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Abstract
Goal-driven automated composition of software components
is an important problem with applications in Web service
composition and stream processing systems. The popular ap-
proach to address this problem is to build the composition au-
tomatically using Artificial Intelligence planning. However, it
is shown that some of these popular planning approaches may
neither be feasible nor scalable for many real large-scale flow-
based applications. Recent advances have proven that the au-
tomated composition problem can take advantage of expert
knowledge restricting the ways in which different reusable
components can be composed. This knowledge can be rep-
resented using an extensible composition template or pattern.
In prior work, a flow pattern language called Cascade and its
corresponding specialized planner have shown the best per-
formance in these domains. In this paper, we propose to ad-
dress this problem using Hierarchical Task Network (HTN)
planning. To this end, we propose an automated approach of
creating an HTN-based problem from the Cascade represen-
tation of the flow patterns. The resulting technique not only
allows us to use the HTN planning paradigm and its many
advantages including added expressivity but also enables op-
timization and customization of composition with respect to
preferences and constraints. Further, we propose and develop
a lookahead heuristic and show that it significantly reduces
the planning time. We have performed extensive experimen-
tation in the context of the stream processing application and
evaluated applicability and performance of our approach.

Introduction
One of the approaches to automated software composition
focuses on composition of information flows from reusable
software components. This flow-based model of composi-
tion is applicable in a number of application areas, includ-
ing Web service composition and stream processing. There
are a number of tools (e.g., Yahoo Pipes and IBM Mashup
Center) that support the modeling of the data flow across
multiple components. Although these visual tools are fairly
popular, the use of these tools becomes increasingly difficult
as the number of available components increases, even more
so, when there are complex dependencies between compo-
nents, or other kinds of constraints in the composition.
∗This paper also appears in the 6th International Scheduling and
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While automated Artificial Intelligence (AI) planning is
a popular approach to automate the composition of compo-
nents, Riabov and Liu have shown that Planning Domain
Definition Language (PDDL)-based planning approach may
neither be feasible nor scalable when it comes to address-
ing real large-scale stream processing systems or other flow-
based applications (e.g., (Riabov and Liu 2006)). The pri-
mary reason behind this is that while the problem of com-
posing flow-based applications can be expressed in PDDL,
in practice the PDDL-based encoding of certain features
poses significant limitation to the scalability of planning.

In 2009, we proposed a pattern-based composition ap-
proach where composition patterns were specified using our
proposed language called Cascade and the plans were com-
puted using our specialized planner, MARIO (Ranganathan,
Riabov, and Udrea 2009). We made use of the observation
that automated composition problem can take advantage of
expert knowledge of how different components can be cou-
pled together and this knowledge can be expressed using a
composition pattern. For software engineers, who are usu-
ally responsible for encoding composition patterns, doing
so in Cascade is easier and more intuitive than in PDDL
or in other planning specification languages. The MARIO
planner achieves fast composition times due to optimiza-
tions specific to Cascade, taking advantage of the structure
of flow-based composition problems, while limiting expres-
sivity of domain descriptions.

In this paper, we propose a planning approach based on
Hierarchical Task Networks (HTNs) to address the problem
of automated composition of components. To this end, we
propose a novel technique for creating an HTN-based plan-
ning problem with preferences from the Cascade represen-
tation of the patterns together with a set of user-specified
Cascade goals. The resulting technique enables us to ex-
plore the advantages of using domain-independent planning
and HTN planning including added expressivity, and address
optimization and customization of composition with respect
to preferences and constraints. We use the preference-based
HTN planner HTNPLAN-P (Sohrabi, Baier, and McIlraith
2009) for implementation and evaluation of our approach.
Moreover, we develop a new lookahead heuristic by draw-
ing inspirations from ideas proposed in (Marthi, Russell, and
Wolfe 2007). We also propose an algorithm to derive in-
dexes required by our proposed heuristic.
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The contributions of this paper are as follows: (1) we ex-
ploit HTN planning with preferences to address modeling,
computing, and optimizing the composition of information
flows in software components; (2) we develop a method
to automatically translate Cascade patterns into HTN do-
main description and Cascade goals into preferences, and
to that end we address several unique challenges that hinder
planner performance in flow-based applications; (3) we per-
form extensive experiments with real-world patterns using
IBM InfoSphere Streams applications; and (4) we develop
an enhanced lookahead heuristic that improves HTN plan-
ning performance by 65% on average in those applications.

