
Plan Recognition by Program Execution in Continuous Temporal Domains

Christoph Schwering and Daniel Beck and Stefan Schiffer and Gerhard Lakemeyer
Knowledge-based Systems Group

RWTH Aachen University, Aachen, Germany
(schwering,beck,schiffer,gerhard)@kbsg.rwth-aachen.de

Abstract

Much of the existing work on plan recognition assumes that
actions of other agents can be observed directly. In continu-
ous temporal domains such as traffic scenarios this assump-
tion is typically not warranted. Instead, one is only able to
observe facts about the world such as vehicle positions at
different points in time, from which the agents’ intentions
need to be inferred. In this paper we show how this problem
can be addressed in the situation calculus and a new variant
of the action programming language Golog, which includes
features such as continuous time and change, stochastic ac-
tions, nondeterminism, and concurrency. In our approach
we match observations against a set of candidate plans in
the form of Golog programs. We turn the observations into
actions which are then executed concurrently with the given
programs. Using decision-theoretic optimization techniques
those programs are preferred which bring about the obser-
vations at the appropriate times. Besides defining this new
variant of Golog we also discuss an implementation and ex-
perimental results using driving maneuvers as an example.

1 Introduction
Much of the work on plan recognition,1 e.g. (Kautz and
Allen 1986; Charniak and Goldman 1991; Goultiaeva and
Lespérance 2007; Geib and Goldman 2009; Ramirez and
Geffner 2009) has made the assumption that actions of other
agents are directly observable. In continuous temporal do-
mains such as traffic scenarios this assumption is typically
not warranted. Instead, one is only able to observe facts
about the world such as vehicle positions at different points
in time, from which the agents’ intentions need to be in-
ferred. Approaches which take this view generally fall
into the Bayesian network framework and include (Pyna-
dath and Wellman 1995; Bui, Venkatesh, and West 2002;
Liao et al. 2007). One drawback of these approaches is that
actions and plans can only be represented at a rather coarse
level, as the representations are essentially propositional and
time needs to be discretized.

On the other hand, action formalisms based on first-order
logic are very expressive and are able to capture plans at any
level of granularity, including continuous change and time.

1In this paper we are only concerned with so-called keyhole
plan recognition, where agents need not be aware that they are be-
ing observed.

As we will see, this makes it possible to model the behavior
of agents directly in terms of actions such as changing the
direction of a vehicle or setting a certain speed. In a sense,
this expressiveness allows to combine actions into plans or
programs, whose execution can be thought of as an abstract
simulation of what the agents are doing. This and parameter-
ized actions yield a huge flexibility in formulating possible
agent plans. Plan recognition in this framework boils down
to finding those plans whose execution is closest in explain-
ing the observed data.

In this paper, we propose an approach to plan
recognition based on the action programming language
Golog (Levesque et al. 1997), which itself is based on the
situation calculus (McCarthy 1963; Reiter 2001) and hence
gives us the needed expressiveness. The idea is, roughly, to
start with a plan library formulated as Golog programs and
to try and match them online with incoming observations.
The observations are translated into actions which can only
be executed if the fact observed in the real world also is true
in the model. These actions are executed concurrently with
the given programs. Decision-theoretic optimization tech-
niques are then used to select those among the programs
whose execution bring about a maximum number of obser-
vations at just the right time.

Many of the pieces needed for a Golog dialect which
supports this form of plan recognition already exist.
These include concurrency (De Giacomo, Lespérance, and
Levesque 2000), continuous change (Grosskreutz and Lake-
meyer 2003a), stochastic actions (Reiter 2001), sequential
time (Reiter 1998), and decision theory in the spirit of DT-
Golog (Boutilier et al. 2000). As we will see, these aspects
need to be combined in novel ways and extended. For exam-
ple, DTGolog does not handle concurrency and it is intended
to compute optimal policies in the sense of a Markov Deci-
sion Process. Here, however, we want to optimize wrt the
given observations and explain as many of them as possi-
ble.2 The main contributions of the paper then are the def-
inition of a new Golog dialect to support plan recognition
from observations and to demonstrate the feasibility of the
approach by applying it to traffic scenarios encountered in a
driving simulator.

2We remark that the only other existing work using Golog for
plan recognition (Goultiaeva and Lespérance 2007) is quite differ-
ent as it assumes that actions are directly observable.

77

Cognitive Robotics 
AAAI Technical Report WS-12-06



The rest of the paper is organized as follows. In the next
section, we briefly outline our example traffic scenario. Sec-
tion 3 introduces our new Golog variant prGolog, followed
by a formal specification of an interpreter and a discussion
of how plan recognition by program execution works in this
framework. In Section 6, we present experimental results.
Then we conclude.

2 Driving Maneuvers: An Example Domain
In this section we briefly introduce our example domain and
some of the modeling issues it raises, which will motivate
many of the features of our new Golog dialect.

