “registers”, i.e.,
fluents that store only one tuple, which can be used to store
and refer to tuples across situations. We can do this by intro-
ducing fluents Regi(~x, s) and two actions setRegi(~x) and
clearRegi to set and clear the register Regi respectively.
These are axiomatized as follows:

Regi(~x, do(a, s)) ≡ a = setRegi(~x) ∨
Regi(~x, s) ∧ a 6= clearRegi

Poss(setRegi(~x), s) ≡ ¬∃~x.Regi(~x, s)
Poss(clearRegi, s) ≡ ∃~x.Regi(~x, s)

For example, we can write (assuming for simplicity that the
mentioned fluents have all the same arity):

µZ.(∃~x.Regi(~x)∧F (~x)∧〈−〉∃~y.Regi(~y)∧F ′(~y))∨〈−〉Z

This formula says that there exists a sequence of actions
where eventually the tuple referred to by register i has prop-
erty F and there is an action after which it has property F ′.

21

Verification of Bounded Action Theories
It can be shown that verifying µL temporal properties
against bounded action theories is decidable. We first focus
on action theories with complete information on the initial
situation, described as a (bounded) database. Then, we gen-
eralize our results to the cases with incomplete information
on the initial situation. Our main result is the following.

Theorem 4 If D is a bounded action theory with initial sit-
uation described by a (bounded) database, and Φ a closed
µL formula, then verifying whether D |= Φ is decidable.

The proof is structured as follows. The first step is to
get rid of action terms in formulas, and observe that µL can
be equivalently interpreted over a certain kind of transition
systems which do not necessarily reflect the tree structure of
the situation tree.

In the second step, we introduce the notions of: active
domain (Abiteboul, Hull, and Vianu 1995), i.e., the domain
containing all the objects occurring in the extension of the
predicates (fluents at a given situation), active-domain iso-
morphism, i.e., standard isomorphism restricted to active do-
mains, and active-domain bisimulation, a variant of standard
bisimulation which requires bisimilar states to be active-
domain isomorphic. Then we prove that active-domain
bisimilar transition systems preserve domain-independent
µL (closed) formulas, i.e., formulas whose evaluation of FO
components depends only on the active domain.

In the third and fundamental step we show how to actu-
ally construct an abstract, finite-state transition system that
is active-domain bisimilar to the one induced by the model
of the action theory. We make use of the assumption that
situations are bounded, and exploit the specific structure of
successor state and action precondition axioms, to devise a
bound on the number of distinct objects required to main-
tain active-domain isomorphisms between states. With this
we prove the decidability result for domain-independent µL
formulas.

In the final step, we generalize the above result to generic
µL formulas, by observing that any FO formula inter-
preted over standard names admits an equivalent, domain-
independent formula –see, e.g., Th. 5.6.3 in (Libkin 2007).

We refer to (De Giacomo, Lespérance, and Patrizi 2012)
for the technical details.

Dealing with Incomplete Information
For the case of partial information about the initial situation,
assume that D0 is a set of axioms characterizing a possibly
infinite set of bounded initial databases.

Theorem 5 Consider a b-bounded action theory D with in-
complete information on the initial situation, and let Φ be
a µL closed, domain-independent formula. Then, checking
whether D |= Φ is decidable.

The result is a consequence of the fact that for a b-bounded
action theory, any possible (complete) initial database be-
longs to one of finitely many distinct isomorphic types, so
for each of such types we can arbitrarily select one repre-
sentative, and then apply Th. 4.

This result, besides stating decidability of the verification
problem under incomplete information, provides us with an
actual procedure to perform the check.

Conclusion
In this paper, we have defined the notion of bounded ac-
tion theory in the situation calculus, where the number of
ground atomic fluents that are known remains bounded. We
have shown that this restriction is sufficient to ensure that
verification of an expressive class of temporal properties re-
mains decidable, despite the fact that we have an infinite
domain and state space. Our result holds even in the pres-
ence of incomplete information. We have also argued that
this restriction can be adhered to in practical applications,
by identifying interesting classes of bounded action theories
and showing that these can be used to model typical exam-
ple dynamic domains. Decidability is important from a the-
oretical standpoint, but we stress also that our result is fully
constructive being based on a reduction to model checking
of an (abstract) finite-state transition system. An interesting
future enterprise is to build on such a result to develop an
actual situation calculus verification tool.

In future work, we want to do a more systematic investi-
gation of specification patterns for obtaining boundedness.
This includes patterns that provide bounded persistence and
patterns that model bounded/fading memory. These ques-
tions should be examined in light of different approaches
that have been proposed for modeling knowledge, sensing,
and revision in the situation calculus and related temporal
logics (Scherl and Levesque 2003; Demolombe and del Pi-
lar Pozos Parra 2000; Shapiro et al. 2011; van Ditmarsch,
van der Hoek, and Kooi 2007).