Preliminaries
Specifying Patterns in Cascade
The Cascade language has been proposed in (Ranganathan,
Riabov, and Udrea 2009) for specifying flow patterns. A
Cascade flow pattern describes a set of flows by describ-
ing different possible structures of flow graphs, and possi-
ble components that can be part of the graph. Components
in Cascade can have zero or more input ports and one or
more output ports. A component can be either primitive
or composite. A primitive component embeds a code frag-
ment from a flow-based language (e.g., SPADE (Gedik et
al. 2008)). These code fragments are used to convert a flow
into a program/script that can be deployed on a flow-based
information processing platform. A composite component
internally defines a flow of other components.

Figure 1 shows an example of a flow pattern, defining
a composite called StockBargainIndexComputation. Source
data can be obtained from either TAQTCP or TAQFile. This
data can be filtered by either a set of tickers, by an industry,
or neither as the filter components is optional (indicated by
the “?”). The VWAP and the Bargain Index calculations can
be performed by a variety of concrete components (which
inherit from abstract components CalculateVWAP and Cal-
culateBargainIndex respectively). The final results can be
visualized using a table, a time- or a stream-plot. Note, the
composite includes a sub-composite BIComputationCore.

A single flow pattern defines a number of actual flows. As
an example, let us assume there are 5 different descendants
for each of the abstract components. Then, the number of
possible flows defined by StockBargainIndexComputation is
2× 3× 5× 5× 3, or 450 flows.

A flow pattern in Cascade is a tuple F = (G(V, E),M),
where G is a directed acyclic graph, and M is a main com-
posite. Each vertex, v ∈ V , can be the invocation of one
or more of the following: (1) a primitive component, (2) a
composite component, (3) a choice of components, (4) an
abstract component with descendants, (5) a component, op-
tionally. Each directed edge, e ∈ E in the graph represents
the transfer of data from an output port of one component
to the input port of another component. Throughout the pa-
per, we refer to edges as streams, outgoing edges as “output
streams”, and ingoing edges as “input streams”. The main
composite, M , defines the set of allowable flows. For exam-
ple, if StockBargainIndexComputation is the main compos-
ite in Figure 1, then any of the 450 flows that it defines can

Figure 1: Example of a Cascade flow pattern.

potentially be deployed on the underlying platform.
In Cascade, output ports of components (output streams)

can be annotated with tags to describe the properties of the
produced data. Tags can be any keywords related to terms
of the business domain. Tags are used by the end-user to
specify the composition goals; we refer to as the Cascade
goals. For each graph composed according to the pattern,
tags associated with output streams are propagated down-
stream, recursively associating the union of all input tags
with outputs for each component. Cascade goals are then
matched to the description of graph output. Graphs that in-
clude all goal tags become candidate flows (or satisfying
flows) for the goal. For example, if we annotate the output
port of the FilterTradeByIndustry component with the tag
ByIndusty, there would be 2 × 5 × 5 × 3, or 150 satisfying
flows for the Cascade goal “ByIndustry”. Planning is used
to find “best” satisfying flows efficiently from the millions
of possible flows, present in a typical domain.

