
Solving Goal Hybrid Markov Decision
Processes Using Numeric Classical Planners

Florent Teichteil-Königsbuch
florent.teichteil@onera.fr

Onera — The French Aerospace Lab
F-31055, Toulouse, France

Abstract

We present the domain-independent HRFF algorithm,
which solves goal-oriented HMDPs by incrementally
aggregating plans generated by the Metric-FF plan-
ner into a policy defined over discrete and continuous
state variables. HRFF takes into account non-monotonic
state variables, and complex combinations of many dis-
crete and continuous probability distributions. We intro-
duce new data structures and algorithmic paradigms to
deal with continuous state spaces: hybrid hierarchical
hash tables, domain determinization based on dynamic
domain sampling or on static computation of proba-
bility distributions’ modes, optimization settings under
Metric-FF based on plan probability and length. We
compare with HAO∗ on the Rover domain and show that
HRFF outperforms HAO∗ by many order of magnitudes
in terms of computation time and memory usage. We
also experiment challenging and combinatorial HMDP
versions of benchmarks from numeric classical plan-
ning, with continuous dead-ends and non-monotonic
continuous state variables.

Introduction
Hybrid Markov Decision Processes (HMDPs) with dis-
crete and continuous state variables (Kveton, Hauskrecht,
and Guestrin 2006; Marecki, Koenig, and Tambe 2007;
Meuleau et al. 2009) offer a rich model for planning in prob-
abilistic domains. Recent advances in solving HMDPs allow
practitioners to solve complex real problems, like irrigation
networks (Kveton, Hauskrecht, and Guestrin 2006) or Mars
rover navigation (Meuleau et al. 2009). Yet, state-of-the-art
algorithms usually consume a lot of time and memory, thus
hardly scaling to larger problems. One of the first papers
about using Hybrid MDPs for solving realistic applications
(Bresina et al. 2002), mentions that such complex problems
could be certainly only tackled by “new and dramatically
different approaches”. They propose an appealing heuris-
tic approach – radically different from existing methods –,
which would consist in building an initial plan that would
be progressively improved by “augmenting it with contin-
gent branches”. However, they only give principles, but not
practical algorithmic means, of such a method, mentioning

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that it would be non-trivial at all, even in the case of their
particular problem.

This idea has been actually recently implemented with
success in the field of goal-oriented MDPs with only dis-
crete state variables, where many approaches propose to
construct a policy by calling many times a determinis-
tic planner on a determinized domain (Yoon et al. 2008;
Kolobov, Mausam, and Weld 2010; Teichteil-Königsbuch,
Kuter, and Infantes 2010). Such methods have often proven
to scale better than traditional optimal MDP algorithms,
without compromising optimality too much. However, ex-
tending such algorithms like RFF to domains with continu-
ous variables, as envisioned by (Bresina et al. 2002), is not
straightforward because these algorithms rely on assump-
tions that are only valid for discrete state spaces: e.g. count-
able states, notions of explored or expanded graph nodes,
finite number of actions’ effects. Encoding and updating ac-
tion policies in efficient data structures over mixed discrete
and continuous state variables is still an opening issue.

In this paper, we present a heuristic algorithm named
HRFF, for Hybrid RFF, which approximately solve goal-
oriented HMDPs using some numeric classical planner. It
actually implements and extends intuitive principles de-
scribed by (Bresina et al. 2002) in a domain-independent
manner: it incrementally adds contingent branches to an ini-
tial plan in order to construct a compact and adaptive con-
tingent plan, i.e. policy, defined over discrete and continu-
ous state variables. HRFF is an extension of RFF (Teichteil-
Königsbuch, Kuter, and Infantes 2010) to hybrid state spaces
and continuous probabilistic changes of actions’ effects. As
RFF, HRFF incrementally aggregates plans into a policy, but
using the Metric-FF (Hoffmann 2003) hybrid determin-
istic planner from many states that are possibly reachable
by executing the current policy from the initial state. Our
algorithm introduces new data structures and algorithmic
paradigms to deal with continuous state spaces: hybrid hier-
archical hash tables, different domain determinization tech-
niques based on dynamic domain sampling or on static com-
putation of probability distributions’ modes, optimization
settings under Metric-FF based on plan probability and
length. HRFF does not only “simply” merge plans with the
current policy: it also takes into account probabilities of ac-
tions’ effects, in order to select the most helpful actions from
the plans to merge into the current policy, without decreasing

72

Problem Solving Using Classical Planners
AAAI Technical Report WS-12-12

its quality. We analyze HRFF and its underlying determin-
istic planner on probabilistically-interesting HMDP bench-
marks, and show that HRFF outperforms HAO∗ by many or-
der of magnitudes on the rover domain.

