
Using the Crowd to Do Natural Language Programming

Mehdi Manshadi, Carolyn Keenan and James Allen
Department of Computer Science

University of Rochester
{mehdih, ckeenan, james} cs.rochester.edu

Abstract

Natural language programming has proven to be a very
challenging task. We present a novel idea which sug-
gests using crowdsourcing to do natural language pro-
gramming. Our approach asks non-expert workers to
provide input/output examples for a task defined in nat-
ural language form. We then use a Programming by Ex-
ample system to induce the intended program from the
input/output examples. Our early results are promising,
encouraging further research in this area.

1 Natural Language Programming
Deep understanding of natural language sentences is a chal-
lenging task. After around half a century work in this area,
we don’t know of a single robust deep understanding sys-
tem except in extremely narrow domains (Liang, Jordan,
and Klein 2011). When it comes to describing programming
tasks, deep understanding becomes even more challenging,
as no vagueness/ambiguity could be tolerated. The challenge
is so real that in a decade when there was a lot of opti-
mism about the future of natural language understanding,
Dijkstra (1979) called the idea of natural language program-
ming “foolish”. Three decades later, with growth of pro-
gramming forums, natural language programming has be-
come very popular especially for the novice programmers.
Hundreds of post are created every day describing one’s in-
tended task and asking for a piece of code in a specific pro-
gramming language accomplishing the task. Some compa-
nies such as Microsoft hire many programming experts to
address the programming needs of the users of their prod-
ucts such as Microsoft Excel (Gulwani 2011), often defined
in natural language form (possibly accompanied by one or
more examples of the input/output). As a result, natural lan-
guage programming is becoming a real issue, which needs
to be addressed in one way or another. Following the suc-
cessful deployment of crowdsourcing to replace/help the AI
systems, returning answers in nearly real-time (Bigham et
al. 2010), we are proposing a novel idea involving crowd-
sourcing to approach the problem of natural language pro-
gramming while avoiding deep language understanding.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2 Programming by Example
In the core of our model lies a Programming by Example
(PbE) engine. PbE (a.k.a. Programming by Demonstration
or PbD) is one of the most studied topics in the realm of au-
tomatic programming (Cypher et al. 1993). The idea of PbE
is to provide a system with many examples of input/output of
the programming task, and try to induce a program only by
looking by analyzing examples. For example, consider the
following three input/output examples for a particular task.

Input Output
exe-file exe

alpha-betas alpha
orange-mango orange

The intended task would probably be:

Print the letters before the dash.

The PbE system only looks at the input/output examples and
tries to guess what the intended task is. It turns out that
often people are aware of the ambiguities the natural lan-
guage description may carry, so often they provide an ex-
ample of input/output to resolve the ambiguities. With only
one example, however, there is a huge space of solutions
that would match the input/output. Every new input/output
example, could drastically reduce the space of solutions. For
the above task, the first example alone could come from pro-
grams that only print “exe”, or that only print the first three
characters, or only those that remove the last six characters.
The second example doesn’t fit any of those, so it reduces the
number of potential programs. Theoretically speaking, an in-
finite number of input/outputs is required to unambiguously
define a task. But in practice by first, limiting the power of
the underlying language (Gulwani 2011) and second, mak-
ing an intelligent guess to find the most probable intended
task within the space of solutions (Liang, Jordan, and Klein
2010) it is possible to converge to the intended task with a
limited number of examples.

3 Our proposal
Given the description of a natural language task, we offer to
use crowdsourcing to provide a set of input/output examples,
and to feed the examples into a Programing by Example sys-
tem in order to induce a program. While providing programs

134

Human Computation 
AAAI Technical Report WS-12-08



by human agents requires expertise and is expensive, provid-
ing examples of input/output for a programing task given its
description in natural language form is trivial and could be
done by regular non-expert workers, very cheaply. Note that
providing rich (defined shortly) examples is a painful job,
so often it is not in the interest of the users themselves to
provide several examples of input/output. Most users prefer
to give the natural language description of the task (possibly
with one or two examples to clarify their purpose).