Hierarchical Task Network (HTN) Planning
HTN planning is a widely used planning paradigm and many
domain-independent HTN planners exist (Ghallab, Nau, and
Traverso 2004). The HTN planner is given the HTN plan-
ning problem: the initial state s0, the initial task network
w0, and the planning domainD (a set of operators and meth-
ods). HTN planning is performed by repeatedly decompos-
ing tasks, by the application of methods, into smaller and
smaller subtasks until a primitive decomposition of the ini-
tial task network is found. A task network is a pair (U,C)
where U is a set of tasks and C is a set of constraints. A
task is primitive if its name matches with an operator, oth-
erwise it is nonprimitive. An operator is a regular planning
action. It can be applied to accomplish a primitive task. A
method is described by its name, the task it can be applied to
task(m), and its task network subtasks(m). A method m
can accomplish a task t if there is a substitution σ such that
σ(t) =task(m). Several methods can accomplish a particular
nonprimitive task, leading to different decompositions of it.
Refer to (Ghallab et al. 2004) for more information.

HTNPLAN-P (Sohrabi et al. 2009) is a provably opti-
mal preference-based planner, built on top of a Lisp imple-
mentation of SHOP2 (Nau et al. 2003), a highly-optimized
HTN planner. HTNPLAN-P takes as input an HTN plan-
ning problem, specified in the SHOP2’s specification lan-
guage (not in PDDL). HTNPLAN-P performs incremental
search and uses variety of different heuristics including the
Lookahead Heuristic (LA). We modified HTNPLAN-P to
implement our proposed heuristic, the Enhanced Lookahead
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Heuristic (ELA). We also use HTNPLAN-P to evaluate our
approach.

From Cascade Patterns to HTN Planning
In this section, we describe an approach to create an HTN
planning problem with preferences from any Cascade flow
pattern and goals. In particular, we show how to: (1) cre-
ate an HTN planning domain from the definition of Cas-
cade components (2) represent the Cascade goals as pref-
erences. We refer to the SHOP2’s specification language
(also HTNPLAN-P’s input language) in Lisp. We consider
ordered and unordered task networks specified by keywords
“:ordered” and “:unordered”, distinguish operators by the
symbol “!” before their names, and variables by the sym-
bol “?” before their names.

Creating the HTN Planning Domain
In this section, we describe an approach to translate the dif-
ferent elements and unique features of Cascade flow patterns
to operators or methods, in an HTN planning domain.

Creating New Streams One of the features of stream pro-
cessing domains is that components produce one or more
new data streams from several existing ones. Further, the
precondition of each input port is only evaluated based on
the properties of connected streams; hence, instead of a
global state, the state of the world is partitioned into sev-
eral mutually independent ones. Although it is possible to
encode parts of these features in PDDL, the experimental
results in (Riabov and Liu 2005; 2006) show poor perfor-
mance of planners (on an attempt to formulate the problem
in PDDL). We believe the main difficulty in the PDDL rep-
resentation is the ability to address creating new objects that
have not been previously initialized to represent the gener-
ation of new streams. This can result in a large number of
symmetric objects, significantly slowing down the planner.

To address the creation of new uninitialized streams
we propose to use the assignment expression, available in
SHOP2’s input language, in the precondition of the opera-
tor that creates the new stream (will discuss how to model
Cascade components next). We use numbers to represent
the stream variables using a special predicate called sNum.
We then increase this number by manipulating the add and
delete effects of the operators that are creating new streams.
This sNum predicate acts as a counter to keep track of the
current value that we can assign for the new output streams.

The assignment expression takes the form “(assign v t)”
where v is a variable, and t is a term. Here is an example
of how we implement this approach for the “bargainIndex”
stream, the outgoing edge of the abstract component Calcu-
lateBargainIndex in Figure 1. The following precondition,
add and delete list belong to the corresponding operators of
any concrete component of this abstract component.
Pre:((sNum ?current)(assign ?bargainIndex ?current)

(assign ?newNum (call + 1 ?current)))
Delele List: ((sNum ?current))
Add List: ((sNum ?newNum))

Now for any invocation of the abstract component Cal-
culateBargainIndex, new numbers, hence, new streams are
used to represent the “bargainIndex” stream.

Tagging Model for Components Output ports of compo-
nents are annotated with tags to describe the properties of
the produced data. Some tags are called sticky tags, mean-
ing that these properties propagate to all downstream com-
ponents unless they are negated or removed explicitly. The
set of tags on each stream depends on all components that
appear before them or on all upstream output ports.