Goal Hybrid Markov Decision Processes
A goal-oriented Hybrid Markov Decision Process (goal-
HMDP) is a tuple 〈S,A, T, I,G〉 such that: S =

⊗n
i=1 V

c
i ×⊗m

i=1 V
d
i is a cartesian product of n continuous and m dis-

crete state variables; A is the set of enumerated and discrete
actions, each action a ∈ A is applicable over a set of states
Sa; T : S×A×S → [0; 1] is a transition function, such that
for all (s, a, s′) ∈ S × A × S, T (s, a, s′) = dP (s′ | a, s)
is the hybrid probability distribution of arriving in state s′
when starting in state s and applying action a; I is the initial
state of the decision process; G is the set of goal states.

We assume that the hybrid probability distribution dP of
the transition function can be algorithmically sampled and
that we can compute its mode, i.e. the values of its random
variables that maximize it. For an action a whose transi-
tion’s probability distribution is discrete, the mode can be
seen as the most probable effect of a. In our implemen-
tation, we use the Gnu Scientific Library (Free Software
Foundation 2011), which offers a wide set of distributions
used in many engineering or physics applications. Contrary
to many models of HMDPs or continuous MDPs proposed
in the literature (Kveton, Hauskrecht, and Guestrin 2006;
Marecki, Koenig, and Tambe 2007; Meuleau et al. 2009), we
do not assume continuous state variables to be in a closed in-
terval of R. We also handle non-monotonic continuous state
variables, which can increase or decrease over time.

Finally, we define a convenient function succ : S ×A→
2S such that for all state s and action a, succ(s, a) is the set
of states that are directly reachable with a positive probabil-
ity density by applying a in s. Because of continuous state
variables, succ(s, a) may be an infinite subset of S.

Solving goal-oriented HMDPs. We aim at computing a
policy function π : S → A that, ideally, maximizes the
probability to reach the goal, while minimizing the average
number of steps required to reach the goal from the start-
ing state. In particular, we are interested in problems where
there is a positive probability to reach some states, named
dead-ends, from which there is no path leading to the goal.
As in (Meuleau et al. 2009), we do not need to compute a
policy defined over all states, but a partial and closed one:
π : X ⊆ S → A such that I ∈ X and for all s ∈ X ,
succ(s, π(s)) ⊆ X . In other terms, executing π from the
initial state I will always lead to a state where the policy is
defined. However, some algorithms like HRFF presented in
the next, are based on Monte-Carlo sampling, which means
in theory that states reachable by applying the current pol-
icy from the initial state cannot be all explored in finite time.
Therefore, we define p-closed policies π : X ⊆ S → A
such that for all s ∈ X , Pr(succ(s, π(s)) ⊆ X) > p.

PPDDL-based modeling of HMDPs. We consider
domain-independent planning, where the goal-oriented

HMDP is modeled in an extension of PPDDL (Younes
and Littman 2004). Our extension to the grammar handles
various discrete and continuous probability distributions,
and so probabilistic continuous state changes (Teichteil-
Königsbuch 2008). It introduces random continuous
variable terms, whose stochastic values impact their under-
lying effects. For instance, in the following example, the
continuous variable fuel is assigned a stochastic value that
follows a lognormal probability distribution:
(probabilistic (lognormal

(capacity ?a) (* 0.001 (capacity ?a)) #rv)
(assign (fuel ?a) #rv))

As described in the next section, PPDDL-based modeling
of HMDPs allows us to automatically derive a deterministic
planning problem in the PDDL-2.1 language (Fox and Long
2003), which can be solved by a numeric deterministic plan-
ner like Metric-FF (Hoffmann 2003).