In our car simulator a human controls a vehicle on a two-
lane road with other cars controlled by the system. The goal
is to recognize car maneuvers involving both the human-
controlled car and others on the basis of observed global
vehicle positions which are registered twice a second. For
simplicity we assume complete knowledge and noise-free
observations.

We would like to model typical car maneuvers such as
one vehicle passing another in a fairly direct and intuitive
way. For that it seems desirable to build continuous time
and continuous change directly into the modeling language.
Among other things, this will allow us to define constructs
such as waitFor(behind(car1, car2)), which lets time pass
continuously until car1 is behind car2. The definition will
be a variant of the waitFor-construct defined in (Grosskreutz
and Lakemeyer 2003a). To actually steer a car in the model,
we will use actions to set the speed and to change the
orientation (yaw). For simplicity and for complexity rea-
sons, we assume that such changes are instantaneous and
that movements are modeled by linear functions (of time)
as in (Grosskreutz and Lakemeyer 2003a). Concurrency
comes into play for two reasons. For one, with multiple
agents present they need to be able to act independently.
For another, observations will be turned into special ac-
tions which are executed concurrently with the agents’ pro-
grams. Technically we will make use of ConGolog’s notion
of interleaved concurrency (De Giacomo, Lespérance, and
Levesque 2000).

To see where probabilities come into play, we need to
consider a complication which results from a mismatch be-
tween a simple model of driving in a straight line and re-
ality, especially when a human controls a car. Most likely
the human will oscillate somewhat even when his or her
intention is to drive straight, and the amount of oscilla-
tion may vary over time and among individuals (see Fig-
ure 1 for two examples). Since the observed data will also
track such oscillations, a straight-line model is not able to
explain the data unless we allow for an arbitrary number
of changes of direction, which is cumbersome and com-
putationally expensive. Instead, we introduce tolerances
of varying width and likelihood, where the width indicates
that a driver will deviate at most this much from a straight
line and the likelihood estimates the percentage of drivers
which exhibit this deviation. Technically, this means that
the action which changes the direction of a car is consid-
ered a stochastic action in the sense of (Boutilier et al. 2000;
Reiter 2001). We use a discretized log-normal distribution,

Figure 1: Two cars driving straight with different tolerances.

Figure 2: A passing maneuver.

where each outcome determines a particular tolerance. In a
similar fashion, setting the speed introduces tolerances along
the longitudinal axis to accommodate differences between
the actual speed and the model.

With this idea of tolerances in mind it will become rather
unlikely that an actual passing maneuver such as the one de-
picted in Figure 2, where the white car is observed at posi-
tions 1, 3, and 4, is still considered driving straight. Instead,
executing a program modeling a passing maneuver will be
considered a better match, as it includes a change of orien-
tation at, say, position 2.

3 The Action Language prGolog
prGolog is our new dialect of the action language Golog
(Levesque et al. 1997). Golog is based on Reiter’s version of
the situation calculus (Reiter 2001) which is a sorted second-
order language to reason about dynamic systems with ac-
tions and situations. A dynamic system is modeled in terms
of a basic action theory (BAT) D which models the ba-
sic relationships of primitive actions and situation depen-
dent predicates and functions, called fluents. A situation
is either the initial situation S0 or a term do(a, s) where
s is the preceding situation and a is an action executed in
s. The main components of a BAT D are (1) precondi-
tion axioms Poss(a, s) ≡ ρ that denote whether or not the
primitive action a is executable in situation s, (2) succes-
sor state axioms which define how fluents evolve in new
situations, and (3) a description of the initial situation S0.
A successor state axiom for a fluent F (~x, s) has the form
F (~x, do(a, s)) ≡ γ+F (~x, a, s)∨F (~x, s)∧¬γ−F (~x, a, s) where
γ+F and γ−F describe the positive and negative effects on flu-
ent F , respectively.

Our simple model of a car consists of primitive actions
that instantaneously change the vehicle’s velocity and yaw,
respectively. Furthermore, there are fluents x(v, s) and
y(v, s) for the x and y-coordinates of the car v. Here, the
x-axis points in the forward/backward direction and the y-
axis in the left/right direction.

prGolog offers the same programming constructs known
from other Golog dialects: deterministic and stochastic
actions, test actions φ?, sequences δ1; δ2, nondeterminis-
tic choice of argument πv . δ and nondeterministic branch
δ1 | δ2, interleaved concurrency δ1 ‖ δ2, and others such as

78



if-then-else and while-loops, which are not needed in this
paper. Also, to simplify the presentation, we use procedures
as macros.

The prGolog programs in the plan library describe the dif-
ferent plans an agent could be following. For instance, a lane
change of a car v can be characterized as follows:

proc leftLaneChange(v, τ)

πθ .(0◦ < θ ≤ 90◦)?;

waitFor(onRightLane(v), τ); setYaw(v, θ, τ);

πτ ′ .waitFor(onLeftLane(v), τ ′); setYaw(v, 0◦, τ ′)

endproc.