To represent the association of a tag to a stream, we use a
predicate “(Tag Stream)”, where Tag is a variable or a string
representing a tag (must be grounded before any evaluation
of state with respect to this predicate), and Stream is the vari-
able representing a stream. To address propagation of tags,
we use a forall expression, ensuring that all tags that appear
in the input streams propagate to the output streams unless
they are negated by the component. A forall expression in
SHOP2 is of the form “(forall X Y Z)”, where X is a list
of variables in Y , Y is a logical expression, Z is a list of
logical atoms. Here is an example going back to Figure 1.
?tradeQuote and ?filteredTradeQuote are the input and out-
put stream variables respectively for the FilterTradeQuote-
ByIndustry component. Note, we know all tags ahead of
time and they are represented by the predicate “(tags ?tag)”.
Also we use a special predicate diff to ensure the negated
tag “AllCompanies” does not propagate downstream.
(forall (?tag)(and (tags ?tag) (?tag ?QuoteInfo)

(diff ?tag AllCompanies))
((?tag ?filteredTradeQuote)))

Tag Hierarchy Tags used in Cascade belong to tag hier-
archy (or tag taxonomies). This notion is useful in inferring
additional tags. In the example in Figure 1, we know that
the “TableView” tag is a sub-tag of the tag “Visualizable”,
meaning that any stream annotated with the tag “TableView”
is also implicitly annotated by the tag “Visualizable”. To ad-
dress the tag hierarchy we use SHOP2 axioms. SHOP2
axioms are generalized versions of Horn clauses, written in
this form (:- head tail). Tail can be anything that appears in
the precondition of an operator or a method. The following
are axioms that express the hierarchy of views.

:- (Visualizable ?stream)((TableView ?stream))
:- (Visualizable ?stream)((StreamPlot ?stream))

Component Definition in the Flow Pattern Next, we put
together the different pieces described so far in order to cre-
ate the HTN planning domain. In particular, we represent
the abstract components by nonprimitive tasks, enabling the
use of methods to represent concrete components. For each
concrete component, we create new methods that can de-
compose this nonprimitive task (i.e., the abstract compo-
nent). If no method is written for handling a task, this is
an indication that the abstract component had no children.

Components can inherit from other components. The
net (or expanded) description of an inherited component in-
cludes not only the tags that annotate its output ports but
also the tags defined by its parent. We represent this in-
heritance model directly on each method that represents the
inherited component using helper operators that add to the
output stream, the tags that belong to the parent component.

We encode each primitive component as an HTN oper-
ator. The parameters of the HTN operator correspond to
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the input and output stream variables of the primitive com-
ponent. The preconditions of the operator include the “as-
sign expressions” as mentioned earlier to create new output
streams. The add list also includes the tags of the output
streams if any. The following is an HTN operator that cor-
responds to the TableView primitive component.
Operator: (!TableView ?bargainIndex ?output)
Pre: ((sNum ?current) (assign ?output ?current)

(assign ?newNum (call + 1 ?current)))
Delete List: ((sNum ?current))
Add List:((sNum ?newNum)(TableView ?bargainIndex)

(forall (?tag) (and (tags ?tag)
(?tag ?bargainIndex))((?tag ?output))

We encode each composite component as HTN meth-
ods with task networks that are either ordered or unordered.
Each composite component specifies a graph clause within
its body. The corresponding method addresses the graph
clause using task networks that comply with the ordering
of the components. For example, the graph clause within
the BIComputationCore composite component in Figure 1
can be encoded as the following task. Note the parameters
are omitted. Note also, we used ordered task networks for
representing the sequence of components, and an unordered
task network for representing the split in the data flow.
(:ordered (:unordered (!ExtractQuoteInfo)

(:ordered (!ExtractTradeInfo) (CalculateVWAP)))
(CalculateBargainIndex))

Structural Variations of Flows There are three types of
structural variation in Cascade: enumeration, optional com-
ponents, and use of high-level components. Structural vari-
ations create patterns that capture multiple flows. Enumer-
ations are specified by listing the different possible compo-
nents. To capture this we use multiple methods applicable to
the same task. A component can be specified as optional,
meaning that it may not appear as part of the flow. We cap-
ture optional components using methods that simulate the
no-op task. Abstract components are used in flow patterns
to capture high-level components. These components can be
replaced by their concrete components. In HTN, this is al-
ready captured by the use of nonprimitive tasks for abstract
components and methods for each concrete component.

