Neural-Symbolic Learning and Reasoning
AAAI Technical Report WS-12-11

Neural-Symbolic Rule-Based Monitoring

Artur d’Avila Garcez

City University London
aag @soi.city.ac.uk

Alan Perotti
University of Turin
perotti @di.unito.it

Abstract

In this paper we present a neural-symbolic system for
monitoring traces of observations in sofware systems. To this
end, we define an algorithm that translates a RuleR rule-based
monitoring system (RS) into a rule-based neural network sys-
tem (RNNS). We then show how the RNNS can perform trace
monitoring effectively and analyze its performance, report-
ing promising preliminary results. Finally, we discuss how
network learning could be used within RNNS to embed the
system into a framework for iterative verification and model
adaptation. It is hoped that a tight integration of verification
and adaptation within the neural-symbolic approach will help
support the development of self-adapting, self-healing sys-
tems.

1 Introduction

Several results in the area of neural-symbolic integration
have shown how the embedding of symbolic knowledge
into a connectionist model (such as a neural network) can
provide a flexible, parallelizable environment for effective
learning and reasoning (see (d’Avila Garcez, Broda, and
Gabbay 2002) for an introduction).

In this paper, we argue that adopting the neural-symbolic
methodology can be advantageous also in the area of run-
time monitoring and adaptation of software systems (Bar-
ringer, Rydeheard, and Havelund 2010). Rule systems allow
the verification of system properties by checking whether
sequences (traces) of activities comply with the properties,
one trace step at a time. We show that neural-symbolic inte-
gration can offer an iterative framework for fast monitoring
of properties and model revision. A recent and powerful
rule-based monitoring tool is RuleR (Barringer, Rydeheard,
and Havelund 2010). In this paper, we focus on the creation
of the neural-symbolic monitoring system from RuleR, and
leave the integration of model revision as future work. How-
ever, given the nature of the neural-symbolic approach, this
integration should be straightforward (although experimen-
tal evaluations will obviously be needed). A direct link be-
tween RuleR and neural networks is established by a trans-
lation algorithm first introduced in this paper.

In a nutshell, we address the following research question:
how can we perform rule-based trace monitoring within

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

21

Guido Boella

University of Turin
boella@di.unito.it

Daniele Rispoli
University of Turin
daniele.rispoli@gmail.com

a neural-symbolic system? We tackle this question by (i)
defining a translation from rule-based monitoring system
RuleR into a connectionist network model and (ii) show-
ing how one can use the resulting network model to perform
trace monitoring efficiently; we analyze the performance of
an implementation of our system on a benchmark example,
checking accuracy and measuring system scalability.

The paper is organized as follows: in Section 2 we de-
scribe the relevant background about the neural-symbolic
approach and the RuleR monitoring system. Section 3 intro-
duces the encoding of a rule system in RuleR into a neural
network, and Section 4 defines how the network can be used
for online trace monitoring. Section 5 gives an example of
translation and monitoring, and Section 6 discusses the ex-
periments we did to test our implementation. Section 7 dis-
cusses directions for future work, and Section 8 concludes
the paper.

2 Background

This paper presents an integration of the monitoring system
RuleR (Barringer, Rydeheard, and Havelund 2010) with the
paradigm of neural-symbolic computation (d’Avila Garcez,
Broda, and Gabbay 2002). In this section, we briefly sum-
marize the two.

The main purpose of a neural-symbolic system is to bring
together the connectionist and symbolic approaches exploit-
ing the strengths of both paradigms and, hopefully, avoid-
ing their drawbacks. In (Towell and Shavlik 1994), Tow-
ell and Shavlik presented the influential neural-symbolic
system KBANN (Knowledge-Based Artificial Neural Net-
work), a system for rule insertion, refinement and extraction
from feedforward neural networks. KBANN served as in-
spiration for the construction of the Connectionist Inductive
Learning and Logic Programming (CILP) system (d’Avila
Garcez, Broda, and Gabbay 2002; d’Avila Garcez and Za-
verucha 1999). CILP builds upon KBANN and (Hoell-
dobler and Kalinke 1994) to provide a sound theoretical
foundation for reasoning in artificial neural networks and
learning capabilities; the general framework of a neural-
symbolic system is composed by three main phases: en-
coding symbolic knowledge in a neural network, perform-
ing theory revision (by means of some learning algorithm)
in the network, and extracting a revised knowledge from
the trained network. In what follows, we use a variant