This program leaves certain aspects of its execution unspec-
ified. The angle θ at which the car v steers to the left may
be nondeterministically chosen between 0◦ and 90◦. While
the starting time τ of the passing maneuver is a parameter of
the procedure, the time τ ′ at which v gets back into the lane
is chosen freely. The points in time are constrained only by
means of the two waitFor actions in a way such that the car
turns left when it is on the right lane and goes straight ahead
when it is on the left lane. onRightLane and onLeftLane
stand for formulas that specify what it means to be on the
right and on the left lane, respectively. Using the procedure
above an overtake maneuver can be specified as

proc overtake(v, w)

πτ1 .waitFor(behind(v, w), τ1); leftLaneChange(v, τ1);

πτ2 . πz . setVeloc(v, z, τ2);

πτ3 .waitFor(behind(w, v), τ3); rightLaneChange(v, τ3)

endproc.

3.1 Stepwise Execution
To carry out plan recognition online, we will need to ex-
ecute programs incrementally, one action at a time. Con-
Golog (De Giacomo, Lespérance, and Levesque 2000) in-
troduced a transition semantics that does exactly this: a tran-
sition from a configuration (δ, s) to a configuration (δ′, s′) is
possible if performing a single step of program δ in situation
s leads to a new situation s′ with remaining program δ′.

3.2 Time and Continuous Change
In the situation calculus, actions have no duration but are ex-
ecuted instantaneously. Therefore we model continuous flu-
ents (e.g., a car’s position) by fluent functions each of which
returns a function of time. E.g., the function returned by
x(v, s) denotes the longitudinal movement of v in s. This
function can be evaluated at a given point in time to ob-
tain a concrete position. As in ccGolog (Grosskreutz and
Lakemeyer 2003a), we model these functions of time with
terms like linear(a0, a1, τ0) which stands for the function
f(τ) = a0 + a1 · (τ − τ0). The definition of successor
state axioms for x(v, s) and y(v, s) to represent the effects
of primitive actions is lengthy but straightforward.

We adopt sequential, temporal Golog’s (Reiter 1998) con-
vention that each primitive action has a timestamp param-
eter. Since these timestamped actions occur in situation

terms, each situation has a starting time which is the time-
stamp of the last executed action. The precondition of a
waitFor(φ, τ) action restricts the feasible timestamps τ to
points in time at which the condition φ holds:

Poss(waitFor(φ, τ), s) ≡ φ[s, τ ]

where the syntax φ[s, τ ] restores the situation parameter s in
the fluents in φ and evaluates continuous fluents at time τ .
This precondition already captures the “effect” of waitFor,
because just by occurring in the situation term it shifts time
to some point at which φ holds. Unlike ccGolog, we do not
enforce a least time point semantics for added flexibility.

3.3 Stochastic Actions and Decision Theory
We include stochastic actions in prGolog which are imple-
mented similarly to (Reiter 2001). The meaning of perform-
ing a stochastic action is that nature chooses among a set
of possible outcome actions. Stochastic actions, just like
primitive actions, have a timestamp parameter. The setYaw
action mentioned in the lane change program is a stochas-
tic action. All outcomes for setYaw set the yaw fluent to
the same value, they only differ in the width of the tolerance
corridor described in Section 2 and Figure 1. In particular,
the outcome actions are setYaw∗(v, θ,∆, τ) where ∆ spec-
ifies the width of the tolerance corridor. Note that only the
additional parameter ∆ follows some probability distribu-
tion; the vehicle identifier v, the angle θ, and the timestamp
τ are taken as they stand. We introduce a new fluent for
the lateral tolerance, ∆y(v, s) whose value is the ∆ of the
last setYaw∗ action. Analogously, we add longitudinal toler-
ance: setVeloc(v, z, τ) is stochastic and has outcome actions
setVeloc∗(v, z,∆, τ). The longitudinal tolerance is captured
by the new fluent ∆x (v, s).

Stochastic actions introduce a second kind of uncertainty
in programs: while nondeterministic features like the pick
operator πv . δ represent choice points for the agent, the out-
come of stochastic actions is chosen by nature. To make
nondeterminism and stochastic actions coexist, we resolve
the former by always choosing the branch that maximizes a
reward function as in DTGolog (Boutilier et al. 2000). In
contrast to DTGolog, we do not compute a policy. To com-
bine decision theory and concurrency, we propose a new
transition semantics in the next section.

4 The Semantics of prGolog
For each program from the plan library we want to deter-
mine whether or not it explains the observations. To this end
we resolve nondeterminism (e.g., concurrency by interleav-
ing) decision-theoretically: when a nondeterministic choice
point is reached, the interpreter opts for the alternative that
leads to a situation s with the greatest reward r(s). To keep
computation feasible only the next l actions of each nonde-
terminstic alternative are evaluated. In Section 5 a reward
function is shown that favors situations that explain more
observations. Thus program execution reflects (observed)
reality as closely as possible.

