Problem Solving Using Classical Planners
AAAI Technical Report WS-12-12

Using Planning for a Personalized Security Agent

Mark Roberts and Adele E. Howe and Indrajit Ray and Malgorzata Urbanska
Computer Science Dept., Colorado State University
Fort Collins, CO 80524, USA
email: {mroberts,howe,indrajit,urbanska} @cs.colostate.edu

Abstract

The average home computer user needs help in reducing the
security risk of their home computer. We are working on an
alternative approach from current home security software in
which a software agent helps a user manage his/her secu-
rity risk. Planning is integral to the design of this agent in
several ways. First, planning can be used to make the under-
lying security model manageable by generating attack paths
to identify vulnerabilities that are not a problem for a par-
ticular user/home computer. Second, planning can be used
to identify interventions that can either avoid the vulnerabil-
ity or mitigate the damage should it occur. In both cases, a
central capability is that of generating alternative plans so
as to find as many possible ways to trigger the vulnerabil-
ity and to provide the user with options should the obvious
not be acceptable. We describe our security model and our
state-based approach to generating alternative plans. We show
that the state-based approach can generate more diverse plans
than a heuristic-based approach. However, the state-based ap-
proach sometimes generates this diversity with better quality
at higher search cost.

Planning for a Personalized Security Agent

The average home computer user has little understanding of
security and limited time to become educated and to take ac-
tion to protect their computers. Current security approaches,
e.g., anti-virus software, OS patches, malware detectors, re-
quire time, money and knowledge to be effectively used.
Moreover, the software is designed to be one-size-fits-all
which does not accommodate the different needs and pref-
erences that have been observed in studies of home users
(Howe et al. 2012). For example, a study of 31 undergrad-
uates hypothetically installing software on a friend’s ma-
chine concluded that many participants considered file shar-
ing software to be indispensable, even accounting for the
risks (Good et al. 2005).

Our research project takes a different approach: develop
an agent that can monitor security related activities on a
home computer and propose interventions to the user to
avoid or recover from security threats. The agent will be per-
sonalized to the preferences and experience of the user as
well as to the configuration of the home computer. The se-
curity model underlying the agent is being developed based
on psychological studies to identify factors that influence a
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home user’s decisions about security threats (e.g., percep-
tions of risk and threats) (Byrne et al. 2012).

A home computer security agent would need to perform
all of the following tasks: monitor the user/system for new
behavior/state, incorporate new security knowledge from a
common security database, adapt to newly installed soft-
ware, prioritize its actions so as to block the most critical
vulnerabilities first, offer suggestions of actions to the user
to support achieving his/her goals while not breaching secu-
rity/privacy, and intervene independently to the extent that
the user’s trust allows. Several of these tasks involve plan-
ning. In this paper, we describe how planning has been used
for security, how we have started to extend existing planning
techniques to support the security agent and our future plans
for further extensions.

The Personalized Security Agent

The two core goals behind our security agent are that its de-
sign should be motivated and supported by psychological
studies of users and that its behavior should be personalized
to a particular user. In support of these goals, we have de-
veloped a new security model that is based in part on studies
from the literature and part on our on-going studies.

The Security Model: A Personalized Attack Graph

Researchers have modeled security for networked systems
using attack graphs (Phillips and Swiler 1998; Sheyner et
al. 2002) and attack trees (Moore, Ellison, and Linger 2001;
Dewri et al. 2007). These models capture dependencies
among different system attributes such as vulnerabilities and
network connectivity and facilitate security risk analysis and
management. But these models focus on networked systems
rather than home computer users. We developed the Person-
alized Attack Graph (PAG) security model to characterize
the ways that a home system can be compromised and add
actions for the user as well as the attacker. The PAG is a
state-transition system that is instantiated with the state of a
particular home computer and user. Figure 1 shows a PAG
for a Denial of Service (DoS) exploit that is a subtree of a
much larger PAG with 7 exploits, 25 user actions, 38 system
states or actions (of which 11 are system vulnerabilities),
and 19 attack actions. A complete PAG consists of a set of
many such exploit subtrees and paths from leaf nodes to the
root represent potential attack paths.
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Figure 1: The Denial of Service personalized attack graph. The probabilities for nodes are given in parentheses.