of CILP since we are interested in the automated integra-
tion of verification (through reasoning, model checking) and
adaptation (through learning) of software systems and mod-
els. More recently, Borges et al. (Borges et al. 2011;
Borges, d’Avila Garcez, and Lamb 2011) proposed a new
neural-symbolic system, named Sequential Connectionist
Temporal Logic (SCTL) for integrating verification and
adaptation of software descriptions. This framework en-
codes a system description into a particular kind of network,
namely NARX (Nonlinear AutoRegressive with eXogenous
inputs) and then a learning phase allows the integration of
different knowledge sources. Properties to be satisfied are
checked by means of an external model checking tool (such
as NuSMV): if a property is not satisfied, the tool provides
a counterexample that can be adapted with the help of an
expert and be used to train the NARX network to hopefully
adapt the model in the right direction. In this paper, we argue
that the simpler networks used by CILP can achieve similar
results, and show that a variation of CILP should be able to
implement the entire process without the need for using an
external model checking tool.

RuleR is a rule-based monitoring system. A wide range
of temporal logics and other specification formalisms can
be compiled into RuleR rules, and the obtained rule sys-
tem can be used for run-time verification. RuleR relies on
the declarative past and imperative future paradigm in exe-
cutable logic (Gabbay 1987); in its simpler version, RuleR
encodes propositional LTL, with logical formulae normal-
ized in Separated Normal Form (Fisher 1997). RuleR is de-
fined as a tuple (R, O, P,I,F). R are rule names and O
observation names. Rules (defined in P) are formed from
a condition and a body, the fist one being a conjunction
of literals and the second a disjunctive set of literals; liter-
als are (potentially negative) occurrences of rule names or
observation names. The main idea is that rules can acti-
vate/deactivate other rules at any iteration. When a rule is
active, if its condition evaluates to true for the current state
(formed from the current observations and previous obliga-
tions of the rule system), its body defines what rules are ac-
tivated in the next state and what observations must hold.
Together with rules and observations, a monitoring system
is composed of initial rules (/) and forbidden ones (F'). The
monitoring of a trace follows an iterative algorithm: given a
set of initial states, at each iteration the set of new observa-
tions (representing a step in the trace) is given. Inconsistent
states are removed, active rules are triggered and a new fron-
tier is obtained. At the end of the trace, all states containing
forbidden rules are removed, and if at least one state remains
then the trace is said to satisfy the rule set. As an example,
consider the rule g : — a,7¢ | b.

Suppose that 7 is in the initial and in the forbidden set. This
rule system is formally defined as

(ro} {a, b}, {ro: —> a,70 | b}, {{ro}}, {ro})

and it models the LTL formula a until b. The system
starts with r(active, and that rule can either reactivate itself
together with the future-time obligation a or just impose
the obligation b. Note that if neither a nor b are observed,
no consistent state is created and the monitoring fails. If

22

b is observed, rg is not activated anymore: since r(is the
(only) forbidden rule, the trace satisfies the system iff r(is
not activated at the end of the trace, that is, if b has been
observed at least once after a sequence of a’s.

3 From Rule Systems to Neural Networks

In this section, we describe how we encode RuleR rules
into feedforward, single-hidden layer networks. In the spirit
of CILP, these networks will then be turned into recurrent
networks to achieve the parallel computation of the rules.
RuleR rules (from now on simply called “rules” for conve-
nience) are composed by a name, a condition and a body:

name : condition — body

They are often represented as tuples:
({name}, {condition}, {body})

Given arule (r, C, B), we may refer to its condition as C'(r)
and to its body as B(r), respectively. Conditions are con-
junctions of literals, while bodies are disjunctions of con-
junctions of literals; literals are (potentially negated) occur-
rences of rule names and observation names. A rule system
isatuple (R, O, P, I, F) such that R is a set of rule names,
O a set of observation names, P is the actual description of
the rules, I is a set of possible initial states and F' is the set
of forbidden rules.

3.1 Network architecture

Algorithm 1 below describes the steps for encoding a rule
system into the neural network. Note that all neurons are la-
belled with the (potentially negated) name of the literals in
the rule system. We use z; to indicate the neuron with la-
bel x in the input layer (similarly for the hidden and output
layers); given a set of literals L, L™ is its negative closure.
As in CILP, the main idea is to map conditions to the input

Algorithm 1 Translation algorithm

1: forallz € {R* UO*} do

2: add a neuron (labelled z) in the input layer.
add a neuron (labelled x) in the output layer.
add a recurrent connection from x,, to z;

end for

for all z € Rdo
add a neuron (labelled z) in the hidden layer.
add a recurrent connection from z, to xp,

9: end for

10: for all (r,C, B) € P do

11: for all c € C do

12: add a connection from c; to 7.