The central part of the interpreter is the function
transPr(δ, s, l, δ′, s′) = p which assigns probabilities p

79



to one-step transitions from (δ, s) to (δ′, s′). A transi-
tion is assigned a probability greater zero iff it is an op-
timal transition wrt reward function r and look-ahead l;
all other transitions are assigned a probability of 0. That
is, we specify a transition semantics similar to ConGolog
(De Giacomo, Lespérance, and Levesque 2000) that inte-
grates decision-theoretic ideas from DTGolog (Boutilier et
al. 2000). transPr determines the optimal transition by in-
specting all potential alternatives as follows:

(1) compute all possible decompositions γ; δ′ of δ where γ
is a next atomic action of δ,

(2) find a best decomposition γ; δ′, and
(3) execute γ.

By atomic action, we mean primitive, test, and stochastic
actions. A decomposition is considered best if no other de-
composition leads to a higher-rewarded situation.

At first, we will define the predicate Next(δ, γ, δ′) that
determines all decompositions γ; δ′ of a program δ. We pro-
ceed with the function transAtPr(γ, s, s′) = p which holds
if executing the atomic action γ in s leads to s′ with prob-
ability p. Then, we define a function value(δ, s, l) = v
which computes the estimated reward v that is achieved
after l transitions of δ in s given that nondeterminism is
resolved in an optimal way. value is used to rate alter-
native decompositions. With these helpers, we can define
transPr(δ, s, l, δ′, s′) = p.3

We often use the following if-then-else macro where the
quantified variables are also visible in the then-branch:

if ∃~x . φ(~x) then ψ1(~x) else ψ2
def
=

(∃~x . φ(~x) ∧ ψ1(~x)) ∨ (∀~x .¬φ(~x) ∧ ψ2)

4.1 Program Decomposition
Next(δ, γ, δ′) holds iff γ is a next atomic action of δ and
δ′ is the rest. It very much resembles ConGolog’s Trans
predicate except that it does not actually execute an action.4
Like ConGolog, we need to quantify over programs; for the
details on this see (De Giacomo, Lespérance, and Levesque
2000). Here are the definitions needed for Next :

Next(Nil , γ, δ′) ≡ False

Next(α, γ, δ′) ≡ γ = α ∧ δ′ = Nil (α atomic)

Next(πv . δ, γ, δ′) ≡ ∃x .Next(δvx, γ, δ′)
Next(δ1 | δ2, γ, δ′) ≡ Next(δ1, γ, δ

′) ∨Next(δ2, γ, δ
′)

Next(δ1; δ2, γ, δ
′) ≡ ∃δ′1 .Next(δ1, γ, δ′1) ∧ δ′ = δ′1; δ2 ∨

Final(δ1) ∧Next(δ2, γ, δ
′)

Next(δ1 ‖δ2, γ, δ′) ≡ ∃δ′1 .Next(δ1, γ, δ′1) ∧ δ′ = δ′1 ‖δ2 ∨
∃δ′2 .Next(δ2, γ, δ′2) ∧ δ′ = δ1 ‖δ′2

Next(δ∗, γ, δ′) ≡ ∃δ′′ .Next(δ, γ, δ′′) ∧ δ′ = δ′′; δ∗.

3pGOLOG’s (Grosskreutz and Lakemeyer 2003b) transPr is
much more limited as it does not account for nondeterminism.

4We remark that we differ from the next defined in (De Gia-
como, Lespérance, and Muise 2011) in that our Next is not func-
tional.

Final(δ) holds iff program execution may terminate. For
instance, the empty program Nil is final, primitive actions
are never final, and a sequence δ1; δ2 is final iff δ1 and δ2
are. In general, our Final is the same as ConGolog’s except
that it has no situation argument:5

Final(Nil) ≡ True

Final(α) ≡ False (α atomic)
Final(πv . δ) ≡ ∃x .Final(δvx)

Final(δ1 | δ2) ≡ Final(δ1) ∨ Final(δ2)

Final(δ1; δ2) ≡ Final(δ1) ∧ Final(δ2)

Final(δ1 ‖ δ2) ≡ Final(δ1) ∧ Final(δ2)

Final(δ∗) ≡ True.

4.2 Executing Atomic Actions
Now we turn to executing atomic actions with transAtPr .
Test actions are the easiest case because the test formula is
evaluated in the current situation:

transAtPr(φ?, s, s′) = p ≡
if φ[s] ∧ s′ = s then p = 1 else p = 0.

Primitive actions have timestamps encoded as parame-
ters like in sequential, temporal Golog, which are of the
newly added sort real (Reiter 1998). The BAT needs to
provide axioms time(A(~x, τ)) = τ to extract the time-
stamp τ of any primitive action A(~x, τ) and the function
start(do(a, s)) = time(a) which returns a situation’s start
time. The initial time start(S0) may be defined in the BAT.
Using these, transAtPr can ensure monotonicity of time:

transAtPr(α, s, s′) = p ≡
if time(α[s]) ≥ start(s) ∧ Poss(α[s], s) ∧
s′ = do(α[s], s)

then p = 1 else p = 0.

