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Abstract

Crowdsourcing utilizes human ability by distributing tasks to
a large number of workers. It is especially suitable for solving
data clustering problems because it provides a way to obtain
a similarity measure between objects based on manual an-
notations, which capture the human perception of similarity
among objects. This is in contrast to most clustering algo-
rithms that face the challenge of finding an appropriate simi-
larity measure for the given dataset. Several algorithms have
been developed for crowdclustering that combine partial clus-
tering results, each obtained by annotations provided by a dif-
ferent worker, into a single data partition. However, existing
crowdclustering approaches require a large number of anno-
tations, due to the noisy nature of human annotations, leading
to a high computational cost in addition to the large cost as-
sociated with annotation. We address this problem by devel-
oping a novel approach for crowclustering that exploits the
technique of matrix completion. Instead of using all the an-
notations, the proposed algorithm constructs a partially ob-
served similarity matrix based on a subset of pairwise an-
notation labels that are agreed upon by most annotators. It
then deploys the matrix completion algorithm to complete the
similarity matrix and obtains the final data partition by apply-
ing a spectral clustering algorithm to the completed similar-
ity matrix. We show, both theoretically and empirically, that
the proposed approach needs only a small number of man-
ual annotations to obtain an accurate data partition. In effect,
we highlight the trade-off between a large number of noisy
crowdsourced labels and a small number of high quality la-
bels.

Introduction
Crowdsourcing is a new business model that has grown
rapidly in recent years. It provides an easy and relatively
inexpensive way to accomplish small-scale tasks, such as
Human Intelligence Tasks (HITs), and to effectively uti-
lize human capabilities to solve difficult problems. Typi-
cally, in a crowdsourcing scenario, each human worker is
asked to solve a part of a big problem, and a computa-
tional algorithm is then developed to combine the partial
solutions into an integrated one. Crowdsourcing has been
exploited by a number of machine learning tasks (e.g., clas-
sification, clustering and segmentation) that require object
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(e.g., image) labeling or annotation (Tamuz et al. 2011;
Wauthier and Jordan 2011; Karger, Oh, and Shah 2011;
Raykar and Yu 2011; Yan et al. 2011; Vijayanarasimhan and
Grauman 2011; Welinder et al. 2010).

In this work, we focus on crowdclustering that applies the
crowdsourcing technique to data clustering. Given a collec-
tion of objects to be clustered, a subset of objects is first
sampled in each HIT, and a worker is asked to annotate the
subset of objects in the HIT based on their own opinion.
The annotation task can either be grouping objects based on
their similarities or describing individual objects by multiple
keywords; the annotation results are usually summarized in
the form of pairwise constraints. The keyword annotation is
transformed into binary pairwise constraints by checking if
two objects share common annotated keywords. The results
of each HIT, which can be considered as a (partial) local
clustering of the objects in that HIT, are then combined to
form a data partitioning of the entire data set.

The main advantage of crowdclustering is that it explores
the crowdsourcing technique to address one of the key chal-
lenges in data clustering, namely how to define the similar-
ity measure between objects. A typical clustering algorithm
measures the similarity between two objects (data points)
based on their attributes, which often does not reflect human
perception of inter-object similarity. In contrast, crowdclus-
tering utilizes human power in acquiring pairwise similari-
ties by asking each worker to perform clustering on a sub-
set of objects, thereby defining a similarity measure between
pairs of objects based on the percentage of workers who put
them into the same cluster.

The core of crowdclustering is to combine the partial clus-
tering results, generated by individual workers, into a com-
plete data partition. One way to address this challenge is
ensemble clustering (Fred and Jain 2002; Strehl and Ghosh
2002), as suggested in (Gomes et al. 2011). There are, how-
ever, two special challenges in applying ensemble clustering
to the crowdclustering problem. First, since each worker can
only deal with a subset of the entire dataset, only partial clus-
tering results are available in the ensemble for combination.
This is in contrast to most ensemble clustering studies that
require a clustering of the complete dataset from individual
partitions. Second, since different human workers may have
different clustering criterion, they may produce various par-
tial clustering results. This usually introduces a significant
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amount of noise and inter-worker variations in their cluster-
ing results. As a consequence, we often observe a large num-
ber of uncertain data pairs for which about half of the human
workers put them into the same cluster while the other half
do the opposite. These uncertain data pairs can mislead the
ensemble clustering algorithms to create inappropriate data
partitions.

To address the potentially large variations in the pairwise
annotation labels provided by different workers (i.e. whether
or not two objects should be assigned to the same cluster), a
Bayesian generative model was proposed for crowdcluster-
ing in (Gomes et al. 2011). It explicitly models the hidden
factors that are deployed by individual workers to group ob-
jects into the same cluster. The empirical study in (Gomes et
al. 2011) shows encouraging results in comparison to the
ensemble clustering methods. However, one limitation of
the Bayesian approach for crowdclustering is that in order
to discover the hidden factors for clustering decision, it re-
quires a sufficiently large number of manual annotations, or
HITs. This results in high cost, both in computation and an-
notation, which limits the scalability to clustering large data
sets.

