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Abstract

Human-robot interaction poses tight timing requirements on
visual as well as natural language processing in order to allow
for natural human-robot interaction. In particular, humans ex-
pect robots to incrementally resolve spoken references to vi-
sually perceivable objects as the referents are verbally de-
scribed. In this paper, we present an integrated robotic archi-
tecture with novel incremental vision and natural language
processing and demonstrate that incrementally refining atten-
tional focus using linguistic constraints achieves significantly
better performance of the vision system compared to non-
incremental visual processing.

Introduction
Spoken natural language understanding (NLU) situated in
a human-robot interaction (HRI) context is critically distin-
guished from other NLU applications by human expecta-
tions. In particular, human speakers expect co-located listen-
ers to rapidly and incrementally integrate perceptual context
(c.f. (Clark and Marshall 1981)). Such rapid integration can
be used to solve difficult natural language processing (NLP)
problems, such as resolving references and reducing parse
tree ambiguity.

The success (or failure) of this integration in constrain-
ing the semantic interpretation of the utterance is communi-
cated to the speaker though backchannel feedback such as
gaze, verbal acknowledgments, and head nodding, all pro-
duced during the processing of the ongoing utterance (c.f.
(Schiffrin 1988)). This feedback loop necessitates full bi-
directional integration of incremental vision and NLP sys-
tems, each constraining the other. In particular, natural lan-
guage descriptions can reduce the vision search space for
particular objects, thus increasing the speed of visual ref-
erence resolution, while visually-acquired sensory informa-
tion reduce parse-tree ambiguity by resolving attachment
problems.

In this paper, we evaluate the effectiveness of an inte-
grated incremental language and vision system by compar-
ing the operation of two vision processing modes: in the first,
a complete description of an object is first generated from
natural language input, followed by a single visual search
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through all existing candidates (i.e., every object in the envi-
ronment) for the referent; in the second, information gleaned
incrementally from natural language input is used to con-
strain vision’s search by progressively narrowing the field of
possible candidates, in effect focusing the robot’s attention
on an increasingly restrictive set of criteria. We demonstrate
that, by constraining vision in this way, the system is able to
resolve references significantly faster.

The structure of the paper is as follows. In Section 2, we
describe the problem in detail and review previous work in
both NLP and vision processing. Then, in Section 3,we in-
troduce our approach to accomplishing the integration of the
two types of processing. In Section 4, we discuss an experi-
ment that serves to evaluate our approach, closing in Section
5, with a summary of our accomplishments and proposals
for future work.

Motivation
Imagine a scenario where a human instructs a robot to put
objects in their proper places in a living room. The in-
structions will likely include object descriptions meant to
uniquely describe, out of all possible candidate objects, one
specific object or set of objects. It will also likely include
location descriptions, often constructed from one or more
prepositional phrases. The former presents a problem of vi-
sual search, while the latter presents a parsing problem.

The robot will typically be faced with several candidate
objects for clean-up and various possible places to put them
when trying to resolve referential expressions singling out
objects such as “the red book on the floor”, and spatial rela-
tions indicating goal locations such as “on the shelf next to
the vase”. When instructing a robot, humans will naturally
look towards an intended object or point to it, gazing back
at the robot to check whether it is attending to the object
(Yu, Scheutz, and Schermerhorn 2010). If the robot is able
to follow the human eye gaze to the target object, both hu-
man and robot will establish joint attention which will allow
the human instructor to check quickly (and often subcon-
sciously) that the robot understood the request correctly. In
addition to looking at the object, humans will typically also
expect a robot to verbally acknowledge understanding by
saying “OK” or “got it”, or ask for clarification effectively
such as “the one by the table?”. Feedback is often already
required for partial utterances, again through eye gaze, ver-
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bal acknowledgments, or through the immediate initiation of
an action such as the robot reaching for a book after it heard
“put the red book...” while the utterance is still going on.

Note that in such an interactive setting, vision and NLP
can mutually and incrementally constrain each other. For ex-
ample, visually observing a scene that is being talked about
can support understanding of ambiguous or underspecified
utterances while they are being processed – “the red book
on the floor” will most likely refer to a book visible to the
instructor, not the one behind her back. Similarly, a syntac-
tically ambiguous sentence like “put the book on the table
on the shelf” will become clear as soon as the robot detects
a book on the table, thus using visually observed spatial re-
lations to constrain parsing and semantic analysis.