Hybrid probabilistic domain determinization
Like many successful algorithms for solving discrete-state
MDPs (Kolobov, Mausam, and Weld 2010; Yoon et al. 2008;
Teichteil-Königsbuch, Kuter, and Infantes 2010), our algo-
rithm relies on automatic domain-independent determiniza-
tion of the probabilistic domain. In the deterministic case,
two determinization strategies have been particularly stud-
ied: “most probable outcome determinization” and “all out-
come determinization”. The first one consists in translating
each probabilistic action into a deterministic action whose
effect is obtained by recursively keeping the most proba-
ble effect of each probabilistic rule that appears in the ef-
fect of the probabilistic action. The second one translates
each probabilistic action into as many deterministic actions
as the number of possible effects of the probabilistic action.
The first strategy leads to less deterministic actions, reduc-
ing the makespan of the deterministic planner, but it may end
up with empty plans if the goal of the probabilistic problem
is not reachable from the initial state by following only the
most probable trajectories of all actions in the model. On the
contrary, the second strategy is complete, but it drastically
increases the makespan of the deterministic planner.

Mode-based determinization. The “most probable out-
come determinization” can be easily generalized to HMDPs,
even if the probability of a continuous effect has no sense
a priori (continuous random variables have no probability
mass). The solution resides in the mode of probability dis-
tributions, which is the point in the space of random vari-
ables of the distribution, which maximizes the density of the
distribution. Concerning the transition function of actions in
HMDPs, the mode is the outcome hybrid state s∗ such that
dP (s∗) is maximum. For discrete-state MDPs, the mode of
the transition function T (s, a, s′) reduces to the most proba-
ble outcome of action a, i.e. the state with the highest chance
to be reached in one step when applying action a in state s.
This interpretation is not directly transposable to continuous
state spaces, since a single state has theoretically no chance
to be reached from a previous one. However, if we sample
many states s′ from s by applying a, most of them will be

73

distributed around the mode of the transition function, pro-
vided it is continuous and smooth enough in the vicinity of
the mode. For this reason, we can often interpret the mode
of the transition function as the state that attracts at most
outcomes of action a applied in state s.

Sampling-based determinization. As in discrete-state
MDPs, mode-based determinization does not guarantee to
find a policy that reaches the goal with a positive probabil-
ity, if none of the trajectories generated by following most
probable outcomes of actions from the initial state lead to
the goal. Indeed, the deterministic planner run on the deter-
minized domain would always return empty plans from all
possible initial states. In the discrete-state case, it has been
proposed to translate each probabilistic effect of each action
into a deterministic action, but this strategy is impossible
in continuous domains, because the number of outcomes of
actions is potentially infinite. Instead, we propose to dynam-
ically sample the effects of probabilistic actions to create
deterministic effects, at each iteration of the HMDP plan-
ner. Thus, the entire probabilistic domain is sampled and
translated into a deterministic domain before each call to the
deterministic planner. Implementation assumptions of the
mode-based determinization are valid, and the multinomial
distribution can be handled by this strategy.

Compact and adaptive representation of
functions defined over continuous variables

A key issue when constructing policies over continuous sub-
spaces is to represent functions of continuous variables,
which are (i) compact, (ii) as precise as possible (if not
exact) at some points of the continuous subspace, and (iii)
which can be updated with a cheap computation cost without
decreasing the precision at the points previously updated.
Our solution is actually a rewriting from scratch of hierarchi-
cal spatial hash tables, recently used with success in spatial
indexing and graphics computation (Pouchol et al. 2009),
but adapted to probabilistic planning operations, and espe-
cially to HRFF. Another motivation is to bring the efficiency
of standard hash tables, used in many successful discrete-
state MDP planners for encoding the search graph over the
discrete state variables, to continuous state variables. The
mathematical tool behind our planning-specific implemen-
tation is a hierarchical equivalence relation defined over the
continuous state variables.

Spatial hierarchical equivalence relation. In order to
avoid a blowup due to memorizing too many points in
the continuous subspace, we aim at representing all points
that look similar (in terms of value, policy, etc.) by only
one of them. Like many approaches of the literature (e.g.
(Lee and Lau 2004)), we specifically search for an adaptive
state space partitioning mechanism, whose level of detail is
higher in “important” areas of the subspace. To this end, we
define the ∼δ equivalence relation over Rn, which repre-
sents the continuous state variable subspace, such that, for

two points (vc1, · · · , vcn) and (wc1, · · · , wcn) in the continu-
ous subspace V c1 × · · · × V cn :1