When a stochastic action β is executed, the idea is that na-
ture randomly picks a primitive outcome action α. The ax-
iomatizer is supposed to provide two macros Choice(β, α)
and prob0(β, α, s) = p as in (Reiter 2001). The former
denotes that α is a feasible outcome action of β, the lat-
ter returns the probability of nature actually choosing α in s.
Probabilities are of sort real. The number of outcome actions
must be finite. The axiomatizer must ensure that (1) any
executable outcome action has a positive probability, (2) if
any of the outcome actions is executable, then the probabil-
ities of all executable outcome actions add up to 1, (3) no
stochastic actions have any outcome action in common, and
(4) primitive outcome actions do not occur in programs as
primitive actions. The transAtPr rule returns the probabil-
ity of the outcome action specified in s′ if its precondition
holds and 0 otherwise:
transAtPr(β, s, s′) = p ≡

if ∃α, p′ .Choice(β, α) ∧
transAtPr(α, s, s′) · prob0(β, α, s) = p′ ∧ p′ > 0

then p = p′ else p = 0.

5For those familiar with ConGolog, this is because we do not
consider synchronized if-then-else and while-loops.

80



4.3 Rating Programs by Reward
The function value uses transAtPr to determine the max-
imum (wrt nondeterminism) estimated (wrt stochastic ac-
tions) reward achieved by a program. value inspects the tree
of situations induced by stochastic actions up to a depth of
look-ahead l or until the remaining program is final and com-
putes the weighted average reward of the reached situations:

value(δ, s, l) = v ≡
if ∃v′ . v′ = max

{(γ,δ′)|Next(δ,γ,δ′)}∑
{(s′,p)|transAtPr(γ,s,s′)=p∧p>0}

p · value(δ′, s′, l − 1) ∧

l > 0 ∧ (Final(δ) ⊃ v′ > r(s))

then v = v′ else v = r(s).

The max expression maximizes over all possible decompo-
sitions γ; δ′:

max
{(γ,δ′)|Next(δ,γ,δ′)}

f(γ, δ′) = v
def
=

∃γ, δ′ .Next(δ, γ, δ′) ∧ v = f(γ, δ′) ∧
(∀γ′, δ′′)(Next(δ, γ′, δ′′) ⊃ v ≥ f(γ′, δ′′)).

f(γ, δ′) stands for the sum over all situations reached by
transAtPr . For an axiomatization of the sum we refer to
(Bacchus, Halpern, and Levesque 1999).

4.4 Transition Semantics
Finally, transPr simply looks for an optimal decomposition
γ; δ′ and executes γ:

transPr(δ, s, l, δ′, s′) = p ≡
if ∃γ .Next(δ, γ, δ′) ∧ transAtPr(γ, s, s′) > 0 ∧(
∀γ′, δ′′ .Next(δ, γ′, δ′′) ⊃
value(γ; δ′, s, l) ≥ value(γ′; δ′′, s, l)

)
then transAtPr(γ, s, s′) = p else p = 0.

The function is consistent, i.e., transPr(δ, s, l, δ′, s′) re-
turns a unique p, for the following reason: If a primitive or a
test action is executed, the argument is trivial. If a stochastic
action β is executed, this is reflected in s′ = do(α, s) for
some primitive outcome action α and the only cause of α is
β due to requirements (3) and (4). We will see that transPr
is all we need for online plan recognition.

5 Plan Recognition by Program Execution
In our framework, plan recognition is the problem of exe-
cuting a prGolog program in a way that matches the obser-
vations. An observation is a formula φ which holds in the
world at time τ according to the sensors (e.g., φ might tell
us the position of each car at time τ ). For each of the, say,
n vehicles, we choose a δi from the pre-defined programs.
δi serves as hypothetical explanation for the ith driver’s be-
havior. These hypotheses are combined to a comprehensive
hypothesis δ = (δ1 ‖ . . . ‖ δn) which captures that the vehi-
cles act in parallel. We determine whether or not δ explains

the observations. By computing a confidence for each ex-
planation we can ultimately rank competing hypotheses.

To find a match between observations and program exe-
cution, we turn each observation into an action match(φ, τ)
which is meant to synchronize the model with the observa-
tion. This is ensured by the precondition

Poss(match(φ, τ), s) ≡ φ[s, τ ]

which asserts that the observed formula φ actually holds in
the model at time τ . Hence, an executed match action rep-
resents an explained observation. Note that although match
and waitFor have equivalent semantics, they are different ac-
tions to capture their different intentions.