Using Planning to Identify Attack Scenarios

Previous research has shown how a planner can help ana-
lysts identify actions that lead to security breaches. Boddy
et al. (2005) built a mixed initiative planning system that
could identify potential vulnerabilities and countermeasures
in cyber security for large organizations. Their PDDL (Fox
and Long 2003) domain model allowed them to produce “in-
sider subversion” plans of 40-60 steps. Their work showed
that automated planning could find novel attack scenarios.

Attack Graphs quickly become large, computationally ex-
pensive to analyze and hard for human analysts to under-
stand. Ghosh and Ghosh (2010) reduce the complexity of in-
stantiating an attack graph by iteratively applying a planner
to eliminate unreachable attack scenarios. They use a PDDL
model similar to Boddy et al. and generate minimal attack
paths. To identify multiple paths that lead to the same sce-
nario, they modified the domain model by eliminating each
path (that is, commenting out an action or predicate) as it
was discovered. Obes et al. (2010) construct a large PDDL
model (1800 actions) from an attack graph and integrate the
planner into a penetration testing tool. Although they found
an exponential increase in computation time as the number
of machines modeled increased, the time was still just 25
seconds to generate a plan involving 480 machines.

In codifying the PAG, we followed a similar approach to
the prior work by translating the PAG into PDDL (Roberts et
al. 2011). Figure 2 shows portions of the domain and prob-
lem description of the leftmost subtree given in Figure 1.
The full domain used for the experiments later contains 15
actions, 5 predicates, 18 initial objects, and 12 initial pred-
icates. Plans in this domain highlight potential paths that
can be exploited, which allows other portions of the agent
to prune and personalize the PAG and remove exploits that
cannot happen for a given system/user.

Generating Alternative Plans

In our agent, planning is used to prune the PAG to make it
more computationally manageable and to identify interven-
tions (key points to disrupt the plan). Because vulnerabilities
can be exploited in many ways, it is essential to be able to
generate alternative plans. The prior research in using clas-
sical planning to generate attack paths (Boddy et al. 2005;
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User Browsing
Internet Content

(define (domain attack-graph)
(:requirements :strips :equality
:disjunctive-preconditions :typing
(:types Object Action ExploitState software )
(:predicates (action-observed ?Action - Action)

(action-taken ?Action - Action)
(exploit-occurred ?Exploit - ExploitState)
(software-installed <?Software - software) )
(raction AttackAction_FlashFileCompromised_5
:parameters ( ?Action5 - Action )
:precondition (and (action-observed ?Action5 )
(= ?Action5 AttackAction_FlashFileCompromised_5 ) )
:effect
(and (action-taken AttackAction_FlashFileCompromised_5) )))
(define (problem attack-graph-probleml)
(:domain attack-graph)
(:objects
Exploit_DenialOfService_1 - ExploitState
AttackAction_FlashFileCompromised_5 - Action
UserAction_UserUsingSocialMedia_7 - Action
ObeservedState_CVE_2010_0187_Exploited_2 - Action
UserAction_UserOpensFlashFile_6 - Action

:init
(action-observed AttackAction_FlashFileCompromised_5 )
(action-observed UserAction_UserUsingSocialMedia_7 )
(software-installed Adobe_Flash_6_0_88_0)

)
(:goal

(and (exploit-occurred Exploit_DenialOfService_1) )))

PLAN1

UserAction_UserUsingSocialMedia_7
UserAction_UserOpensFlashFile_6
ObeservedState_CVE_2010_0187_Exploited_2
Exploit_DenialOfService_1

PLAN2
UserAction_UserBrowsingInternetContent_13
AttackAction_PDFCompromised_20
UserAction_UserLoadsPDFDocument_21
ObeservedState_CVE_2010_4091_0OS_Exploited_17
Exploit_DenialOfService_1

PLAN3

UserAction_UserBrowsingInternetContent_13
AttackAction_JavaAppWithLongVMArgument_11
UserAction_UserStartsJavaWebstartApplication_12
ObeservedState_CVE_2008_3111_SunJavaMultiple_Exploited_8
Exploit_DenialOfService_1

Figure 2: Partial PDDL domain and problem descriptions
from the CVE-2010-0187 subtree of the DoS exploit fol-
lowed by the three solutions found by ITA*.