Conversely, incremental processing of a verbal descrip-
tion of a scene can direct visual processing to the relevant
elements, e.g., “Put the red [[now prioritizing the processing
of red image regions]] shoe on [[now prioritizing horizon-
tal supporting surfaces on which an object can be placed]]
the box”, or “Take the shoe on your left [[now prioritizing
the lower left field of view]] ...”. In addition, non-linguistic
cues such as pointing and gaze direction can be incremen-
tally integrated with partial meanings to steer attention to
those elements of the scene relevant to the current discourse
situation.

While no current robotic NLU systems yet approach the
ability to handle natural unrestricted spoken input, several
efforts have advanced the state-of-the-art in natural lan-
guage interactions with artificial entities by tackling differ-
ent aspects of these challenges. For example, several robotic
systems add genuine NLU components to the robotic ar-
chitecture (c.f. Michalowski et al.’s robot GRACE com-
bines speech with a touch screen (Michalowski et al. 2007);
Müller et al’s semi-autonomous wheelchair (Müller et al.
1998) responds to coarse route descriptions; Moratz et al.
use goal-based or direction-based spoken commands to
guide a robot through an environment (Moratz, Fischer, and
Tenbrink 2001); Firby’s Reactive Action Packages (RAPs)
(Firby 1989) tightly integrate natural language and action
execution; and Kruijff et al. (Lison and Kruijff 2009) are
pursuing directions in incremental NLU for HRI very simi-
lar to ours (Brick and Scheutz 2007)).

However, only a few complete NLU systems oper-
ate in real-time. Allen et al. (Allen et al. 2007) use a
manually-designed bottom-up chart parser with preferences
and manually-defined weights rather than more standard
probabilities. Syntactic analysis is complemented by seman-
tic analysis that returns a logical form as a semantic net-
work. One drawback of this architecture in an HRI setting
is its standard pipeline architecture (i.e., syntactic analysis
is completed before semantic analysis can begin) which pre-
vents an embodied agent from timely backchanneling. Still
more integrated is the system by Schuler et al. (Schuler,
Wu, and Schwartz 2009) which processes phonological, syn-
tactic, and referential semantic information incrementally;
however, the system has not been used on a robot.

Several lines of research have addressed the problem of
modulated object search and interactive or incremental vi-
sual processing. Unconstrained object segmenation is a no-

toriously hard and ill-defined problem. Mishra et al. (Mishra
and Aloimonos 2009) use a seed point, obtained from user
input or attention, together with a log-polar image repre-
sentation to improve segmentation in 2D and depth images;
Johnson-Roberson et al. (Johnson-Roberson et al. 2010) seg-
ment point clouds with a similar technique for robot grasp-
ing.

While bottom-up attentional processes are well known,
more recent work addressed how top-down cues could bias
visual search in a task-dependant manner. Choi et al. (Choi
et al. 2004) train an adaptive resonance theory (ART) net-
work from human labeling to inhibit bottom up saliency for
non-relevant image regions. The VOCUS system by Frintrop
et al. (Frintrop, Backer, and Rome 2005) employs bottom-
up (scene-dependent) as well as top-down (target-specific)
cues, which are learned from training images, leading to
increased search performance. Navalpakkam et al. (Naval-
pakkam and Itti 2006) show how search speed can be max-
imized by incorporating prior statistical knowledge of tar-
get and distractor features to modulate the response gains of
neurons encoding features.

The concept of incremental visual processing has not re-
ceived much attention. Typically the aim is simply to make
vision methods “as fast as possible”. However often not all
results are needed immediately or there is a trade-off be-
tween speed and accuracy. In one early attempt, Toyama
et al. (Toyama and Hager 1996) layer so-called “selectors”
and “trackers” such that selectors at lower (coarser) levels
reduce the set of object candidates for higher levels, with
trackers at the top generating output sets of size one. Fail-
ure at level i lets the system fall back on layer i− 1, with
a broader search space but smaller accuracy. The system
can thus robustly maintain track, adjusting search space and
accordingly tracking accuracy to changing conditions. Zil-
lich (Zillich 2007) shows how an incremental approach in
the perceptual grouping of edge segments removes the ne-
cessity of tuning parameters, which are often difficult to se-
lect and tend to lead to brittle systems.