Specifying Cascade Goals as Preferences
While Cascade flow patterns specify a set of flows, users can
be interested in only a subset of these. Thus, users are able
to specify the Cascade goals by providing a set of tags that
they would like to appear in the final stream. We propose
to specify the user-specified Cascade goals as Planning Do-
main Definition Language (PDDL3) (Gerevini et al. 2009)
simple preferences. Simple preferences are atemporal for-
mulae that express a preference for certain conditions to hold
in the final state of the plan. In PDDL3 the quality of the
plan is defined using a metric function. The PDDL3 func-
tion is-violated is used to assign appropriate weights to
different preference formula. Note, inconsistent preferences
are automatically handled by the metric function.

The advantage of encoding the Cascade goals as prefer-
ences is that the users can specify them outside the domain
description as an additional input to the problem. Also, by

encoding the Cascade goals as preferences, if the goals are
not achievable, a solution can still be found but with an as-
sociated quality measure. In addition, the preference-based
planner, HTNPLAN-P, can potentially guide the planner to-
wards achieving these preferences; can do branch and bound
with sound pruning using admissible heuristics, whenever
possible to guide the search toward a high-quality plan.

The following are some example. If the Cascade goals en-
coded as preferences are mutually inconsistent, we can as-
sign a higher weight to the “preferred” goal. Otherwise, we
can use uniform weights when defining a metric function.
(preference g1 (at end (ByIndustry ?finalStream)))
(preference g2 (at end (TableView ?finalStream)))
(preference g3 (at end (LinearIndex ?finalStream)))

Flow-Based HTN Planning Problem with
Preferences
In this section, we characterize a flow-based HTN planning
problem with preferences and discuss the relationship be-
tween satisfying flows and optimal plans.

A Cascade flow pattern problem is a 2-tuple PF =
(F,G), where F = (G(V, E),M) is a Cascade flow pat-
tern (where G is a directed acyclic graph, and M is the main
composite), and G is the set of Cascade goals. α is a satis-
fying flow for PF if and only if α is a flow that meets the
main composite M . Set of Cascade goals G is realizable if
and only if there exists at least one satisfying flow for it.

Given the Cascade flow pattern problem PF , we define
the corresponding flow-based HTN planning problem with
preferences as a 4-tuple P = (s0, w0, D,�), where: s0 is
the initial state consisting of a list of all tags and our special
predicates; w0 is the initial task network encoding of the
main component M ; D is the HTN planning domain, con-
sisting of a set of operators and methods derived from the
Cascade components v ∈ V; and � is a preorder between
plans dictated by the set of Cascade goals G.

Proposition 1 Let PF = (F,G) be a Cascade flow pattern
problem where G is realizable. Let P = (s0, w0, D,�) be
the corresponding flow-based HTN planning problem with
preferences. If α is an optimal plan for P , then we can con-
struct a flow (based on α) that is a satisfying flow for the
problem PF .

Consider the Cascade flow pattern problem PF with F
shown in Figure 1 and G be the “TableView” tag. Let P
be the corresponding flow-based HTN problem with pref-
erences. Then consider the following optimal plan for
P : [TAQFileSource(1), ExtradeTradeInfo(1,2), VWAPBy-
Time(2,3), ExtractQuoteInfo(1,4), BISimple(3,4,5), Table-
View(5,6)]. We can construct a flow in which the compo-
nents mentioned in the plan are the vertices and the edges
are determined by the numbered parameters corresponding
to the generated output streams. The resulting graph is not
only a flow but a satisfying flow for the problem PF .