Ghosh and Ghosh 2012; Obes, Sarraute, and Richarte 2010)
either generated a single path or iteratively modified the do-
main/problem description to influence the planner to pro-
duce new attack paths. We modify the algorithm.



Alternatives, Plan Diversity, and Plan Sets

A first step in generating alternatives is to define a metric
that quantifies the differences in plans. In earlier work, Sri-
vastava et al. (2007) explore how to generate diverse plans
in a constraint-based planner. They use actions, states, and
causal links to assess differences in plan diversity and find
that using an action-based distance usually provides diverse
enough plans. More recently, Talamadupula et al. looked at
generating plans for execution with the best net benefit in
a partial satisfaction planning framework (Talamadupula et
al. 2010; Schermerhorn et al. 2009). While this work is not
strictly about generating alternatives, it does examine how to
evaluate multiple plans with respect to usefulness to a user.

Given a plan 7, and a set of plans II, and a distance metric
D, Coman and Mufioz-Avila (2011) define:

Z D(m, 7")
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I

During planning, this diversity metric is used in a weighted

evaluation function that is maximized by the planner:

hnew(ﬂ'> H) = (1 - O5)hdiversity(7"'a H) - ah(ﬂ-): 2)

where Agiversicy (77, IT) = RelativeDiversity (7rejax, I1), 7relax is
the relaxed plan that discards delete effects, and « balances
exploitation of the original heuristic and exploration of more
diverse plans. The original heuristic is subtracted because
the authors want to minimize h but maximize the diversity.

The general distance metric, D, in Equation 1 allows any
quantitative or qualitative distance metric to be substituted
in guiding search toward generating diverse plans. In par-
ticular, as the authors point out and show, D can contain
domain-specific information that may be challenging to in-
corporate into the domain model.

Many of the planners from the recent International Plan-
ning Competition (IPC-2011) find better solutions over time,
e.g., LAMA (Richter and Westphal 2010), which uses a
multi-queue local WA* search, and CBP (Fuentetaja 2011),
which uses branch-and-bound search. Such anytime plan-
ning algorithms and satisfying planners could be seen as
generating alternative solutions; each new solution is ef-
fectively an alternative that improves over the last. Indeed,
nearly any planner could be modified to produce alterna-
tive solutions, though they may still have a bias toward pro-
gressively better solutions under the current IPC metrics for
comparing planners. We base our approach on using a Tabu
list with restarts; Richter et al. (2010) recently showed that
a weighted-A* algorithm performs better with restarts.

In general, all these approaches maximize a “Reward” or
“Diversity” metric after subtracting the plan cost. This can
have multiple drawbacks. If action costs swamp the reward,
then the search trajectory is dominated by the action cost. If
two plans have wildly different action costs AND different
rewards, then it is not clear how to select one over the other.
The state-based approach we propose avoids these issues.

Our Approach: ITA*

We implemented our own version of A* on top of the
LAMA-2008 planner. LAMA is based on FastDown-

RelativeDiversity(m, IT) = (1
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ward (Helmert 2006), and has been the best planner for
two IPCs. For our search, we turned off landmarks but con-
tinued to use preferred operators. When the search finds
a goal node, it caches each (state, operator) pair that is
on the path to the solution into a data structure called
the TabuStateList. It then calls restartSearch (),
which clears the open and closed lists, resets the search
counts, and puts the initial state back into the open list. When
the search encounters a (state, operator) pair that is already
in the TabuStateList, it adds the g-value of that node
to an arbitrarily high value, gConstant, (such as 1000)
rather than the actual g-value. This ensures that those nodes
are prioritized last in the A* open list and thus are very un-
likely to be pulled off next. We call this planner ITA*, for
Iterated Tabu A*.