13: end for

14: forallb € B do

A

15: add a connection from ry, to b,,.
16: end for
17: end for

layer, rules to hidden neurons and bodies to the output layer.

The behaviour of a rule (that is, a satisfied condition trigger-
ing the body) is mirrored in a signal propagation from the
input layer to the ouput layer through the activation of the
hidden neuron representing the rule.

Lines 1,2,3 of the algorithm create, both in the input and out-
put layer, a neuron for every rule or observation name and
its negation. We represent negation explicitly since the mon-
itoring process requires the network to detect (and remove)
inconsistencies (hence, modelling negation with the lack of
signal would not allow us to do this). Lines 6,7 create a
hidden neuron for each rule name. Lines 1,4 add a normal
recurrent connection from the output to the input layer; lines
6,8 add a recurrent connection from the output to the hid-
den layer (differently from CILP). This connection is used
to modify the hidden neuron’s threshold and it models the
rule activation: its use will be explained in what follows.
Lines 10 to 16 create the feedforward connections from the
condition literals to the rule names and from the names to
the body literals.

3.2 Rule-based Neural Network System

We now define the network system more formally.
Definition 1. A Rule-based Neural Network RN N is a
network, obtained from a RuleR rule system such that:

the architecture is given by Algorithm 1 above;

all the feedforward connections have weight W ;

all the recurrent connections have weight 1;

all the hidden and output neurons have threshold 0;

all neurons have activation functions h(-),

where W, 0 and h(-) are computed as done for CILP in
(d’Avila Garcez, Broda, and Gabbay 2002).

Definition 2. A Rule-based Neural Network System is a
tuple (RNN, I, F,C,,C,), where

e RNN is a rule-based neural network as introduced in
Definition 1;

e [is a set of rule names to be activated ad the beginning
of the monitoring;

o [is a set of rule names that are required not to be acti-
vated at the end of the monitoring;

e (.. is a function that checks the output of the network for
consistency;

e C, is a function that checks consistency between the in-
coming observations and the rule-generated obligations.

We compute weights, thresholds and activation functions
of RN N's as in (d’Avila Garcez, Broda, and Gabbay 2002)
in order to implement the following conditions:

e the input potential of a hidden neuron x; can only ex-
ceed x,’s threshold (,,,), activating x5, when all the pos-
itive antecedents of rule x are assigned the truth value true
while all the negative antecedents of x are assigned false;

e the input potential of an output neuron xz, can only ex-
ceed z,’s threshold (6,), activating z,, when at least one
hidden neuron vy, that is connected to z, is activated.

23

The hidden neurons of a RN N have two additional features:
threshold update and disjunct selection. The threshold up-
date feature mirrors the activation of the respective rule. In
RuleR, if a rule name occurs in the state generated by the
body of the activated rules, in the next iteration that rule is
active, that is, its condition can be checked and, if this is the
case, its body is triggered. In RN N, after a hidden neuron
fires, it sets its threshold to an arbitrarily high value (sym-
bolically, +c0). This will prevent the hidden neuron from
firing again at the next iteration, as no input will be large
enough to pass this threshold. Each positive rule-labelled
output neuron x,, that gets triggered afterwards will then set
the threshold of the respective hidden neuron (z, that is,
the neuron with the same label) back to 6, , so that this neu-
ron can fire in the next iteration if the input signal is strong
enough. Summarizing, hidden neurons do not fire (due to
the high threshold) unless the respective output neuron fired
at the previous iteration, just like RuleR rules will not be ac-
tive unless the rule name occurred in the output status in the
previous iteration.

Disjunct selection copes with the body of the rules: they are
disjunctions of conjunctions of literals. It is worth noting
that RuleR handles a frontier of possible states: set I may
contain different initial states with the disjunctions in the
body of the rules generating different states (although some
may be pruned due to inconsistency). Note that, when sev-
eral rules with disjunctive bodies are triggered, the disjuncts
have to be selected and combined. To implement this, the
network is made to reason hypothetically. For simplicity,
we use a single state and select a disjunct from the body of
each active rule at each iteration. This assumption of dis-
juncts allows a more compact representation in the neural
network than representing the entire frontier would, but may
require multiple runs over the same trace, since a trace may
satisfy the rule system by making a wrong assumption of
disjuncts. We will discuss this choice in the experiments.
In particular, we will evaluate how, with some implementa-
tion adjustments, this choice has little impact on expressive
power and performance. In contrast, if we were to imple-
ment a single-state frontier in the network, we would be able
to monitor several traces at a time, since a batch can be en-
coded as a matrix, each line corresponding to a trace. This
implementation decision may depend on the application at
hand according to its theoretical maximum parallel speed-

up.