(vc1, · · · , vcn) ∼δ (wc1, · · · , wcn)⇔
⌊
vci
δ

⌋
=

⌊
wci
δ

⌋
, 1 6 i 6 n

Intuitively, if we imagine a virtual grid discretization of
the continuous subspace whose step is δ, two points v and w
in the continuous subspace are equivalent if they belong to
the same (hypercube) cell centered at:

rδ(w) = rδ(v) =

((⌊
vc1
δ

⌋
+

1

2

)
· δ, · · · ,

(⌊
vcn
δ

⌋
+

1

2

)
· δ

)
Since this point is uniquely defined for all points equiva-

lent to it, it represents their equivalence class. We name it the
δ-reference point of the cell that contains it. We have now a
way to locally aggregate states by substituting them for their
δ-reference point, at a fixed level of detail defined by δ. Yet,
if we need to refine the aggregation inside a given cell, we
use a more detailed aggregation defined by the ∼ δ

2 equiv-
alence relation. Successive refinements of this equivalence
relation leads to an adaptive hierarchical partitioning of the
continuous subspace. Two important properties can be high-
lighted for the convergence of HMDP algorithms. P1: given
two points v and w in the continuous subspace, there exists
an integer k such that v 6∼

δ

2k w ; it means that we can always
achieve the most level of precision desired if we want. P2:
given two different integers k and q, all δ

2k
-reference points

are different from all δ
2q -reference points, meaning that as-

sociating points with their reference points in different par-
titioning levels does not lead to redundant information (re-
finement and point referencing increases information).

Spatial hierarchical hash tables. We need an efficient al-
gorithmic implementation of the previously defined equiva-
lence relations, so that we can: (i) implicitly represent grid
cells ; (ii) locally create these cells on-the-fly ; (iii) quickly
access and refine them. Our solution is a spatial hierarchical
hash table Hc

δ(T) whose first level of (implicit) discretiza-
tion is δ > 0 and T is the type of elements stored in the hash
table. Elements in Hc

δ(T) are tuples (point, data, htP tr),
where point is a δ-reference point (i.e. represents a cell at
the δ-step discretization), data is the information of type T
stored in the hash table, and htP tr is a pointer to aHc

δ/2(T)

refined hash table whose all elements are ∼δ-equivalent to
point (i.e. the cells they represent are all included in the cell
represented by the parent point). For each terminal element,
htP tr is NULL, meaning that it is not refined. Coordinates
of point are used to compute the hash value of each ele-
ment, because reference points are all unique and different.
We call δ-cells the elements of Hc

δ(T), since they represent
cells (with attached data) of size δ in the continuous sub-
space.

Three operations on spatial hierarchical hash tables are
sufficient for our needs: (1) find or (2) insert data

1For a real number x, bxc is its integer part.

74

points, and (3) refine δ-cells. The insert operation in-
serts a data point in the hierarchical hash table and returns
the inserted cell, or returns an already existing cell if there
is a matching in the highest-level hash table. The find op-
eration keeps track of the parent cell c of the current visited
hash table (i.e. that matched in the parent hash table) and
returns it if there is no matching with this hash table. Oth-
erwise, it returns the cell matched in the highest-level hash
table. The refine operation takes a δ-cell c as input, and
a point with its associated data, and inserts it in a refined
δ
2 -cell included in c. For this purpose, it creates a new hash
table, attaches it to cell c, and inserts the input data point in
it using cell size δ

2 for hash values and collision tests.

Hybrid hierarchical hash table. A single hierarchical
hash table can be used to store data defined over the entire
discrete and continuous state space, by pushing a standard
hash table, whose keys are sets of discrete state variables,
on top of our spatial hierarchical hash table. We noteHδ(T)
such a hybrid hierarchical hash table, whose δ is the top-
level size of cells, i.e. the size of elements included in the
top spatial hash table (at level 2). The refine operation
is only available from level 2 ; the find and insert op-
erations are valid at all levels, but the equality test and hash
value are computed by using the values of discrete state vari-
ables at the first level. The δ-reference point of a hybrid state
s = (sc, sd) is defined as: rδ(s) = (rδ(s

c), sd). The first
level of our hybrid hierarchical data structure can be seen as
a hash table implementation of the Hybrid Planning Graph
(HPG) used in HAO∗ (Meuleau et al. 2009). Other levels are
obviously different from KD-trees used in nodes of the HPG.