We will show that ITA* supports generating diverse so-
lutions. However, it sometimes generates longer solutions
that may be padded with spurious actions as a result of the
state-based approach. We explore this trade-off in the evalu-
ation. Another issue is that this change, intentionally, invali-
dates the optimality of the search algorithm. However, com-
pleteness and soundness remain unaffected (space limita-
tions prohibit us from sketching these proofs). Interestingly,
the mechanism we use to defer search on already found so-
lutions looks almost like an induced g-value plateau (Benton
et al. 2010); we hope to explore this in the future.

The Comparison Planner: DivA*

We also implemented our own version of the planner by Co-
man and Mufioz-Avila (2011) . To keep the comparison fair,
we maintain the use of A* and change only the heuristic
used during search. Similar to their planner, we leverage
the Dgapirity metric (Fox et al. 2006). Let 7, and 72 be
the operator lists for two plans we want to compare. Then
Dgtavitity = |(m1 \ 72)| + | (72 \ 71)|. The symmetry of per-
forming the set difference in both directions is important in
order to account for plans that may be reversed.

We also set & = 0.7 because this was a setting used
in (Coman and Munoz-Avila 2011). But we made some
changes to their approach. First, we used the current solu-
tion to compare to the set of existing solutions found so far
rather than 7,.¢4,. Also, we minimize the heuristic by sub-
tracting D from a large constant and then adding back the
original heuristic. These changes allowed us to maintain as
much similarity between the two planners as possible. We
call this planner DivA*, for Diversity A*.

Results on the Small PAG

ITA* can find unique solutions (alternative attack paths) for
the small PAG domain generated from Figure 1. Figure 2
(bottom) shows the three solutions found by ITA* in a sin-
gle planning episode, which correspond to the three subtrees
of the PAG. It found these solutions with 53, 46, and 25 node
expansions. The plan lengths for these solutions increase
from 4 to 5, so ITA* overcomes a key problem identified by
Ghosh and Ghosh (2010), that the planner always finds the
shortest path. For this problem, DivA* found a single path
but was unable to find new plans beyond that. We suspect



that either the weighted heuristic or the diversity measure is
not well suited to small plans and domains such as this.

Results on Benchmark Domains

To show how this approach generalizes to other domains,
and to support direct comparison to previous work, we also
examined how well we can generate alternatives for domains
from some IPC benchmarks. We compare to the three IPC3
domains used in (Coman and Munoz-Avila 2011): Driver-
Log, Depot, and Rover. We also included the cybersec prob-
lems from IPC-2008 because these problems are the first se-
curity application that identified the gap in classical plan-
ners not easily producing alternative solutions. Finally, we
include the seq-opt transport problems from IPC-2011 be-
cause it is a newer “logistics” style benchmark, makes sense
in a mixed-initiative setting, and includes action costs that
we can use to examine plan quality in later experiments. We
found that the planners could solve more problems from the
seq-opt track than the seq-sat track for the transport prob-
lems. For our comparison to DivA*, we examine the search
cost of ITA*, as well as the characteristics of the alternatives
that are found, and how the solutions compare in quality.

Each planner was given 2 hours on a single processor with
4 GB memory. The processes were run on 48 dual quad-core
Xeon 5450, 16 GB machines. The planners were run until
they found 10 solutions, or exhausted memory or time.

For which domains did ITA* produce unique solutions?
Table 1 shows solution counts for ITA* (top) and DivA*
(bottom) for each domain. After the domain name, the first
column displays how many problems the planner solved.
The next column shows how many solutions to those prob-
lems the planner generated. Some solutions, while unique,
were simply the original solution plus some spurious ac-
tions; we called these solutions padded. We also found that
some of the solutions were simply permutations of each
other. The *Unique’ column shows how many solutions ex-
ist after removing all padded and permuted solutions across
all solutions in a problem. To give a sense of how frequently
each planner finds duplicate solutions, we compared the first
found solution to the remaining solutions found and show
the number of padded (‘Pad’ column) and permuted (‘Perm’
column) solutions. The last column (‘Remain’) indicates
how many solutions differed meaningfully from that first so-
lution found. Note that these remaining solutions could still
be duplicates of each other.