Most related to ours is work on interaction between vision
and language by Bergström et al. (Bergstrom, Bjorkman,
and Kragic 2011) and Johnson-Roberson et al. (Johnson-
Roberson et al. 2011) who perform interactive segmentation
of 2D images and 3D point clouds based on real-time MRF
graph partitioning. Dialogue such as robot: “I think there are
two objects” human: “No there are three objects” or robot:
“So, should I split the green segment?” human: “No, the yel-
low one!” biases graph partitioning to form the most likely
objects. However their work explicitly requires interaction
in both ways to refine segmentation, rather than just collect-
ing attentional cues from the human.

While these and related research efforts tackle various as-
pects of NLU and vision, no existing framework allows for
a deep integration of these different algorithms with a com-
plex vision system into a unified integrated robotic architec-
ture for natural HRI.

Integrating NLP and Vision
The context of situated natural language interactions be-
tween humans and robots provides several unique challenges
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for integrated robotic architectures, in particular, for visual
scene and natural language understanding. We focus on
two: Challenge 1: Human timing. All visual, natural lan-
guage and action processing must be performed and com-
pleted within human-acceptable timing, ranging from frac-
tions of a second for eye movements and other motor ac-
tions, to at most one second for verbal responses. Challenge
2: Incremental multi-modal constraint integration. All
processing must be incremental for the robot to be able to
determine the meanings of partial instructions, perform any
required perception actions including the establishment of
joint attention, and either acknowledge understanding or ask
for clarification.

We address these challenges through incremental natural
language and vision processing. The former gradually builds
a hierarchical semantic representation, requesting a new vi-
sion search for each new discourse entity. The latter then
allows for the continual refinement of the search by the ad-
dition of new filters as additional description is given by the
speaker.

Incremental NL
Our incremental natural language system uses a shift-reduce
dependency parser trained on approximately 2500 sen-
tences comprising the training set (sections 02–21) of the
Wall Street Journal (WSJ) corpus. The parser identifies la-
beled head/argument pairings (e.g., subject/predicate or ob-
ject/predicate) and identifies, for each word, a manually-
created dictionary definition. The argument structure is used
to select a compatible definition from several possibilities.
In this way, a semantic representation is produced for the
utterance.

The semantic representation is produced incrementally:
when a token is added or its argument structure augmented
by the addition of a new argument, a new semantic definition
is selected. Sensory information is requested incrementally
as well: each time a new entity is referenced, a new vision
search begins, and associated visual constraints (both adjec-
tival and prepositional modifiers) are sent to vision as they
are attached to their noun head. Semantics are produced in
this way for a variety of types of utterances, including in-
structions, direct and indirect questions, and statements.

For each entity referenced in one of the above types of
utterances, the robot consults its knowledge about the en-
tity and determines what type of sensor should be used to
identify and investigate the entity’s properties. For the pur-
poses of this paper, only visual entities (i.e., those requiring
visual sensors) are discussed. In the case of a visual entity
x, the robot calls the vision server in order to verify the ex-
istence of x. One of three cases then results: (1) The robot
is able to identify one or more objects that meet the descrip-
tion, and it assents, “yes”. (2) The robot is not able to iden-
tify any object meeting the description, and it announces, “I
could not find any”. or (3) The robot is expecting to find one
and only one such object (e.g., “there is the [or one] blue
object”), but it finds multiple such objects, and announces,
“I was not able to identify a single referent. Please use a
uniquely-identifying description.”

This verification process is used in the case of all types

(a) (b) (c)

(d) (e)

Figure 1: “Do you see the box on the left?”

Figure 2: A high-level view of the vision framework.

of utterances. Given a situation in which two blue objects
are before the robot, if the robot is asked, “Do you see the
blue object?” or if it is directed “Pick up the blue object,”
the robot, being unable to find a single uniquely-identified
object meeting the description in either case, will request ad-
ditional constraints in order to narrow the reference down. If
there are instead no blue objects, but the robot is still told
“there is a blue object,” the robot will respond that it cannot
find any blue object. Determiners communicate how many
objects that meet the description the robot is to expect. The
robot distinguishes between three types of determiners: ex-
istentials (a, any, some) which requires at least one such ob-
ject; referentials (the) which requires exactly one object; and
universals (all, every, each) that allow any number of objects.

Figure 1 shows an example of incremental processing, be-
ginning midsentence, just as we receive a determiner (our
first sign of a coming noun phrase) in Figure 1(a). A dummy
entity is created and a visual search begun. In Figures 1(b)
and 1(c), adjectives are attached to the dummy entity; as this
occurs, each adjective is interpreted as an additional con-
straints to the vision search. Figure 1(d) sees the appearance
of the real noun, which now replaces the dummy. A last at-
tachment is made in Figure 1(e) and the constraint sent to
vision.
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Incremental Vision
Given the goal of identifying the objects referred to by lan-
guage, we tackle the segmentation of these objects from the
overall visual scene by making use of an attention mecha-
nism that relies on cues incrementally obtained from NLP.
The input to visual processing are color images overlaid
with 3D point clouds obtained with an RGB-D sensor (a Mi-
crosoft Kinect) and organised into a rectangular array (depth
image).