The HRFF algorithm
HRFF is an extension of RFF (Teichteil-Königsbuch, Kuter,
and Infantes 2010) to goal-oriented hybrid MDPs, which re-
lies on three new features specific to hybrid domains: (1)
hybrid hierarchical hash tables, (2) state equivalence rela-
tion∼δ and δ-reference states, (3) plan aggregation based on
actions performance statistics computed over hybrid states.
Like RFF, HRFF is a heuristic algorithm, which uses a deter-
ministic planner as a guide to generate helpful state trajecto-
ries, i.e. trajectories reaching the goal, that are incrementally
merged with the current policy. It is not optimal regarding
standard goal-oriented HMDPs criteria like minimal average
accumulated cost to the goal, but it aims at quickly obtaining
sufficiently good policies in practice.
HRFF incrementally aggregates plans computed by

Metric-FF on a determinization of the probabilistic do-
main into a policy, until the latter is (1− ε)-closed from the
initial state I , where ε > 0 is the computation precision. It
alternates two phases: the first one computes the reference
states that are reachable from the initial state by following
the current policy until reaching a cell where it is not yet
defined (such reference states are similar to reachable un-
expanded graph nodes in RFF) ; the second one expands
the policy on these reference states by calling Metric-FF
from them on a determinized problem. Convergence on the
hybrid state space is guaranteed thanks to properties P1 and

P2 of hybrid hierarchical hash tables highlighted in the pre-
vious section. Before going into details, we first explain how
we transfer deterministic actions from plans to the current
policy and update it, since this operation, which is relatively
trivial in discrete-state settings, is in fact quite challenging
in continuous subspaces.

Policy update using sampled plans. As discussed before,
we propose to use sampling-based domain-independent de-
terminization in hybrid domains to replace the “all outcome
determinization” employed in discrete-state MDPs, which is
not possible in hybrid domains because of the potentially
infinite number of actions’ outcomes. Yet, on-the-fly do-
main sampling is theoretically challenging, because two suc-
cessive calls to the deterministic planner on the same state
but with different sampled effects (of all actions in the do-
main) will likely provide very different plans: some sam-
plings will result in empty plans, some others with plans
of different lengths to the goal or with different probabili-
ties to reach the goal. Thus, unlike the discrete-state version
RFF, it is no longer possible to simply replace the action
of an already updated state. Moreover, in theory, the prob-
ability of visiting the same state multiple times during the
search (from different domain samplings) is zero in hybrid
domains. Our solution is to compute some statistical perfor-
mance metrics about actions included in the plans computed
by Metric-FF. It is worth noting that the statistics pre-
sented below also boost the mode-based determinization ap-
proach, by selecting actions that are more likely to lead to
the goal in the probabilistic domain.

Let s be some hybrid state and $ = (adi1 , · · · , a
d
ik
) be

a plan of length k computed by Metric-FF from s on a
sampled determinization of the probabilistic domain. When
we compute a sampled effect eϕ of an effect e of a given
probabilistic action a, we also compute the density dPe(eϕ)
of the probability distribution of e at the sampled effect eϕ.
The sampled effect gives rise to a deterministic action ad
whose density is: dP (a) = dPe(eϕ). It allows us to compute

the density of plan $: dP ($) =
∏

16j6k dP
(
adij

)
, which

roughly represents the probability of reaching the goal from
state s by executing plan $ with the current sampling of
the domain. We can also define the density of any subplan
$(adij) of $ starting at the jth reachable state, which gives
an idea of the probability to reach the goal from this state
using action adij in the current sampled domain. The length
k − j + 1 of this subplan is another good performance cri-
terion, which indicates the length of a solution trajectory to
the goal, starting in the jth reachable state from s with the
current sampled domain. Finally, performance statistics of
each action a are compiled in a hybrid hierarchical hash ta-
ble Ha

δ , such that for each hybrid state s, Ha

δ (s) is a pair
(cd, as) where: cd is the sum of the densities of all subplans
of prefix a starting in the highest-level cell containing s, and
as is the average length of these subplans.