Computation
In the previous section, we described a method that trans-
lates Cascade flow patterns and Cascade goals into an HTN
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planning problem with preferences. We also showed the
relationship between optimal plans and satisfying flows.
Now given a specification of preference-based HTN plan-
ning in hand we select HTNPLAN-P to compute these op-
timal plans that later get translated to satisfying flows for
the original Cascade flow patterns. In this section, we focus
on our proposed heuristic, and describe how the required in-
dexes for this heuristic can be generated in the preprocessing
step.

Enhanced Lookahead Heuristic (ELA)
The enhanced lookahead function estimates the metric value
achievable from a search node N . To estimate this met-
ric value, we compute a set of reachable tags for each task
within the initial task network. A set of tags are reachable by
a task if they are reachable by any plan that extends from de-
composing this task. Note, we assume that every nonprimi-
tive task can eventually have a primitive decomposition.

The ELA function is an underestimate of the actual met-
ric value because we ignore deleted tags, preconditions that
may prevent achieving a certain tag, and we compute the set
of all reachable tags, which in many cases is an overesti-
mate. Nevertheless, this does not necessarily mean that ELA
function is a lower bound on the metric value of any plan ex-
tending node N . However, if it is a lower bound, then it will
provide sound pruning (following Baier et al. 2009) if used
within the HTNPLAN-P search algorithm and provably op-
timal plans can get generated. A pruning strategy is sound
if no state is incorrectly pruned from the search space. That
is whenever a node is pruned from the search space, we can
prove that the metric value of any plan extending this node
will exceed the current bound best metric. To ensure that
the ELA is monotone, for each node we take the intersection
of the reachable tags computed for this node’s task and the
set of reachable tags for its immediate predecessor.

Proposition 2 The ELA function provides sound pruning if
the preferences are all PDDL3 simple preferences and the
metric function is non-decreasing in the number of violated
preferences and in plan length.

Our notion of reachable tags is similar to the notion of
“complete reachability set” in Marthi et al. (2007). While
they find a superset of all reachable states by a “high-level”
action a, we find a superset of all reachable tags by a task
t; this can be helpful in proving a certain task cannot reach
a goal. However, they assume that for each task a sound
and complete description of it is given in advance, whereas
we do not assume that. In addition, we are using this no-
tion of reachability to compute a heuristic, which we im-
plement in HTNPLAN-P. They use this notion for pruning
plans and not necessarily in guiding the search towards a
preferred plan.

Generation from HTN
In this section, we briefly discuss how to generate the reach-
able tags from the corresponding HTN planning problem.
Algorithm 1 shows pseudocode of our offline procedure that
creates a set of reachable tags for each task. It takes as input

Algorithm 1: The GetRTags (D, w, C) algorithm.
1 initialize global Map R; T ← ∅;
2 if w is a task network then
3 if w = ∅ then return C;
4 else if w = (:ordered t1 ... tn) then
5 for i=n to 1 do C ← GetRTags(D, ti, C);
6 else if w = (:unordered t1 ... tn) then
7 for i=1 to n do
8 Tti ← GetRTags(D, ti, ∅); T ← Tti ∪ T ;

9 for i=1 to n do
10 Cti ←

⋃n
j=1,j 6=i Tj ∪ C;

GetRTags(D, ti, Cti);

11 else if w is a task then
12 if R[w] is not defined then R[w]← ∅;
13 else if t is primitive then T ← add-list of an operator that

matches;
14 else if t is nonprimitive then
15 M ′← {m1, ...,mk} such that task(mi) match with

t;
16 U ′← {U1, ..., Uk} such that Ui = subtask(mi);
17 foreach Ui ∈ U ′ do T ← GetRTags(D,Ui, C) ∪ T ;
18 R[w]← R[w] ∪ T ∪ C;
19 return T ∪ C

the planning domain D, a set of tasks (or a single task) w,
and a set of tags to carry over C. The algorithm is called
initially with the initial task network w0, and C = ∅. To
track the produced tags for each task we use a map R. If
w is a task network then we consider three cases: 1) task
network is empty, we then return C, 2) w is an ordered task
network, then for each task ti we call the algorithm starting
with the right most task tn updating the carry C, 3) w is un-
ordered, then we call GetRTags twice, first to find out what
each task produces (line 8), and then again with the updated
set of carry tags (line 10). This ensures that we overestimate
the reachable tags regardless of the execution order.