The relevant types of vision processors are saliency op-
erators, object detectors and object trackers (see Figure 2).
In general, saliency operators detect the amount that a mod-
ifier such as a color or a location applies to a particular area
of space, while object detectors typically search for specific
nouns, such as “faces,” “persons,” “objects,” and “clusters,”
which are then tracked by object trackers. An utterance such
as “Do you see the blue object?” starts a visual search pro-
cess composed of a number of saliency operators and one de-
tector and its associated tracker. Several such visual search
processes can run in parallel. Within a search, visual pro-
cessors are registered to one another so that the completion
of a processing iteration in one processor notifies the other
processors that are related to the same search.

Saliency operators are computationally cheap bottom-
up processes operating independently and in parallel. When
created as part of a visual search they are configured using
processing descriptors (derived from, e.g., the adjectives ex-
tracted from the utterance) that specify what quality is be-
ing sought in this specific search. Each saliency operator
then outputs a 2D saliency map with values between 0 (not
salient) and 1 (maximally salient) overlaid on the 3D point
cloud. The output of different saliency operators is finally
combined by multiplying the saliency maps.

Color is an object property often used to point out a spe-
cific object in a scene. The color saliency operator maintains
a list of commonly used color words (“blue”, “red”, “black”)
associated with points in color space. These associations are
currently hand-coded but could also be learned as in (Sko-
caj et al. 2010). Distances of pixel colors to the salient color
selected by the processing descriptor are mapped to saliency
values in [0,1]. Several colors can be salient at the same time
(“the red or blue object”), in which case the minimum dis-
tance to a salient color is used.

Another common property when talking about a scene
containing several objects is relative location, as in “Pick
up the object on the left”. The location saliency operator
maps location in the image to saliency and can be config-
ured for “left”, “center”, “right”, “top”, “middle”, or “bot-
tom”. Saliency decreases linearly from the selected image
border to the opposite or in form of a Gaussian located in
the image center.

While operating on the raw input data prior to segmenta-
tion does not allow specification of object shape properties
(as objects have not yet been segmented), height saliency
(i.e., object height above the supporting surface) is a simple
cue to support properties such as “tall” and “short”. Height
from ground to the highest point above ground is mapped
to [0,1] for “tall” and [1,0] for “short”. Similarly, surface
orientation saliency, (i.e., the angle between local surface

normal and normal of the supporting plane) is mapped to
[0,1] for “horizontal” and [1,0] for “vertical”.

Some of these operators may not be very distinctive or
may be ambiguous (e.g., “short” could be the opposite of
“tall” or refer to the small length of an elongated object), so
we do not expect each of these operators to output very pre-
cise information. Rather, these operators need only to prior-
itize salient image regions (and thus corresponding parts of
the point cloud) in order to render the following segmenta-
tion step computationally more tractable.

Object detection is performed by segmenting the 3D
point cloud. For the experiments presented here we make
the simplifying assumption often used in robotics scenar-
ios (Johnson-Roberson et al. 2010; Wohlkinger and Vincze
2011) that objects are located on a dominant supporting
plane. Segmentation then amounts to detecting the support-
ing plane, subtracting it from the point cloud, and clustering
the remaining points into object candidates.

Clustering is based on the Euclidian clustering method
provided by the Point Cloud Library (PCL) (Rusu and
Cousins 2011) and is computationally the most expensive
step. Given that the output of saliency operators cannot be
considered very precise, we explicitly avoid thresholding
based on the combined saliency map to yield distinctive re-
gions of interest. Meaningful thresholds are difficult to de-
fine and will change from scene to scene. Our approach is
to instead sort 3D points in order of decreasing saliency and
use a modification of the PCL Euclidian clustering method
to start with the most salient point, greedily collect neigh-
bouring points and output the first most salient cluster, then
repeat. So we make sure that the most salient objects pop out
first and are immediately available as referents for language,
while less salient objects follow later.