4 Experiments
In order to investigate whether our proposal is feasible in
practice, we ran some experiments in a specific domain.
Within the area of PbD/PbE, there has been a lot of work
on automating text-editing tasks. The state of the art PbE
system in this domain (Gulwani 2011) quite well on a re-
stricted set of tasks. Therefore we decided to pick this do-
main and use Gulwani’s engine in the core of our sys-
tem. We put together a corpus of 773 text-editing tasks that
can be described by Gulwani’s engine. In order to provide
such a corpus, we mainly used online resources such as
Regex Programming Forum (http://forums.devshed.com/).
We used Mechanical Turk to get input/output examples for
each task. We allow each worker to provide only one exam-
ple for each task. This is because we want to get variety of
examples in order for the PbE system to converge to the in-
tended task faster. The speed of the convergence (or in other
words the size of the solution space) depends on how care-
fully the examples are designed. For this reason, we gave
explicit instructions to the workers to provide rich examples:
“[. . . ] Your example must be RICH: there should be several
locations that the edition applies and many locations that it
does not [. . . ]”.

We created one HIT (Human Intelligence Task) per text-
editing task, with 6 workers per HIT. This number was
picked based on the average number of input/output exam-
ples required to converge to a solution for the tasks in our
corpus, while leaving some margin for noise. The results
from our first several published batches showed even though
we only allowed users with high approval rate to do our
HITs, we still got a lot of empty or gibberish answers. There-
fore, we created a Qualification Type and gave the qualifica-
tion to a list of all the workers who had given us rich exam-
ples in the first couple of runs. The following table contains
the percentage of correct input/output examples provided by
the workers, reviewed manually, for both before and after we
limited the availability of the tasks to qualified workers. We
published 1000 qualified HITs and 6000 unqualified HITs.

HITs accepted before qualification 59.9%
HITs accepted after qualification 96.1%

The 4% error rate on accomplished HITs looks very
promising. Note that we can make the error rate arbitrarily
low by increasing the number of HITs per task. We can au-
tomatically detect the incorrect answers and throw them out
or even automatically fix them. This can be done in several
levels. First, we can use some heuristics (or a classifier) to
throw out empty or gibberish HITs. Second, the PbE engine
can simply check whether there exists any solution for the

given input/output examples. If not, it can throw out one ex-
ample at a time (rotating through all examples) to find the
largest subset of examples for which there exists a solution.
Third, the PbE engine is able to to detect and fix small er-
rors like having extra/missing whitespace/newline (a few ex-
tra/missing characters in general), etc. Fourth, a second type
of HIT may be created to ask (possibly qualified) workers
to verify/fix the input/output examples. Therefore even with
no qualification assigned it is possible to achieve a high ac-
curacy. It is a big advantage not to limit the list of workers,
as it directly affects how fast we can have the HITs accom-
plished. The following table gives the average time workers
spend on doing our HITs.

Average time to complete a HIT-unqualified 3m 24s
Average time to complete a HIT-qualified 4m 13s

Note that compare to the time human experts need to get
back to the users (sometimes several days, depending on the
volume of requests from users), this could be considered a
nearly real-time response. Finally, based on our early experi-
ments it costs less than 50 cents/task in average to gather the
input/output examples, which is by far below what is paid to
a programing expert to do the same task.

5 Future Work
In conclusion, our system depends upon a blend of tra-
ditional and human computation. We incorporate crowd-
sourced work with a PbE system in order to solve simple
natural language programming tasks. Our early experiments
show that the human computation portion can perform ex-
ceedingly well, even without much supervision. Our system
drastically reduces the time and cost required to achieve the
same task by human experts. While our early experiments
are very encouraging, it remains to the future work to put
the system into practice. We are optimistic about the success
of this system, and we believe that it will demonstrate the
effectiveness of human computation in traditionally difficult
tasks.

References
Bigham, J. P.; Jayant, C.; Ji, H.; Little, G.; and et al. 2010.
Vizwiz: nearly real-time answers to visual questions. In Pro-
ceedings of UIST ’10, 333–342. New York, NY, USA: ACM.
Cypher, A.; Halbert, D. C.; Kurlander, D.; Lieberman; and
et al., eds. 1993. Watch what I do: programming by demon-
stration. Cambridge, MA, USA: MIT Press.
Dijkstra, E. W. 1979. On the foolishness of ”natural lan-
guage programming”. In Program Construction, Interna-
tional Summer School, 51–53. London: Springer-Verlag.
Gulwani, S. 2011. Automating string processing in spread-
sheets using input-output examples. In Proceedings of the
38th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, POPL ’11, 317–330. ACM.
Liang, P.; Jordan, M. I.; and Klein, D. 2010. Learning pro-
grams: A hierarchical bayesian approach. In ICML ’10.
Liang, P.; Jordan, M. I.; and Klein, D. 2011. Learning
dependency-based compositional semantics. In ACL ’11.

135