If w is a task then we update its returned value R[w]. If w
is primitive, we find a set of tags it produces by looking at its
add-list. If w is nonprimitive then we first find all the meth-
ods that can be applied to decompose it and their associated
task networks. We then take a union of all tags produced by
a call to GetRTags for each of these task networks.

Our algorithm can be updated to deal with recursive tasks
by first identifying when loops occur and then by modifying
the algorithm to return special tags in place of a recursive
task’s returned value. We then use a fixed-point algorithm to
remove these special tags and update the values for all tasks.

Experimental Evaluation
We had two main objectives in our experimental analysis:
(1) evaluate the applicability of our approach when deal-
ing with large real-world applications or composition pat-
terns, (2) evaluate the computational time gain that may re-
sult from use of our proposed heuristic. To address our first
objective, we took a suite of diverse Cascade flow pattern
problems from patterns described by customers for IBM In-
foSphere Streams and applied our techniques to create the
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corresponding HTN planning problems with preferences.
We then examined the performance of HTNPLAN-P, on the
created problems. To address our second objective, we im-
plemented the preprocessing algorithm discussed earlier and
modified HTNPLAN-P to incorporate the enhanced looka-
head heuristic within its search strategy and then examined
its performance. A search strategy is a prioritized sequence
of heuristics that determines if a node is better than another.

We had 7 domains and more than 50 HTN planning prob-
lems in our experiments. The created HTN problems come
from patterns of varying sizes and therefore vary in hard-
ness. For example, a problem can be harder if the pattern had
many optional components or many choices, hence influenc-
ing the branching factor. Also a problem can be harder if the
tags that are part of the Cascade goal appear in the harder
to reach branches depending on the planner’s search strat-
egy. For HTNPLAN-P, it is harder if the goal tags appear
in the very right side of the search space since it explores
the search space from left to right if the heuristic is not in-
forming enough. All problems were run for 10 minutes, and
with a limit of 1GB per process. “OM” stands for “out of
memory”, and “OT” stands for “out of time”.

We show a subset of our results in Figure 2. Columns 5
and 6 show the time in seconds to find an optimal plan. We
ran HTNPLAN-P in its existing two modes: LA and No-LA.
LA means that the search makes use of the LA (lookahead)
heuristic (No-LA means it does not). Note HTNPLAN-P’s
other heuristics are used to break ties in both modes.We
measure plan length for each solved problem as a way to
show the number of generated output streams. We show the
number of possible optimal plans for each problem as an in-
dication of the size of the search space. This number is a
lower bound in many cases on the actual size of the search
space. Note we only find one optimal plan for each problem
through the incremental search performed by HTNPLAN-P.

The results in Figure 2 indicates the applicability and fea-
sibility of our approach as we increase the difficulty of the
problem. All problems were solved within 35 seconds by
at least one of the two modes used. The result also indicates
that not surprisingly, the LA heuristic performs better at least
in the harder cases (indicated in bold). This is partly because
the LA heuristic forms a sampling of the search space. In
some cases, due to the possible overhead in calculation of
the LA heuristic, we did not see an improvement. Note that
in some problems (3rd domain Problems 3 and 4), an opti-
mal plan was only found when the LA heuristic was used.

We had two sub-objectives in evaluating our proposed
heuristic, the Enhanced Lookahead Heuristic (ELA): (1) to
find out if it improves the time to find an optimal plan (2) to
see if it can be combined with the planner’s previous heuris-
tics, namely the LA heuristic. To address our objectives, we
identified cases where HTNPLAN-P has difficulty finding
the optimal solution. In particular we chose the third and
fourth domain and tested with goal tags that appear deep in
the right branch of the HTN search tree. These problems are
difficult because achieving the goal tags are harder and the
LA heuristic fails in providing sufficient guidance.