4 Monitoring

Given a RuleR rule system R, we can generate a rule-based
neural network system RNNS = (RNN,I,F,C,,C,).
This system can be used to check if traces comply with the
temporal logic property encoded by R. A trace is a finite
sequence of observations, 7 = 01, 09, .., 0,,. The monitoring
algorithm is described in Algorithm 2.

Lines (1 to 4) initialize the RN N S the rules in the initial
set are used to activate the corresponding rule-labelled input
neurons and to set the threshold of the corresponding hid-
den neurons to its nominal value 6. Lines (5 to 16) describe
the iterative part of the monitoring cycle: line (6) checks for
observation consistency, as observation obligations from the

Algorithm 2 Monitoring algorithm
1: forall x € I do

2: Feed 1 as input to x;
3: Set 6, to 0
4: end for
5: fori=1—ndo
6: if -C, then
7: return false
8: end if
9: add o; to the input layer
10: Feedforward activation
11: Set the hidden neuron thresholds
12: if —=C. then
13: return false
14: end if
15: Recurrent activation
16: end for
17: if dx, s.t. x € F, x, is active then
18: return false
19: else
20: return true
21: end if

previous iteration may not match the current actual obser-
vations. Any consistency check failure causes the termina-
tion of the algorithm with negative outcome. If the obser-
vation consistency check succeeds, the new observations are
added to the network (i.e. feeding the inputs of the respec-
tive input neurons so that they are activated), the network is
run feedforward and, for each active output neuron labelled
with a positive rule name, the respective hidden neuron’s
threshold is set to its nominal value. Another consistency
check is performed on the resulting state, as different rules
may have activated output neurons with inconsistent labels.
If this check succeeds, the output layer’s output is propa-
gated back, through the network’s recurrent connections, to
the input layer, and another iteration begins. Lines (17 to
21) check whether any forbidden rule is still active after the
trace terminates (i.e. a stable state is found in the recurrent
network): if this is the case, the trace does not satisfy the
rule system, and the algorithm returns false. If, however, no
forbidden rule is active, the trace satisfies the rule system
and the outcome is true. Whether or not a rule r is activated
can be checked in the final state of the network by checking
the activation of the output-layer, r-labelled neuron .

4.1 Semantics

In this section we give a formal account of the monitoring
algorithm and an evaluation semantics over traces of obser-
vations. One key intuition is that, although we encode a rule
system in a neural network, all neurons keep a symbolic in-
terpretation, as the activation of a neuron is interpreted as an
occurrence of that rule/observation name.

Definition 3. A configuration ~ for a RNN at time t is
the set of active neurons in its output layer at t. We will
decompose vy into v 4 and 7o, the first one being the set of
rule-labeled neurons in «y and the second being the set of

24

observation-labeled neurons in .

Definition 4. . A set of literals L is said to hold in a
configuration ¥ iff (L\OF) C va A (L\R¥) C 0.

Definition 5. A ser of observation literals L is said to
match a configuration ~y if and only if L N v is consistent
and v C L. The function match performs such a check. A
set of (matching) observations L can be added to an input-
configuration vy by the function addObs which activates the
input neurons corresponding to literals in L.

Definition 6. A step between configurations, v — +/,
holds iff Ve € v',3y € yas.t.Vze€ C(y),z €.

This means that every active neuron v in < has been
activated by a hidden neuron y which was active in v and
had its condition satisfied, as all neurons in its condition
belonged to v as well.

Definition 7. A RNN (RNN, I, F,C,,C,) accepts an ob-
servation trace T = 01, 02, .., O, If there exists a sequence of
configurations vy = 1, Ya, .., Y, Such that:

° HiGIS.t.i:’}/l

o V7 match(oi, vio) A addObs(7i, 0;) — Yir1

® Yp N F=10

A trace that is not accepted by a RNN (that is, for which
there exists no accepting run) is said to violate the RNN.

Definition 8. The language of the rule-based network
L(RNN) is the set of finite traces T such that RNN
accepts T.