Plan recognition can be carried out online roughly by re-
peating the following two steps:
(1) If a new observation is present, merge the respective

match action into the remaining program.
(2) Execute the next step of the hypothesis program.
In practical plan recognition, it makes sense to be greedy for
explaining as many observations as possible, with the ulti-
mate goal of explaining all of them. This behavior can be
easily implemented with our decision-theoretic semantics.
Recall that the interpreter resolves nondeterministic choice
points by opting for the alternative that yields the highest
reward r(s) after l further look-ahead steps. We achieve
greedy behavior when we provide the reward function

r(s) = number of match actions in s.
While being greedy is not always optimal, this heuristic al-
lows us to do plan recognition online. Since the interpreter
can execute up to lmatch actions during its look-ahead, non-
determinism is resolved optimally modulo look-ahead l as
long as the program contains at least lmatch actions. There-
fore, a more precise formulation of (2) is:
(2) If the remaining program contains at least l match ac-

tions, execute the next step of the hypothesis program.
We now detail steps (1) and (2). Let δ be the hypothe-

sis. The initial plan recognition state is {(δ, S0, 1)} because,
as nothing of δ has been executed yet, it may be a perfect
hypothesis. As time goes by, δ is executed incrementally.
However, the set grows because each outcome of a stochas-
tic action must be represented by a tuple in the set.

Incoming observations are merged into the candidate
programs by appending them with the concurrency oper-
ator. That is, when φ is observed at time τ we replace
all configurations (δ, s, p) with new configurations (δ ‖
match(φ, τ), s, p). When the number of match actions in
δ is at least l, we are safe to update the configuration by trig-
gering the next transition. Thus, upon matching the obser-
vation φ at time τ , a state Sk of the plan recognition evolves
as follows:
Sk+1 = {(δ′, s′, p′) | (δ, s, p) ∈ Sk and

δ contains at least l − 1 match actions and

D ∪ C |= p′>0 ∧
p · transPr(δ‖match(φ, τ), s, l, δ′, s′)=p′}

∪ {(δ‖match(φ, τ), s, p) | (δ, s, p) ∈ Sk and
δ contains less than l − 1 match actions}

81



where D is a BAT and C are the axioms of our language. To
simplify the presentation we assume complete information
about the initial situation S0.

Finally, we roughly describe how hypotheses can be
ranked. Generally the idea is to sum the probabilities of
those executions that explain the observations. By this
means the hypothesis go straight is ranked very well in Fig-
ure 1a, whereas the wide oscillations in Figure 1b cut off
many of the likely but small tolerances. A complication
arises because transPr does not commit to a single non-
deterministic alternative if both are equally good wrt their
reward. While our implementation simply commits to one
of the branches which are on a par, transPr returns posi-
tive probabilities for all of them. With requirements (3) and
(4) from Subsection 4.2 it is possible to keep apart these al-
ternative executions. For space reasons we only sketch the
idea: let Uk ⊆ Sk be a set of configurations (δ, s, p) that
stem from one of the optimal ways to resolve nondetermin-
ism. Then the confidence of Uk being an explanation so far
is ∑

(δ,s,p)∈Uk

p · r(s)

r(s) +m(δ)

where m(δ) is the number of match actions that occur in
the program δ. This weighs the probability of reaching the
configuration (δ, s, p) by the ratio of explained observations
r(s) in the total number of observations r(s) +m(δ). Since
there are generally multiple Uk, the confidence of the whole
hypothesis is maxUk

∑
(δ,s,p)∈Uk

p · r(s)
r(s)+m(δ) .

6 Classifying Driving Maneuvers
We have implemented a prGolog interpreter and the online
plan recognition procedure in ECLiPSe-CLP,6 a Prolog di-
alect. We evaluated the system with a driving simulation,
TORCS,7 to recognize driving maneuvers. Our car model is
implemented in terms of stochastic actions such as setVeloc
and setYaw and continuous fluents like x and y which de-
pend on the velocity, yaw, and time. The preconditions of
primitive actions, particularly of waitFor and match, impose
constraints on these functions. For performance reasons we
restrict the physical values like yaw and velocity to finite
domains and allow only timestamps to range over the full
floating point numbers so that we end up with linear equa-
tions. To solve these linear systems we use the constraint
solver COIN-OR CLP.8 The interpreter’s look-ahead to re-
solve nondeterministic choice points varies between two and
three.

For stochastic actions we use a Monte-Carlo-simulation-
like sampling to further increase the performance. That is,
for a given program and a set of observations we would
normally need to compute the transition probability as the
weighted sum of the probability of all outcomes along all
possible execution paths of the program. The number of
combinations gets very large with increasing number of

6http://www.eclipseclp.org/
7http://torcs.sourceforge.net/
8http://www.coin-or.org/

(a) (b)

Figure 3: Plan recognition output of passing maneuver.

stochastic actions in the program. So instead, for every pro-
gram and set of observations to explain, we spawn a num-
ber of interpreters and sample the outcomes of stochastic ac-
tions appearing in the program according to the outcomes’
probability distribution. This way, we can approximate the
real transition probability with arbitrary accuracy with in-
creasing number of samples, i.e., increasing number of in-
terpreters. In our evaluation we always used 24 samples.