We use the previously defined statistical metrics of actions
to rank plans generated from a given hybrid state, in such a
way to stabilize the current policy. Each time an action a is

75

found in a given subplan of Metric-FF, we first compute
its corresponding state s in the plan (by executing the plan
from its head up to this action in the determinized domain),
then we update its statistics hierarchical hash table at state s
and compute its metrics performance in this state using the
updated statistics (cd, as), defined as: ma(s) = −log(cd)×
as. We update the current policy in state s if s has not been
yet visited, or ifma(s) < V π(s), where V π(s) is the current
best value of plans generated from state s. We encode V π
in a hybrid hierarchical hash table, like action performance
statistics and the current policy.

Moreover, using Metric-FF allows us to optimize some
metric criterion during plan generation, which was not pos-
sible with deterministic planners used in determinization-
based approaches to solving discrete-state MDPs. Thus, in
order to consolidate the convergence of the value function
in the probabilistic domain, we can ask Metric-FF to find
the plan that minimizes the value function in the determin-
istic domain. To this end, we add two additional fluents to
the deterministic domain: one representing the sum of the
opposite logarithms (−log(·)) of probability densities of the
actions in the plan (seen as a cost), the other representing the
length of the plan. Unfortunately, Metric-FF is not able to
minimize fluent products, so we instead minimize their sum.
However, this strategy can significantly improve HRFF per-
formances in some domains. In others, it takes far too long
for Metric-FF to optimize plan metrics.

Putting it all together. Algorithm 1 presents a detailed
pseudo-code of HRFF. The main procedure (Lines 1 to 15)
is a loop, which alternates a phase of computation of refer-
ence states where no policy is defined and that are reachable
from the initial state by following the current policy (proce-
dure compute reachability, see Lines 16 to 31), and
a phase of policy expansion by merging plans computed by
Metric-FF from these reachable reference states with the
current policy (procedure generate trajectory, see
Lines 32 to 43). Iterations stop when the policy is (1 − ε)-
closed from the initial state (see Line 15). There are numer-
ous differences with the original RFF due to hybrid settings.
First, the sampling-based determinization strategy requires
to generate many sampled trajectories from the initial state
before entering the main loop (Lines 3 to 5), as well as
from each reachable reference state inside the loop (Lines
10 to 13). Indeed, many plans must be generated from dif-
ferent sampled domains to ensure a sufficient coverage of
the long-term effects of actions in the plans. Second, con-
trary to RFF, HRFF can not search for single reachable states
where no policy is defined, because there are infinite but,
above all, uncountable. Instead, it tracks reachable reference
points (Line 27) since they are countable: if two reachable
single states are in the same δ̃-cell of the continuous sub-
space, where there is no policy attached (policy query at
Line 25 fails), then they will be merged in the same reference
point, which represents their equivalence class for∼δ̃ . Third,
HRFF computes and updates statistics about Metric-FF
plans’ density and average length to the goal, optionally ask-
ing Metric-FF to directly optimize them in the solution

Algorithm 1: HRFF
input : I: initial state,M: PPDDL-based HMDP, N : number

of Monte-Carlo samples, δ: size of highest-level cells
(initial discretization)

output:H
π

δ : hybrid hierarchical hash table encoding the
solution policy

1 Procedure main()
2 policyProb← 0; referenceStates← Empty set of states;
3 if sampling-based determinization then
4 P ← sampling-based determinization ofM;
5 for 1 6 i 6 N do generate trajectory(P, I);

6 else P ← mode-based determinization ofM;
7 repeat
8 compute reachability();
9 for s ∈ referenceStates do

10 if sampling-based determinization then
11 P ← sampling-based determinization ofM;
12 for 1 6 i 6 N do
13 generate trajectory(P, s);

14 else generate trajectory(P, s);
15 until (1− policyProb) < ε ;
16 Procedure compute reachability()
17 referenceStates.clear(); policyProb← 0;
18 for 1 6 i 6 N do
19 s← I;
20 while true do
21 if s ∈ G then break ; // goal state

22 (v, δ̃, b)← H
V

δ .find(s);
23 if b = true and v.data = +∞ then
24 break ; // dead-end

25 (a, δ̃, b)← H
π

δ .find(s) ;
26 if b = false or s 6∈ Sa then
27 referenceStates.insert (rδ̃(s));
28 policyProb← policyProb+ 1

N
;

29 break;

30 else s← sample next state from a;

31 policyProb← 1− policyProb;
32 Procedure generate trajectory(P, s)
33 $ = (adi1 , · · · , a

d
ik
)← solve P with Metric-FF ;