Clearly, ITA* produces alternative solutions though many
solutions are duplicates. The IPC3 results show that ITA*
produces permutations and some padded solutions. How-
ever, in the transport domain ITA* produces a unique so-
lution every time. DivA* solves less problems, but shows a
similar result of producing permuted and padded solutions.
In the newer cybersec and transport domains, it produces
many more permutations. However, as we will show later,
DivA* can produce solutions that are not found by ITA*,
suggesting that the approaches are complementary.
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Compared to First
n | Solns  Unique | Perm  Pad  Remain
Rover 7 70 40 17 4 42
Depot 8 63 52 2 2 51
DriverLog 9 80 49 10 2 59
cybersec 25 244 158 3 42 174
transport 20 200 200 0 0 180
Rover 5 50 7 39 0 6
Depot 4 39 13 10 0 25
DriverLog 8 80 31 22 5 45
cybersec 24 240 42 123 2 91
transport 20 200 91 37 2 141

Table 1: Solution counts for IPC3, cybersec, and transport
problems on ITA* (top) and DivA* (bottom).

DivA* ITA* Compare to DivA*
Domain | Solns  Unq | Solns Unq | Perm  Pad Alt
Rover 50 7 70 40 5 0 35
Depot 39 13 63 52 5 0 47
DriverLog 80 31 80 49 11 0 38
cybersec 240 42 244 158 27 1 130
transport 200 91 200 200 18 2 180

Table 2: Assessing solution overlap of DivA* and ITA* for
the IPC3 (top) and cybersec (bottom) problems.

Domain Problem Min Max “w o
Depot 01 22 153 86.9 51.9
Depot 02 50 135 95.7 329
Depot 07 606 4760 1857.8 12259
Depot 13 1017 3143 1748.3 697.6
DriverLog 01 10 28 21.5 6.3
DriverLog 03 62 240 176.3 66.9
DriverLog 11 102 5949 3105.3 2154.1
DriverLog 13 1531 35139 156147 134203
Depot 01 13 124 24.9 33.1
Depot 02 19 974 130.7 2819
Depot 07 119 12042 1926.6 3397.5
Depot 13 31 110987  13999.4  34594.1
DriverLog 01 8 26 10.2 54
DriverLog 03 14 233 572 782
DriverLog 11 34 8242 907.2 2448.6
DriverLog 13 39 97774  11156.0  29117.6

Table 3: Search cost for ITA* (top) and DivA* (bottom) on
selected IPC3 problems that both planners solved.

How closely do the solutions from ITA* match those
of DivA*? To assess solution diversity, we examined the
overlap of the plans produced by both planners. Table 2 re-
peats solution counts from Table 1 and shows solution over-
lap between the two planners in the last three columns. We
took each unique DivA* solution and compared it to each
unique ITA* solution (that is, we used only those solutions
from the ‘Unq’ columns). Solutions that were the same or
were permutations of each other were counted in the ‘Perm’
column. Similarly, a padded ITA* solution is one that con-
tained any DivA* solution plus extra actions. Remaining so-



DivA* ITA*

Domain  Problem n  Diversity n  Diversity
Depot 01 10 2|10 7
Depot 02 | 10 12 | 10 10
Depot 07 10 8 10 10
Depot 13 9 12 10 14
DriverLog 03 10 1 10 2
DriverLog 07 10 5 10 17
DriverLog 09 10 32 10 22
DriverLog 10 10 14 10 20
DriverLog 11 10 12 10 24
DriverLog 13 10 31 9 29
Rover 05 10 6 10 10

Table 4: Comparing the diversity using D qpi1ity of DivA*
and ITA* solutions from the IPC3 and cybersec problems.

lutions were counted in the ‘Alt’ column. Clearly, ITA* does
produce alternatives to those given by DivA*.

For runs that produce unique solutions, how does search
cost change for each new solution? As a proxy for search
cost, we examined the time to solution in the number of
nodes examined. We show a representative sample in Ta-
ble 3. The results demonstrate that the search cost can vary
greatly between problems as well as between restarts of both
planners. DivA* tends to find plans more quickly. This was a
surprising result because one might think that the o weight
would lead search into non-productive parts of the search
tree since it effectively lowers the usefulness of the original
heuristic estimate. The variance on cost can be quite high
which suggests that both planners can be leveraged to pro-
duce even more diverse plan sets.