We modified the open source racing game TORCS for our
purposes as a driving simulation. Twice a second, it sends
an observation of each vehicle’s noise-free global position
(Xi, Yi) to the plan recognition system. According to our
notion of robustness, it suffices if the observations are within
the model’s tolerance. The longitudinal and lateral toler-
ance of each driver Vi is specified by the fluents ∆x (Vi) and
∆y(Vi) (cf. Section 3). Therefore, TORCS generates for-
mulas of the form

φ =
∧
i

x(Vi)−∆x (Vi) ≤ Xi ≤ x(Vi) + ∆x (Vi) ∧

y(Vi)−∆y(Vi) ≤ Yi ≤ y(Vi) + ∆y(Vi).

Thus, the plan recognition system needs to search for possi-
ble executions of the candidate programs that match the ob-
served car positions. If a smaller tolerance is good enough
to match the observations, the confidence in the candidate
program being an explanation for the observation is higher,
because more samples succeed.

Figure 3 shows how plan recognition results are displayed
in the driving simulation. TORCS and the plan recognition
system run on two distinct computers which exchange ob-
servations and plan recognition results via network. A small
coordination program spawns child processes with embed-
ded ECLiPSe-CLP environments which perform the sam-
pling. The plan recognition server has an Intel Core i7 CPU
so that six sampling processes run per CPU core. The results
are reported back to TORCS and displayed at runtime. In
our experiments, the online plan recognition kept the model
and reality in sync with a delay of about two to five sec-
onds. A part of this latency is inherent to our design: a
delay of (look-ahead)/(observations per second) seconds is
inevitable because some observations need to be buffered to
resolve nondeterminism reasonably. This minimal latency
amounts to 1.5 s in our setting, the rest is due to computa-
tional limitations. A more recent prototype of our system

82



Figure 4: Sample situation term from v passing w.

Figure 5: Samples of the passing car during two different
passing maneuvers on a two-lane road. The x-axis is the
time, the y-axis is the car’s y-coordinate on the road. Circles
stand for the observed y-coordinates. The solid line repre-
sents the model car’s trace and vertical lines the tolerance.

written in Mercury9 and also using COIN-OR CLP seems to
be significantly faster (the computational latency reduces to
less than 0.5 s under comparable circumstances).

6.1 Passing Maneuver
In our first scenario, a human-controlled car passes a
computer-controlled car. To keep the equations linear, both
cars have nearly constant speed (about 50 km/h and 70 km/h,
respectively). Six test drivers drove 120 maneuvers in to-
tal, 96 of which were legal passing maneuvers (i.e., over-
take on the left lane) and 24 were random non-legal passing
maneuvers. We tested only one hypothesis which consisted
of a program overtake for the human driver and a program
go straight for the robot car. Note that even though the robot
car’s candidate program is very simple, it is a crucial compo-
nent because the passing maneuver makes no sense without
a car to be passed. Hence, this is an albeit simple example
of multi-agent plan recognition.

In our experiment we encountered neither false positives
nor false negatives: For all non-passing maneuvers the can-
didate program was rejected (confidence 0.0). In case the
driver indeed did pass the robot car, our system valued the
candidate program by a positive confidence: 0.54 on average
with standard deviation ±0.2. Interestingly test persons us-
ing the keyboard had a higher confidence (0.71± 0.11) than
those using a steering wheel (0.46±0.16). This is plausible:
the steering wheel made it hard to drive straight because it
was overly sensitive due to calibration issues.

9http://www.mercury.csse.unimelb.edu.au/

Figure 6: While B passes A, C may choose between two
maneuvers.

Figure 4 shows a situation term that resulted from sam-
pling the candidate programs overtake and go straight. The
maneuver begins at time 7.57 s. Driver w goes straight at
about 15 m/s (on the right lane) and v follows at about
20 m/s. After 10 s v swings out, passes w at time 20.9 s,
and finishes the passing maneuver two seconds later. Fig-
ure 5 visualizes two samples from two different passing ma-
neuvers. Note that the observed car (represented by circles)
oscillates stronger in Figure 5b than in Figure 5a, especially
in the fast lane (i.e., above the dashed line). Therefore toler-
ances in Figure 5b need to be bigger which ultimately levels
down the confidence for the hypothesis overtake.

6.2 Aggressive vs Cautious Passing
In the second experiment, the human may choose between
two ways to pass another vehicle in the presence of a third
one as depicted in Figure 6. Robot car A starts in the right
lane and B follows at a slightly higher speed in the left lane.
The human, C, approaches from behind in the right lane with
the aim to pass A. C may either continuously accelerate and
attempt to aggressively pierce through the gap between B
and A. Alternatively, if C considers the gap to be too small,
he or she may decelerate, swing out behind B, and cautiously
pass A. To keep the equations linear, we approximate accel-
eration by incrementing the velocity in the model iteratively
instead of setting it just once. Our system compares two
competing hypotheses, one for C driving cautiously and one
for the aggressive maneuver. The candidates for A and B
are simply go straight again. Note that although the pro-
grams for A and B are very simple, they are crucial because
otherwise A and B would not move in the model.