Figure 3 shows a subset of our results. LA then ELA (resp.
ELA then LA) column indicates that we use a strategy in

Plan # of No-LA LA
Dom Prob Length Plans Time (s) Time (s)

1

1 11 81 0.04 0.05
2 11 162 0.10 0.01
3 11 81 0.18 0.04

2

1 11 162 0.04 0.05
2 11 162 0.13 0.01
3 11 81 0.25 0.04

3

1 38 226 0.08 0.08
2 38 213 276.11 0.09
3 20 213 OM 0.14
4 38 226 OM 0.14

4

1 44 46082 0.09 0.11
2 92 46084 0.64 0.61
3 184 46088 4.80 4.50
4 368 460816 43.00 35.00

Figure 2: Evaluating the applicability of our approach by running
HTNPLAN-P (two modes) as we increase problem hardness.

LA then ELA ELA then LA Just ELA Just LA No-LA
Dom Prob Time (s) Time (s) Time (s) Time (s) Time (s)

3

5 1.70 1.70 0.07 0.13 OM
6 1.70 1.70 0.07 1.50 OM
7 1.80 1.80 0.07 1.60 OM
8 1.70 1.70 0.07 OM OM
9 1.40 1.40 0.07 OM OM

10 1.40 1.30 0.07 OM OM

4

5 0.58 0.45 0.02 0.56 0.12
6 2.28 2.24 0.07 3.01 0.38
7 14.40 14.28 0.44 19.71 1.44
8 104.70 102.83 3.15 147.00 8.00
9 349.80 341.20 10.61 486.53 18.95

10 OT OT 24.45 OT 40.20

Figure 3: Evaluation of the ELA heuristic.

which we compare two nodes first based on their LA (resp.
ELA) values, then break ties using their ELA (resp. ELA)
values. In the Just ELA and Just LA columns we used either
just LA or ELA. Finally in the No-LA column we did not use
either heuristics. Our results show that the ordering of the
heuristics does not seem to make any significant change in
the time it takes to find an optimal plan. The results also
show that using the ELA heuristic improves the search time
compared to other search strategies. In particular, there are
cases in which the planner fails to find the optimal plan when
using LA or No-LA but the optimal plan is found within the
tenth of a second when using the ELA heuristic. To mea-
sure the gain in computation time from the ELA heuristic
technique, we computed the percentage difference between
the LA heuristic and the ELA heuristic times, relative to the
worst time. We assigned a time of 600 to those that exceeded
the time or memory limit. The results show that on aver-
age we gained 65% improvement when using ELA for the
problems we used. This shows that our enhanced lookahead
heuristic seems to significantly improve the performance.

Summary and Related Work
There is a large body of work that explores the use of AI
planning for the task of automated Web service composition
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(e.g., (Pistore et al. 2005)). Additionally some explore the
use of some form of expert knowledge (e.g., (McIlraith and
Son 2002)). While similarly, many explore the use of HTN
planning, they rely on the translation of OWL-S (Martin et
al. 2007) service descriptions of services to HTN planning
(e.g., (Sirin et al. 2005)). Hence, the HTN planning prob-
lems driven from OWL-S generally ignore the data flow as-
pect of services, a major focus of Cascade flow patterns.

In this paper, we examined the correspondence between
HTN planning and automated composition of flow-based
applications. We proposed use of HTN planning and to
that end proposed a technique for creating an HTN plan-
ning problem with user preferences from Cascade flow pat-
terns and user-specified Cascade goals. This opens the door
to increased expressive power in flow pattern languages
such as Cascade, for instance the use of recursive structures
(e.g., loops), user preferences, and additional composition
constraints. We also developed a lookahead heuristic and
showed that it improves the performance of HTNPLAN-P
for the domains we used. The proposed heuristic is general
enough to be used within other HTN planners. We have per-
formed extensive experimentation that showed applicability
and promise of the proposed approach.
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