Remark 1. Above, we have redefined RuleR’s semantics in
term of active neurons, mirroring its definitions from literals
to neural networks. Therefore, the RNN built upon a rule
system R accepts the same language of R, as at any time the
configuration in R (in terms of positive literals) corresponds
to the configuration of RNN (represented by active neurons).

S Example

We now give an example of how a temporal logic formula
can be transated into a rule system and into a RNNS; we
then show an example of run over an observation trace.
Suppose we start from the SNF formula:

O((and) = OlcUd))
Using the following abbreviations:
® Tuntil = TcUds
® Tgen = T'g,(anb)=O(cUd)>
® Tlink = T(anb)=O(cUd)
the resulting RuleR system RS = (R, O, P, I, F') becomes:
o R = {Tuntil; Tgen: Tlink }
e O=/{a,b,cd}

=== ===

) 1 1 I T
1and |'—“‘ :‘a’ndf-"’ 1and f*‘
b
s o ’ ’ //
7 7 /
/ /

T
:andT

b ;

7 7

S

/ s S
v / / i)
/ A A A A
/ i i K / ,
,

/
/
/

-9 -
1and
7
/

,
I
2

1 [3
1and
/////
/
/

/
2

o< [o 2]

T

d | 'd I

'

777777777777777777

G e mE B

Anonl

A A
/ /

/ / /
/ / /

Observations (trace)

Figure 1: RNNS obtained from RuleR system RS

o P= {runtil —d | C, Tuntil»
Tgen — Tgens T'link
Tlink @ Gy b — Tuntil}

o [= {{Tgen>rlink:}}

o ['= {Tuntil}

Intuitively, 74, keeps riink alive, that is, it ensures that
Tlink 1S active at any step of the monitoring. ;% connects
the present-past and future parts of the SNF formula: once
a and b are observed at the same time, the antecedent of the
implication holds, and the consequent has to be satisfied,
SO Tyink tIZEEIS Tyntil- Tunti reactivates itself as long as
c is observed, and stops as soon as a d is observed. 7,1
being active means that the final condition of the until (that
is, observing d) has not been fulfilled yet: this is why 7,4
appears in F.

The resulting RNNS is depicted in Figure 1. In the picture,
dashed lines and boxes are component of the RNNS that do
not belong to the neural network: consistency checks, initial
value and forbidden rules. Note that the neural network
is scarcely connected; for monitoring tasks, as no weight
changes in the network is required, several neurons can be
removed. The entire network is needed, though, if we were
to perform learning. In this case, the network should be
connected fully and initialized with small random weights,
as done by CILP. A learning algorithm may then change the
network’s weights in the usual way (d’Avila Garcez, Broda,
and Gabbay 2002). Learning is left as future work.

For the sake of presentation clarity, an accepting run of the
RNNS over a trace is showed in Table 1. The table has to
be read as follows: each row corresponds to an iteration; the
Rules column lists the output states generated by the active

25

Table 1: Example of accepting run

| # | Obs. | Rules | Resulting state
1 a,c Tgen, T'link Tgens T'link
2 b,d Tgen, T'link ,b,d Tgens T'link
3 ab,c Tgens Tlink ,a,b,c Tgens T'link, Tuntil
4 a,c Tgens Tlink,a,C Tgens Tlink, Tuntil ,C
5 b,C Tgens T'link ,b,C Tgens 'link ,d
6 ad Tgen, Tlink>a,d Tgen, T'link

rules in the previous round merged with the current obser-
vations (for the first row, this corresponds to the rules in
I). The Resulting state column is the union of the bodies
of the rules in the Rules column such that their conditions
were satisfied. Since r,,,:;; 1S not active at the end of the run
(bottom-right cell), the trace is accepted.

6 Experiments

We have implemented the RN NS in Prolog and GNU Oc-
tave. Prolog was mostly used for the translation, as this
phase requires parsing the RuleR rules; the Prolog code cre-
ates a RNNS in Octave and then matrices are used to perform
monitoring through network activation. One big difference
between RuleR and RNNS is that the first uses a breadth-
first exploration strategy, while the latter uses a randomized
depth-first search. Neither systems use backtracking: RuleR
mantains a frontier of states, while RNNS randomly picks
which node to explore and, in case of failure, starts again
from the beginning. With some rule manipulation and im-
plementation choices, we were able to steeply narrow the

branching factor, often generating completely deterministic
RNNS.
For our tests, we used three custom-designed properties:

e a = O(true Ub)
e aANb= O(cU(dVe))
e aANb= O((true U(c Ad)) V (e W false))