Acknowledgments. We acknowledge the support of EU
Project FP7-ICT ACSI (257593).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison Wesley.
Bagheri Hariri, B.; Calvanese, D.; De Giacomo, G.; De
Masellis, R.; and Felli, P. 2011. Foundations of relational
artifacts verification. In Proc. of BPM’11, 379–395.
Baier, C.; Katoen, J.-P.; and Guldstrand Larsen, K. 2008.
Principles of Model Checking. The MIT Press.
Belardinelli, F.; Lomuscio, A.; and Patrizi, F. 2011. Verifi-
cation of deployed artifact systems via data abstraction. In
Proc. of ICSOC’11, 142–156.
Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2006. Planning
with qualitative temporal preferences. In Proc. of KR’06,
134–144.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-theoretic, high-level agent programming in
the situation calculus. In Proc. of AAAI’00/IAAI’00, 355–
362.
Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. In Proc. of KR’08, 589–599.

22

De Giacomo, G., and Levesque, H. J. 1999. Projection using
regression and sensors. In Proc. of IJCAI’99, 160–165.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. AIJ 121(1–2):109–169.
De Giacomo, G.; Lespérance, Y.; and Patrizi, F. 2012.
Bounded situation calculus action theories and decidable
verification. In Proc. of KR’12. To appear.
De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2010.
Situation calculus based programs for representing and rea-
soning about game structures. In Proc. of KR’10, 445–455.
Demolombe, R., and del Pilar Pozos Parra, M. 2000. A sim-
ple and tractable extension of situation calculus to epistemic
logic. In Proc. of ISMIS’00, 515–524.
Deutsch, A.; Hull, R.; Patrizi, F.; and Vianu, V. 2009. Au-
tomatic verification of data-centric business processes. In
Proc. of ICDT’09, 252–267.
Dumas, M.; van der Aalst, W. M. P.; and ter Hofstede, A.
H. M. 2005. Process-Aware Information Systems: Bridging
People and Software through Process Technology. Wiley &
Sons.
Emerson, E. A. 1996. Model checking and the mu-calculus.
In Descriptive Complexity and Finite Models, 185–214.
Gerede, C. E., and Su, J. 2007. Specification and verification
of artifact behaviors in business process models. In Proc. of
ICSOC’07, 181–192.
Gu, Y., and Soutchanski, M. 2007. Decidable reasoning in
a modified situation calculus. In Proc. of IJCAI’07, 1891–
1897.
Hull, R. 2008. Artifact-centric business process models:
Brief survey of research results and challenges. In OTM
2008 Confederated International Conferences, volume 5332
of LNCS, 1152–1163.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. JLP 31:59–84.
Libkin, L. 2007. Embedded finite models and constraint
databases. In Finite Model Theory and Its Applications.
Springer.
Lin, F., and Levesque, H. J. 1998. What robots can do:
Robot programs and effective achievability. Artif. Intell.
101(1-2):201–226.
McCarthy, J., and Hayes, P. J. 1969. Some Philosophi-
cal Problems From the StandPoint of Artificial Intelligence.
Machine Intelligence 4:463–502.
Pirri, F., and Reiter, R. 1999. Some contributions to the
metatheory of the situation calculus. J. ACM 46(3):261–325.
Reiter, R. 1982. Towards a logical reconstruction of rela-
tional database theory. In On Conceptual Modeling, 191–
233.
Reiter, R. 1991. The frame problem in the situation calculus:
A simple solution (sometimes) and a completeness result for
goal regression. In Lifschitz, V., ed., Artificial Intelligence
and Mathematical Theory of Computation: Papers in Honor
of John McCarthy. Academic Press. 359–380.

Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.
Scherl, R. B., and Levesque, H. J. 2003. Knowledge, action,
and the frame problem. Artif. Intell. 144(1-2):1–39.
Shapiro, S.; Pagnucco, M.; Lespérance, Y.; and Levesque,
H. J. 2011. Iterated belief change in the situation calculus.
Artif. Intell. 175(1):165–192.
Stirling, C. 2001. Modal and Temporal Properties of Pro-
cesses. Springer.
Ternovskaia, E. 1999. Automata theory for reasoning about
actions. In Proc. of IJCAI’99, 153–159.
van Ditmarsch, H.; van der Hoek, W.; and Kooi, B. 2007.
Dynamic Epistemic Logic. Springer.

23