How do the solutions compare in terms of diversity?
Finally, we examined how the two planners compared ac-
cording the Diversity (Coman and Munoz-Avila 2011) and
Dtapirity (Fox et al. 2006) metrics:

Z Dstability (7Ta 7T/)

T, ell
[TI] x (|| —1)
2

Diversity(II) = 3

Table 4 shows selected problems from the domains; in par-
ticular, we do not show any problem for which Diversity (II)
was zero using DivA* (ITA* had no problems for which this
was true). In the older IPC3 problems, ITA* has a better
(higher) diversity metric than DivA* for all but three prob-
lems. ITA* dominates with much higher diversity in the cy-
bersec and transport domains (not shown for space reasons).

How do the solutions compare in terms of plan qual-
ity? We examined the quality of the plans as measured by
VAL (Strathclyde Planning Group 2010); VAL is the pro-
gram used to validate solutions in the IPCs. We assessed
the transport task because ITA* found 10 unique solutions
for each problem and because this domain uses action costs.
The goal is to move packages while minimizing the total cost
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DivA* ITA*

n min ”w o n min n o
02 3 271 323.7 41.0 | 10 271 377.6 56.3
04 2 922 1148.0  226.0 | 10 921 1074.5 139.7
06 2 406 411.0 50 | 10 416 S11.1 81.5
08 6 614 836.0 1475 10 459 668.1 144.7
10 6 733 899.7  136.1 10 700 816.1 88.5
12 4 2490 32535 4474 | 10 2490 30714 3941
14 8 900 11202  258.1 10 551 861.5 155.2
16 | 10 2093  2601.4 3198 | 10 1878 23879  273.6
18 2 1367 1506.0 1390 | 10 1010 14950 189.4
20 4 537 597.5 432 | 10 509 640.0  101.0

Table 5: Comparing the quality of DivA* and ITA* solutions
from the transport problems.

of the plan, where the cost is a sum of the road distances plus
1 for each unload/load action.

Table 5 summarizes the results of running VAL on the
solutions discovered by DivA* and ITA* for selected prob-
lems in transport. For each planner, we list the number of
solutions found, the minimum quality value obtained, the
average and standard deviation of the quality of the solu-
tions. The ‘Min’ and ‘x” columns reveal that neither planner
dominates, again suggesting that these two approaches are
complimentary.

Future Work

Our goal is to build a security agent to help home computer
users. Our future work will focus on improving alternative
plan generation, employing planning for security interven-
tions, and incorporating plan quality metrics during the plan-
ning process.

Better Alternative Plan Generation ITA* lacks some of
the sophisticated enhancements present in other planners
and is somewhat limited in what it can accomplish. We
would like to improve the performance of ITA* by incorpo-
rating many of the enhancements from recent state-of-the-art
planning techniques (deferred evaluation, landmarks, other
heuristics, etc.). Similarly we could modify other planners
to output alternative solutions. This would allow us to make
a broader comparison concerning search efficiency.

Backjumping / Backtracking It would be straightfor-
ward to modify the algorithm to perform chronological
backtracking or heuristically-guided backjumping instead of
iterated restarts. For the motivating security domain, we be-
lieve this might increase the search cost without producing
many more solutions since each solution tends to be isolated
from other solutions. But for other domains, it may lead to
lower search cost for alternative solutions.

Planning for Interventions In the security domain, we
identified paths leading to exploits. But blocking these paths
is central to a successful security agent. The next step is to
provide the planner with intervention actions that can stop a



viable attack path by negating states that lead to an exploit.
So its preconditions are any states that are on the path to an
exploit and its effect negates that specific state. Examples of
intervention actions include: cleaning attachments of a par-
ticular type, updating a software version or installing a fire-
wall. Good intervention actions are those that block multiple
vulnerabilities, are low cost to execute and do not interfere
with the user’s needs or preferences.