In order to bind detected objects as visual referents a final
decision has to be made whether an object is, e.g., “blue and
tall”. This decision is based on a threshold value, performed
on segmented objects rather than on saliency maps. Once a
detector has successfully segmented objects from a scene,
object tracking is performed by a tracker tasked with con-
suming the resulting objects and tracking them from frame
to frame. To this end, previously found objects are associ-
ated with new ones based on spatial consistency. Two ob-
jects are considered equal if they overlap by more than 50%,
otherwise a new object is added to the tracker.

These processors work in tandem with each other and
share information. A visual search for a “tall red object,” for
instance, might consist of an “object” detector using the re-
sults from a “red” saliency operator and a “tall” saliency op-
erator. These implementation details are transparent to out-
side components such as natural language. Transparent in-
teraction is provided by the interface described in the next
subsection.

The Interface between Vision and NL
In order for a robotic system to perform naturally in the
context of human-robot interactions, a robot vision system
must quickly respond to incremental cues from natural lan-
guage in order to dynamically instantiate and modify vi-
sual searches. To accomplish this, a vision system needs

12



to expose an interface capable of naturally handling re-
quests from natural language components, thereby freeing
language components from requiring an intimate knowl-
edge of visual components and their capabilities. A common
currency must exist between language and vision compo-
nents to enable this timely and natural interaction. Addition-
ally, the vision framework must be able to rapidly convert
requests (possibly incomplete) from natural language into
meaningful visual searches in a robust and dynamic way.

The interface between natural language and vision is han-
dled by search managers, the highest level mechanism re-
sponsible for dynamically building searches from natural
language cues, which are used to shield outside components
from internal implementation details. When a new visual
search is triggered by an outside component via a call to
startNewVisualSearch, a new search manager is automati-
cally instantiated, and a unique search ID is returned to the
caller so that future visual constraint requests can be prop-
erly associated with that particular search. addVisualCon-
straint is then used to populate the search with the appropri-
ate combination of saliency detector and tracker without the
outside component being required to know any of the details
of the different processor types.

Because each processor has a unique capability depend-
ing on its underlying implementation, processors that are
used external to the vision system are responsible for ad-
vertising their capabilities to the search manager in order
to allow it to populate the search with the appropriate vi-
sion processors. For example, a processor capable of gener-
ating saliency maps for various color values might adver-
tise “red,” “green,” and “blue.” These advertisements are
specified at runtime via a series of xml configuration files.
(In keeping with the responsibilities of different types of
processors as described in the previous subsection, detec-
tor advertisements are generally nouns, as opposed to the
description-based advertisements of saliency operators.) In
this way the distinction between saliency operators and de-
tectors is hidden within the vision framework, and outside
callers are not required to have knowledge about their differ-
ences. Search managers automatically route incoming pred-
icates to the most appropriate vision component.

Once objects have been detected and reach the tracking
stage, outside components (e.g., NL) can query vision to re-
trieve results about the visual search (e.g., by calling get-
TokensByTypeId). Once a visual search is no longer needed,
a request to vision to endVisualSearch can be made, which
stops all vision components related to that particular search.

To summarize, as a search manager receives incremen-
tal constraints, the incoming predicate is mapped to a new
instance of the appropriate vision component. An arbitrary
number of constraints can be incrementally added to a
search, and a fully functional visual search is composed
of a detector, tracker, and zero or more saliency operators.
Clients are relieved from details of the underlying vision
framework, providing only a search ID and predicate con-
straints to build visual searches and query for results.

(a) “Do you see the red object?” (b) “Do you see a green tall ob-
ject on the right?”

Figure 3: Note the drastic changes in lighting in these scenes.

(a) Average time to detect tar-
get object across scenes

(b) Average time to detect tar-
get object across objects

Figure 4:

Results and Discussion
We evaluated the effectiveness of language-modulated atten-
tion by measuring the time needed to identify a specific dis-
course referent. We constructed five scenes, each composed
of five objects, which were subsequently referred to in ut-
terances such as “Do you see the red object?” or “Do you
see a tall green object on the right?” (see Figure 3). Note
the drastic differences in lighting, which would make sim-
ple thresholding methods based on color very challenging.

Each scene (object configuration) was paired with a set
of five utterances, each uniquely identifying a different tar-
get object within the configuration. Each scene/utterance run
was repeated 10 times as the time to identify the target was
measured. Without attention (i.e., performing a single vi-
sion search on all objects) the order in which objects were
checked for compatibility with the description was random;
on average the target object was found after checking half
of the objects. When attention was used to incrementally fil-
ter the visual scene for saliency (in terms of the descriptive
constraints) the target was often the first detected.

