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Abstract

This paper describes a weakly supervised approach for
understanding natural language commands to robotic sys-
tems. Our approach, called the combinatory grounding graph
(CGG), takes as input natural language commands paired
with groundings and infers the space of parses that best de-
scribe how to ground the natural language command. The
command is understood in a compositional way, generating a
latent hierarchical parse tree that involves relations (such as
“to” or “by”) and categories (such as “the elevators” or “the
doors”). We show an example parse-grounding tree and show
that our system can successfully cluster the meanings of ob-
jects and locations.

Introduction

To be useful teammates to human partners, robots must
be able to robustly follow spoken instructions. For exam-
ple, a human that is interacting with an autonomous robot
might say, “Go through the door near the elevators.” Un-
derstanding these commands typically involves two parts:
parsing and grounding, each of which are treated as sepa-
rate steps (Kollar et al. 2010; ?). During parsing, the robot
learns to translate a natural language command into an ab-
stract representation of its meaning. During grounding, the
robot identifies the correspondence between the command’s
meaning and the real-world environment.

In this paper, we describe the combinatory grounding
graph (CGG), which dynamically instantiates a probabilistic
graphical model over parses and groundings. The parse tree
is a latent variable in the graphical model, and training uses
a weakly supervised approach that takes a corpus of natural
language commands paired with their groundings to simulta-
neously learn (1) an appropriate meaning representation lan-
guage for the domain, (2) a semantic parser which translates
sentences into the meaning representation and (3) a ground-
ing function which maps the meaning representation on to
the real world. Learning directly from language/grounding
pairs avoids laborious annotation of the intermediate mean-
ing representation. We show example CGG parses as well
as some preliminary experiments showing that the system is
able to learn categories that generalize over similar types of
groundings and similar ways to refer to the same grounding.
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Approach
In order to understand a natural language command we con-
struct an undirected probabilistic graphical model that is
able to infer the most probable groundings Γ given a natural
language command Z:

arg max
Γ

p(Γ|Z) (1)

Inferring groundings over arbitrary language Z is a chal-
lenging problem because the input language could be arbi-
trarily complex. We address this complexity by introducing
an intermediate hidden semantic parse P , which represents
the correspondence of words in the command to groundings
in the physical environment:

p(Γ|Z) =
∑
P

p(Γ, P |Z) (2)

The semantic parse P is a meaning representation that
abstracts over semantically identical language, thereby en-
abling generalization across different words in the language
and groundings in the environment. Previous work (Kollar et
al. 2010; ?) has assumed that the semantic structure factors
according to a fixed syntactic parse of the command; CGGs
learn the distribution over the possible semantic structures
that best predicts the groundings.

Combinatory Categorial Grammar
The CGG uses a probabilistic Combinatory Categorial
Grammar (CCG) (Steedman 1996) to identify linguistic
structures with the same essential meaning. The CCG trans-
forms language into a formula in first-order logic by com-
bining the meanings of individual words. These meanings
are represented by lexical entries such as:

door := N : λx.c(x)
double := N/N : λf.λx.f(x) ∧ c(x)
by := (N\N)/N : λf.λg.λx.g(x) ∧ ∃y.f(y) ∧ r(x, y)

Each lexical entry maps a phrase to a syntactic type (e.g.,
N for noun), and a semantic type containing hidden cate-
gories c and relations r. Hidden categories c represent ob-
jects, places and people (e.g., “kitchen” and “computer”)
while relations r represent spatial relationships or actions
(e.g., “next to”, “within”, “put”, or “go to”). Such lexical
entries can be imputed using part-of-speech heuristics. The
CCG parser produces a set of logical forms for commands;
an example parse of “Go through the door by the elevators,”
can be seen in Figure 1.
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“Go through the door near the elevators.”