Incorporating Negations During Search The interven-
tion action negates important details in the problem space;
thus, the intervention planner will need to reason about neg-
ative effects. A significant issue in searching for intervention
plans is that many state-of-the-art heuristics in the planning
literature ignore the delete list to estimate the value of poten-
tial solutions; this is alternatively called ignoring negative
effects or ignoring negations. Although multi-valued encod-
ings do capture cycles of negative interactions between ac-
tions (Helmert 2006), the translation can still ignore some
negative effects. But including all negations can be compu-
tationally intractable. Richter examined one way to include
negated effects into landmarks (Richter and Westphal 2010).
She found that recompiling the planning task using the II"™
compilation (Haslum 2009) — a compilation that increas-
ingly includes delete effects by making them add effects us-
ing a set of additional actions — generated much more accu-
rate heuristics and decreased search cost. However, she also
found that the overall computational cost for searching with
this improved heuristic was unjustified (Richter 2010). So
we will further study the trade-off of using the computation-
ally tractable relaxed heuristic against including negations
that improve search and look for alternative ways to inte-
grate negations. We plan to explore both landmarks (Richter
and Westphal 2010) and londexes (Chen, Zhao, and Zhang
2007) as ways to selectively include negations.

Disjunctive Goal Search The search for both attacks and
interventions requires that we identify a valid attack path and
then seek to negate that path. This can be represented as dis-
junctive goals in the form of (A V (A A (I V Iz V I3))),
where A is some attack goal and Iy, I5, and I3 are interven-
tions that eliminate the attack and are discovered and added
during search. If the disjunctive goals are added at top level
of the iterated search, we can then search for alternatives
and interventions within the same planning episode and rely
on ITA* to produce alternative solutions automatically. Al-
though disjunctive goals are semantically equivalent to the
more standard conjunctive representation, they may be com-
putationally different in the search for alternatives.

Plan Quality Since each alternative solution represents
a potential security breach/intervention, the security agent
needs to consider as many viable alternatives as it can. But
it will still be critical to rank the plans so as to focus the re-
sources of the agent to the most important security concerns.
For the purpose of this discussion, we consolidate under the
term of plan quality a number of measures that can be quan-
tified. The PAG model will be extended to include at least
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four quality metrics: the likelihood of an attack occurring,
the cost of damage, the cost of intervening, and the utility of
the specific activity to the user. We believe that the final im-
plementation of ITA* would be more effective by including
quality information during search.

Many planners examine plan cost/quality while searching
using a modified heuristic to include this information; we
plan to leverage such work whenever possible. But most ex-
isting planning systems generate solutions that minimize (or
maximize) the solution according to a single criterion. We
are interested in finding alternatives that may vary with re-
spect to multiple evaluation metrics that may not be easily
comparable. In the security domain, we want to see paths
leading to attacks regardless of whether such paths may be
more costly or less probable than other paths. The question
that we have with respect to including metrics during search
is how we can guide the search to produce alternatives that
force variation in the metric rather than minimization of the
metric. A well-understood way to manage multiple objec-
tives that may have vastly different criteria is to generate
solutions along a pareto-optimal front as opposed to a single
metric (Ehrgott 2008). We also plan to explore this multi-
objective search technique in comparing and searching for
alternatives.

Conclusions

As our first step in applying planning to our security do-
main, we have translated the PAG into PDDL and gener-
ated alternative attack paths using ITA*. We have shown that
ITA* produces unique solutions to both the PAG example
and some IPC benchmarks. When compared to DivA*, ITA*
can find alternative solutions that haven’t already been dis-
covered. The search cost for both planners varies as search
progresses. For the transport domain from IPC-2011, ITA*
consistently produces lower quality solutions than DivA*,
but it can occasionally find better solutions. Finally, ITA*
is well suited to produce alternative solutions for the secu-
rity application that was our original motivation as well as
the security domain that identified this open question; ITA*
identified an additional 130 alternative solutions in the cy-
bersec domain (see Table 2).

The home computer security agent application offers both
opportunities and challenges to extending classical planning.
Planning is integral to the construction and usage of a secu-
rity model, the Personalized Attack Graph. Planning is also
integral to the decision making the agent will need to do to
avoid or mitigate security threats.
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