The average times and standard deviations are illustrated
in Figures 4(a) and 4(b). Figure 4(a) shows the time until
detection of the target object for each scene, averaged over
all target objects. In most cases, we can see that the aver-
age detection time without attention is roughly twice the de-
tection time with attention. This is what we would expect:
with attention the target object is typically the first found;
without attention the target object is on average the 2.5-th
found. Figure 4(b) shows average detection times per object
over all scenes. Note that object O5 (the tall green Pringles
can) shows almost no improvement. In the absence of atten-
tion, pixels are clustered row by row beginning at the top.
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As a result, the tallest object often happens to be the first
object detected. For smaller objects the difference is more
pronounced.

These results clearly demonstrate that attentional cues ob-
tained from dialogue efficiently steer visual processing to
relevant parts of the scene, resulting in significantly reduced
runtimes for detecting target objects. However, the system
does have limitations.

While the system is quite general due to the training gram-
mar and handling of different types of utterances, it is neg-
atively affected by the lack of explicit directionality inher-
ent in the dependency grammar. The lack of directional-
ity extending into the natural language definitions, the sys-
tem has some difficulty distinguishing questions from state-
ments. For example, is requires a subject and a predicate
(e.g., “[there]SBJ is [a blue box]PRD, represented by the defi-
nition λxSBJ .λxPRD.exists(yPRD). In both questions (“is there
y”) and statements (“there is y”), the same argument struc-
ture, and thus, problematically, the same definition is used,
and the identical semantics produced (e.g., exists(y)). In
the case of the question, however, the semantics produced
should instead be report(sel f ,exists(y)), indicating that the
robot should report the truth of the proposition exists(y).

Currently, this is handled by treating statements as ques-
tions: the robot must report on the truth of a statement as if
it were answering a question. This results in a positive bene-
fit, that the report is constantly verifying everything it is told
rather than assuming it to be true; however, it results from a
general limitation: in all cases where multiple word senses
share the same POS tag/valency pair, but different semantic
definitions, it is not currently possible to distinguish between
the two senses and use the different definitions.

A further limitation is that, while the syntactic system is
trained on a large corpus and is thus generally applicable to a
large variety of sentences, currently the only part of the defi-
nitions that is learnable from annotated data is the argument
structure or valency. The semantic form itself is learnable
only from a set of manually-written rules. While the exis-
tence of groups of words forming semantic forms in exactly
the same way does render the writing of such rules feasible,
relying on rules is less than ideal. This limitation is currently
being addressed in ongoing research.

In the experiments presented here, the visual processing
required was fairly simple; one may be tempted to argue
that with some optimisation, possibly including GPU im-
plementation of the 3D point clustering based segmentation
step (the computational bottleneck in our case), the system
could be made “fast enough” without requiring this integra-
tion. But visual processing does not stop here. Once we add
object categorization and recognition, and begin to elimi-
nate the initial simplifying assumptions, we are bound to
yet again hit performance bottlenecks. Biological vision sys-
tems have developed attentional mechanisms to be able to
quickly react to the relevant parts of the visual scene. Ac-
cordingly the focus in our work lies in developing principled
attentional mechanisms for the case of human robot interac-
tion to support visual processing at time frames compatible
with human language, rather than in optimising specific vi-
sion methods for certain scenarios.

Conclusions and Future Work
In this paper, we argued for integrated incremental ver-
sions of vision and NLP in order for robots to meet the
requirements posed by natural interactions with humans.
We demonstrated experimentally that constraining vision
with incrementally-acquired natural language descriptions
can significantly speed up vision processing, and thus also
reference grounding. The reverse direction, constraining nat-
ural language interpretation with visually-acquired informa-
tion about objects, will be the next problem to tackle.

Another extension will address the fact that the decision
whether a detected object is considered to meet a verbal de-
scription is based on a threshold. Future work will employ
probabilistic models of object properties (such as the incre-
mentally learned KDE based representations of Skocaj et
al. (Skocaj et al. 2010)) and on how these probabilities can
be dealt with by NLP. This will require a substantive ex-
tension of the NLU system as well in order to fuse existing
confidence measures (e.g., of the parsers) with those coming
from the vision system. Finally, we will also populate the
vision framework with more processors (such as object cat-
egorisation as in Wohlkinger et al. (Wohlkinger and Vincze
2011)), object recognition algorithms as well as a variety of
further saliency operators.
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