0.9

0.8 A

0.7 /

0.6 /

0.5 —* ——F1
0.4]
0.3 —a—F3
0.2

0.1

Figure 2: Scalability of time over trace size

We generated a RN N .S from each rule and fed it satisfying
traces. Our goal was to analyze the impact of trace length
on one hand, and property size on the other. Figure 2 shows
the numerical results of a small batch of tests: on the X axis
is the number of states of the trace (divided by ten: actual
values span from 10 to 100); on the Y axis is the time (in
seconds) required for the system to perform an accepting
run over the trace. The three curves, namely F1, F2 and F3,
represent three properties of increasing size. This example
shows that, although RN N .S may require several runs over
the same trace in order to reach an accepting run, the number
of runs does not seem to impact much on performance, as
the monitoring time seems to increase linearly with the trace
size.

7 Future work

In the area of process mining, the key aspects are model dis-
covery, conformance checking and model enhancement (van
der Aalst et. al 2011). In many business process scenarios,
even if a system is rigorously defined, its implementation
may slightly deviate from the model: for instance, the proto-
col within an office may vary due to an unavaiable resource
(a broken printer) or external constraints (a strike, a delay
in office supplies delivery, etc.). The analysis of event logs
can provide insight into how processes actually take place,
and to what extent actual processes deviate from a normative
process model (Goedertier et al. 2009). Having encoded a
rule system in a neural network-based system, we conjecture
that its intrinsic flexibility and noise tolerance will enable us
to model this adaptation process through learning and veri-
fication from event logs in the RNN S.

8 Conclusions

This paper contains, to the best of our knowledge, the first
implementation of a rule-based monitoring system in the

26

neural-symbolic paradigm. We have provided an algorithm
for translating RuleR rules into a neural network-based mon-
itoring system and an explanation of how trace monitoring
can be performed in the network. We have implemented our
system and tested it on three benchmark examples which in-
dicate that it should scale well to large-size properties even
when traces have to be calculated repeatedly. This and the
system’s possibility of handling errors (noise) in the net-
work, indicate em business process adaptation as a promis-
ing application area for RINN.S. Next, we shall embed the
system in a process mining iterative framework. To do this,
we shall investigate learning strategies and knowledge ex-
traction mechanisms, and analyze system performance, ac-
curacy and scalability in this application area.

References

Barringer, H.; Rydeheard, D. E.; and Havelund, K. 2010.
Rule systems for run-time monitoring: from eagle to ruler.
J. Log. Comput. 20(3):675-706.

Borges, R. V.; d’Avila Garcez, A. S.; Lamb, L. C.; and Nu-
seibeh, B. 2011. Learning to adapt requirements specifica-
tions of evolving systems. In ICSE, 856-859.

Borges, R. V.; d’Avila Garcez, A. S.; and Lamb, L. C.
2011. Learning and representing temporal knowledge in re-
current networks. IEEE Transactions on Neural Networks
22(12):2409-2421.

d’Avila Garcez, A. S., and Zaverucha, G. 1999. The con-
nectionist inductive learning and logic programming system.
Appl. Intell. 11(1):59-717.

d’Avila Garcez, A.; Broda, K.; and Gabbay, D. 2002.
Neural-Symbolic Learning Systems: Foundations and Ap-
plications. Perspectives in Neural Computing. Springer.

Fisher, M. 1997. A normal form for temporal logic and its
application in theorem-proving and execution. Journal of
Logic and Computation 7:429-456.

Gabbay, D. M. 1987. The declarative past and imperative
future: Executable temporal logic for interactive systems. In
Temporal Logic in Specification, 409—448.

Goedertier, S.; Martens, D.; Vanthienen, J.; and Baesens,
B. 2009. Robust process discovery with artificial negative
events. Journal of Machine Learning Research 10:1305—
1340.

Hoelldobler, S., and Kalinke, Y. 1994. Towards a new mas-
sively parallel computational model for logic programming.
In ECAI94 workshop on Combining Symbolic and Connec-
tioninst Processing, 68-77.

Towell, G. G., and Shavlik, J. W. 1994. Knowledge-based
artificial neural networks. Artif. Intell. 70(1-2):119-165.

van der Aalst et. al, W. M. P. 2011. Process mining man-
ifesto. In Business Process Management Workshops (1),
169-194.