34 if $ is empty then update hashtable(H
V

δ , s,+∞);
35 else
36 s′ ← s;
37 for 1 6 j 6 k do
38 m

adij (s′)← update statistics and compute action value
;

39 (v, δ̃, b)← H
V

δ .find(s
′);

40 if b = false or v.data > m
adij (s′) then

41 update hashtable(H
V

δ , s
′,m

adij (s′));
42 update hashtable(H

π

δ , s
′, adij) ;

43 s′ ← successor state of s′ with action adij in P;

44 Procedure update hashtable(Hδ, s, data)
45 (c, δ̃, b)← Hδ.insert(s);
46 if b = false then
47 if |data− c.data| > ε then Hδ.refine(c, δ̃, s, data);
48 else c.data← data ;

76

Figure 1: Rover domain (RAM is resident set size)

plan via additional fluents (Line 38). It then uses these statis-
tics to decide if it replaces an action of the policy in a given
cell by an action from the plan (Lines 40 to 42), which is
required by hybrid settings and was not present at all in the
original RFF. Finally, HRFF extensively relies on hybrid hi-
erarchical hash tables to access or update the value or the
policy over hybrid states (Lines 44 to 48) in a compact and
efficient way.

Experimental evaluation
We now present several experimentations conducted with
HRFF. We note: HRFF-MD-δ (resp. HRFF-SD-δ) the ver-
sion using mode-based (resp. sampling-based) determiniza-
tion with an initial (implicit) cell discretization of δ ;
HRFF∗-[M,S]D-δ denotes the same variants, but using
plan density and length optimization inside Metric-FF.
For all tests, mode-based (resp. sampling-based) deter-
minization was used with N = 100 (resp. 10) Monte-Carlo
samples at each iteration.

Comparison with HAO∗ on the Rover domain. This do-
main was designed by NASA (Bresina et al. 2002; Meuleau
et al. 2009). A rover has to take some pictures of rocks scat-
tered in an outdoor environment, while navigating along pre-
defined paths. It has been solved with success by the HAO∗
algorithm (Meuleau et al. 2009), which we could gracefully
use for comparison purposes. HAO∗ is an optimal heuris-
tic search algorithm, which performs dynamic programming
updates on a subset of states, and uses a heuristic estimate
of the optimal value function to decide which new states to
explore during the search. In our settings, HAO∗ minimizes
the average length of paths to the goal.

Figure 1 shows that HRFF uses nearly 3-order of mag-
nitude lower RAM than HAO∗ on all problems. Moreover,
HRFF’s memory usage increases at a far lower rate than
HAO∗. We come to the same conclusion regarding CPU time
consumption. We see that HRFF with δ = 1000 takes more
time and consumes more CPU than HRFF with δ = 10000,
which was expected because lower values of δ increase the
chance to discover unexplored cells during the search, thus
generating more Metric-FF trajectories. We also obtained
(not included in the paper) the same average length to the
goal with HRFF and with HAO∗ for all tested problems, al-
though only HAO∗ is proven to be optimal.

Impact of the deterministic planner. We now compare
different versions of HRFF on the Depot domain from the

HRFF version # calls % time

HRFF-MD-5 2059 81.93
HRFF∗-MD-5 642 86.65
HRFF-SD-5 3880 96.48
HRFF∗-SD-5 1550 97.38

Deterministic planner’s statistics (p3)

Figure 2: Depot domain

numeric part of the International Planning Competition (see
Figure 2). We added hybrid probabilistic effects (uniform,
gaussian, discrete distributions) such that all policies must
reach some dead-end states with a positive probability.

Computation times (top left plot) are globally the same
for all versions of HRFF, except for small problems where
mode-based determinization versions find solutions in less
time. The top right and bottom left plots show that using
plan density and length optimization inside Metric-FF
(versions HRFF∗-[M,S]D-5) does not need to improve
the quality of policies in terms of percentage of goal suc-
cess and average length to the goal. One reason might be
that Metric-FF is not able to optimize fluent products,
which would allow us to heuristically optimize these two
metrics (see previous section). It can only optimize their
sums, which does not seem to help in this domain. Finally,
the bottom right table highlights 2 main different impacts
of varying HRFF options: 1/ the portion of time used by all
calls to the deterministic planner, as well as the number of
calls to it, are higher with the sampling-based determiniza-
tion strategy, because more hybrid states are visited than
with the mode-based determinization strategy; 2/ for both
determinization strategies, using plan density and length op-
timization inside Metric-FF results in far less calls to the
deterministic planner, yet with the same global portion of
solving time used by the deterministic planner. It shows that
optimization settings in Metric-FF bring better actions
in the policy (it is more focused towards the goal), but at
a higher computation cost for the deterministic planner.