(a) Natural Language Command

(b) Possible Logical Forms

“Go” “to” “the doors” “by” “the elevators”

(c) Factor graph representing

Figure 1: In (a) is the natural language command. (b)
shows several possible logical forms for this command. (c)
shows the grounding graph generated from the topmost log-
ical form. In this case γ2, γ3 are objects or locations and γ1

is a path.

Parsing and Grounding
Given the command, a logical form and a set of ground-
ings Γ from the environment, the probability of a particular
parse/grounding pair can be computed. This probability de-
composes according to the structure of the logical form into
factors Ψ and Φ over random variables γi (the ith ground-
ing), λ (the text) and ri, cj (the hidden relations, categories)
in an undirected probabilistic graphical model:

p(Γ, P |Z) =
1

Z

∏
i

Ψ(γi, γj , ri|λ)
∏
j

Φ(γj , cj |λ) (3)

Each factor is a log-linear model over a set of features.
We decompose the learning into two components: (1) learn-
ing the mapping from text λ to a category c or relation r
(e.g., weights wc,λ, wr,λ) and (2) learning the mapping from
the category or relation onto groundings γ (e.g., weights
wg,r, wg,c):

Φ(ci, γk|λ) = exp (f(γi, ci) · wg,c + f(ci, λ) · wc,λ)

Ψ(rj , γi, γk|λ) = exp (f(γi, γk, rj) · wg,r + f(rj , λ) · wr,λ)

The learned parse parameters model how concepts and re-
lations are referred to in language, while grounding param-
eters represent the mapping from concepts and relations to
real-world objects, places, paths and events.

Grounding features were introduced in (Kollar et al.
2010) and Tellex 2011, and include a set of continuous fea-
tures of two types: (1) geometric features of a fixed loca-
tion of places and objects and (2) geometric features of the
relationship between the path of an agent and the fixed lo-
cation of objects and places. For example, relational ge-
ometric features are between two three-dimensional boxes
in the world, such as the distance between two groundings

Word Syntax Weight

hall N 0.28
second N/N 0.23

hallway N 0.16
doorway N 0.14

(a) word/category weights

Grounding Feature Weight

groundingPerimeter 1.23
relatedTo intersection 0.77

oftenSeenWith cabinet 0.48
relatedTo 32d-886 0.36

(b) cat./grounding weights

Table 1: Highest-weight features for a learned category rep-
resenting hallways. The weights in (a) represent words
likely to map to the latent category during parsing. The syn-
onymy between “hallway” and “hall” is learned and “sec-
ond” and “doorway” are associated with the concept. The
weights in (b) represent features of physical locations to
which the category grounds; the perimeter of the grounding
is the most likely predictor of “hallway,” then the presence
of an intersection and cabinets and (less highly weighted) a
specific room (32d-886).

distance(γi, γj) for “near” and “by.” The semantic parser
uses lexical features, such as count(door := N : λx.c(x)),
which counts the number of times that “door” maps to the
category N : λx.c(x) in the semantic parse.

Examples and Preliminary Evaluation
An example is shown in Figure 1. At inference time, the
CGG observes a natural language command and generates
multiple different semantic representations (logical forms)
for the command. It then searches for groundings that are
consistent with each of these candidate semantic represen-
tations, weighting each grounding by the probability of the
semantic representation. The grounding graph is generated
from the structure of the logical form, which in turn is gen-
erated by composing the CCG lexical entries.

We have performed a preliminary evaluation of the system
using a corpus of route directions from Kollar et al. (2010),
taking only adjective/noun phrases (such as “double doors”)
referring to locations. The CGG learns to predict locations
for noun phrases by inducing a meaning representation lan-
guage containing 50 categories. Training uses stochastic
gradient descent on the marginal log-likelihood, to simul-
taneously identify (1) semantic parser parameters mapping
adjectives and nouns to these categories via lexical entries,
and (2) grounding function parameters mapping each cate-
gory to locations in the physical world. Table 1 shows pa-
rameters for a learned category from the meaning represen-
tation language, which can be interpreted as representing a
hallway.
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