We conducted this experiment 24 times with two different
test drivers for C, each driving aggressively and cautiously
in equal shares. Again, the plan recognition system classi-
fied all maneuvers correctly. When C behaved cautiously,
this hypothesis was rated 0.3 on average (±0.11) while the
aggressive hypothesis was rated with 0.0. When C drove ag-
gressively, the aggressive program was rated 0.57 on average
(±0.12) and the cautious hypothesis was rejected with 0.0.
Hence, the system is able to distinguish correctly between
alternative hypotheses.

7 Conclusions
In this paper, we proposed a new action language for speci-
fying the behavior of multiple agents in terms of high-level
programs. Among other things, the language combines de-
cision theory to resolve nondeterminism with concurrency,
and it supports temporal flexibility as well as robustness us-
ing stochastic actions.

83



On top of this language, we built online plan recogni-
tion by program execution. Observations are translated into
match actions which are executed concurrently with candi-
date programs. Based on the decision-theoretic component
and the transition semantics, a greedy heuristic, which pre-
ferred a maximal number of matched observations, worked
well in our experiments.

However, much more needs to be done to deal with real-
world traffic scenarios. For one, we believe that recognition
can be improved by moving towards more realistic models
of acceleration and the like. The assumption of complete in-
formation also needs to be relaxed. Finally, we are interested
not only in recognizing which plans are currently being ex-
ecuted but to predict potentially dangerous future situations
to assist the driver.

Acknowledgments
We thank anonymous reviewers for helpful suggestions. The
first author is supported by the B-IT Graduate School.

References
Bacchus, F.; Halpern, J. Y.; and Levesque, H. J. 1999. Rea-
soning about noisy sensors and effectors in the situation cal-
culus. Artificial Intelligence 111(1-2):171–208.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-theoretic, high-level agent programming in
the situation calculus. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth
Conference on on Innovative Applications of Artificial Intel-
ligence (AAAI’00), 355–362.
Bui, H. H.; Venkatesh, S.; and West, G. 2002. Policy recog-
nition in the abstract hidden markov model. Journal of Arti-
ficial Intelligence Research 17:451–499.
Charniak, E., and Goldman, R. 1991. A probabilistic model
of plan recognition. In Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI’91), 160–165.
Geib, C., and Goldman, R. 2009. A probabilistic plan recog-
nition algorithm based on plan tree grammars. Artificial In-
telligence 173:1101–1132.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1-2):109–
169.
De Giacomo, G.; Lespérance, Y.; and Muise, C. J. 2011.
Agent supervision in situation-determined ConGolog. In
Proceedings of the Ninth International Workshop on Non-
Monotonic Reasoning, Action and Change (NRAC’11), 23–
30.
Goultiaeva, A., and Lespérance, Y. 2007. Incremental plan
recognition in an agent programming framework. In Geib,
C., and Pynadath, D., eds., Proceedings of the AAAI Work-
shop on Plan, Activity, and Intent Recognition (PAIR-07),
52–59. AAAI Press.
Grosskreutz, H., and Lakemeyer, G. 2003a. cc-Golog – an
action language with continuous change. Logic Journal of
the IGPL 11(2):179–221.

Grosskreutz, H., and Lakemeyer, G. 2003b. Probabilis-
tic complex actions in GOLOG. Fundamenta Informaticae
57(2-4):167–192.
Kautz, H. A., and Allen, J. F. 1986. Generalized plan recog-
nition. In Proceedings of the Fifth National Conference on
Artificial Intelligence (AAAI’86), 32–37.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. 1997. GOLOG: A logic programming language for dy-
namic domains. Journal of Logic Programming 31:59–84.
Liao, L.; Patterson, D. J.; Fox, D.; and Kautz, H. 2007.
Learning and inferring transportation routines. Artificial In-
telligence 171(56):311–331.
McCarthy, J. 1963. Situations, Actions, and Causal Laws.
Technical Report AI Memo 2 AIM-2, AI Lab, Stanford Uni-
versity, California, USA. Published in Semantic Information
Processing, ed. Marvin Minsky. Cambridge, MA: The MIT
Press, 1968.
Pynadath, D. V., and Wellman, M. P. 1995. Accounting for
context in plan recognition, with application to traffic mon-
itoring. In Besnard, P., and Hanks, S., eds., Proceedings of
the Eleventh Annual Conference on Uncertainty in Artificial
Intelligence (UAI’95), 472–481. Morgan Kaufmann.
Ramirez, M., and Geffner, H. 2009. Plan recognition
as planning. In Proceedings of the Twenty-First Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’09),
1778–1783.
Reiter, R. 1998. Sequential, temporal GOLOG. In Pro-
ceedings of the International Conference on Principles of
Knowledge Representation and Reasoning, 547–556.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.

84