Results for navigation problems where using plan density
and length optimization inside Metric-FF is helpful are
discussed in (Teichteil-Königsbuch 2012). This paper also
presents results for larger problems that were successfully
solved by HRFF, with more than 700 binary state variables
and 10 continuous state variables for the biggest ones.

Conclusion
We have presented the HRFF algorithm for solving large
goal-oriented Hybrid Markov Decision Processes. HRFF
determinizes on-the-fly the input probabilistic domain,

77

solves it from many different reachable states by using
Metric-FF, and incrementally merges plans produced
by the latter with the policy. Some action statistics based
on plans’ probabilities and lengths are updated during the
search to improve the convergence of HRFF. The policy and
the action statistics are encoded in hybrid hierarchical hash
tables, which are novel, compact and efficient data struc-
tures to reason over hybrid state spaces. Experimental re-
sults show that HRFF outperforms HAO∗ by many order of
magnitudes on the rover domain. It can also solve problems,
whose size, complexity, and expressivity, were not yet tack-
led by any existing domain-independent HMDP algorithm,
to the best of our knowledge.

References
Bresina, J.; Dearden, R.; Meuleau, N.; Ramkrishnan, S.;
Smith, D.; and Washington, R. 2002. Planning under Con-
tinuous Time and Resource Uncertainty: A Challenge for
AI. In Proceedings of the Eighteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-02), 77–84. San
Francisco, CA: Morgan Kaufmann.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res. (JAIR) 20:61–124.
Free Software Foundation. 2011. GNU Scientific Library.
http://www.gnu.org/software/gsl/.
Hoffmann, J. 2003. The Metric-FF planning system: Trans-
lating ”ignoring delete lists” to numeric state variables. J.
Artif. Intell. Res. (JAIR) 20:291–341.
Kolobov, A.; Mausam; and Weld, D. S. 2010. Classical
planning in MDP heuristics: with a little help from general-
ization. In ICAPS, 97–104.
Kveton, B.; Hauskrecht, M.; and Guestrin, C. 2006. Solving
factored MDPs with hybrid state and action variables. J.
Artif. Int. Res. 27:153–201.
Lee, I. S., and Lau, H. Y. 2004. Adaptive state space par-
titioning for reinforcement learning. Engineering Applica-
tions of Artificial Intelligence 17(6):577 – 588.
Marecki, J.; Koenig, S.; and Tambe, M. 2007. A fast analyt-
ical algorithm for solving markov decision processes with
real-valued resources. In Proceedings of the 20th interna-
tional joint conference on Artifical intelligence, IJCAI’07,
2536–2541. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.
Meuleau, N.; Benazera, E.; Brafman, R. I.; Hansen, E. A.;
and Mausam. 2009. A heuristic search approach to planning
with continuous resources in stochastic domains. J. Artif.
Int. Res. 34:27–59.
Pouchol, M.; Ahmad, A.; Crespin, B.; and Terraz, O. 2009.
A hierarchical hashing scheme for nearest neighbor search
and broad-phase collision detection. J. Graphics, GPU, &
Game Tools 14(2):45–59.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental plan aggregation for generating policies in
MDPs. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume 1 -

Volume 1, AAMAS ’10, 1231–1238. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Teichteil-Königsbuch, F. 2008. Extending PPDDL1.0 to
Model Hybrid Markov Decision Processes. In Proceedings
of the ICAPS 2008 workshop on A Reality Check for Plan-
ning and Scheduling Under Uncertainty.
Teichteil-Königsbuch, F. 2012. Fast Incremental Policy
Compilation from Plans in Hybrid Probabilistic Domains.
In Proceedings of the 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS-12).
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of the 23rd national conference on Artificial in-
telligence - Volume 2, AAAI’08, 1010–1016. AAAI Press.
Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167,
Carnegie Mellon University.

78