To overcome the limitation of the Bayesian approach, we
propose a novel crowdclustering approach based on the the-
ory of matrix completion (Candès and Tao 2010). The basic
idea is to first compute a partially observed similarity ma-
trix based only on the reliable pairwise annotation labels, or
in other words, the labels that are in agreement with most of
the workers. It then completes the partially observed simi-
larity matrix using a matrix completion algorithm, and ob-
tains the final data partition by applying a spectral clustering
algorithm (Ng, Jordan, and Weiss 2001) to the completed
similarity matrix.

The main advantage of the matrix completion approach
is that only a small number of pairwise annotations are
needed to construct the partially observed similarity matrix.
This way, we can obtain a clustering accuracy similar to the
Bayesian methods, with a substantial reduction in the num-
ber of workers and/or the number of HITs performed by
individual workers. The high efficiency of the proposed al-
gorithm in exploiting manual annotations arises from a key
observation, i.e. the complete similarity matrix for all the
objects is generally of low rank (Jalali et al. 2011). Accord-
ing to the matrix completion theory (Candès and Tao 2010),
when an n × n matrix is of low rank, it can be perfectly
recovered given only a very small portion of entries (i.e.
O(log2 n/n)). Another advantage of the proposed crowclus-
tering algorithm is that by filtering out the uncertain data
pairs, the proposed algorithm is less sensitive to the noisy
labels, leading to a more robust clustering of data.

Crowdclustering by Matrix Completion
The key idea of the proposed algorithm is to derive a par-
tially observed similarity matrix from the partial clustering
results generated by individual workers, where the entries
associated with the uncertain data pairs are marked as un-
observed. A matrix completion algorithm is applied to com-
plete the partially observed similarity matrix by filtering out

the unobserved entries. Finally, a spectral clustering algo-
rithm (Ng, Jordan, and Weiss 2001) is applied to the com-
pleted similarity matrix to obtain the final clustering. Below,
we describe in detail the two key steps of the proposed algo-
rithm, i.e., the filtering step that removes the entries associ-
ated with the uncertain data pairs from the similarity matrix,
and the matrix completion step that completes the partially
observed similarity matrix.

The notations described below will be used throughout
the paper. Let N be the total number of objects that need to
be clustered, and m be the number of HITs. We assume that
the true number of clusters in the data is known a priori. 1

Given the partial clustering result from the k-th HIT, we de-
fine a similarity matrix W k ∈ RN×N such that W k

ij = 1
if objects i and j are assigned to the same cluster, 0 if
they are assigned to different clusters, and −1 if the pair-
wise label for the two objects can not be derived from the
partial clustering result (i.e. neither object i nor object j
is used in the HIT). Finally, given a subset of object pairs
∆ ⊂ {(i, j), i, j = 1, . . . N}2, we define a matrix projec-
tion operator P∆ : RN×N 7→ RN×N that takes a matrix B
as the input and outputs a new matrix P∆(B) ∈ RN×N as

[P∆(B)]ij =

{
Bij (i, j) ∈ ∆
0 otherwise. (1)

This projection operator is to guarantee that only the reliable
entries in the matrix can be projected into the space where
we apply matrix completion.

Filtering Entries with Unlabeled and Uncertain
Data Pairs
The purpose of the filtering step is to remove the uncertain
data pairs from the manual annotations. To this end, given
the m similarity matrices {W k}mk=1 obtained from individ-
ual workers, we first compute matrix A = [Aij ] ∈ RN×N

as the average of {W k}mk=1, i.e.,

Aij =

{ ∑m
k=1

Wk
ijI(Wk

ij≥0)∑m
l=1 I(W l

ij≥0)

∑m
l=1 I(W l

ij ≥ 0) > 0,

−1 otherwise

where I(z) is an indicator function that outputs 1 when z is
true and zero, otherwise. We introduce the indicator function
I(W k

ij ≥ 0) in the above equation so that only the labeled
pairs of objects will be counted in computing A.

Since Aij ∈ [0, 1] for a labeled data pair (i.e. Aij ≥ 0)
measures the percentage of HITs that assign objects i and j
to the same cluster, it can be used as the basis for the un-
certainty measure. In particular, we define the set of reliable
data pairs whose labelings are agreed upon by the percent-
age of workers as

∆ = {(i, j) ∈ [N ]× [N ] : Aij ≥ 0, Aij /∈ (d0, d1)}

1We can relax this requirement by estimating the number of
clusters via some heuristic, by considering the number of clusters
as the rank of the completed matrix A.

2The detailed definition of ∆ would be given in the next sub-
section.
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where d0 < d1 ∈ [0, 1] are two thresholds that will be de-
termined depending on the quality of the annotations. We
then construct the partially observed similarity matrix Ã as
follows

Ãij =

{
1 (i, j) ∈ ∆, Aij ≥ d1

0 (i, j) ∈ ∆, Aij ≤ d0

unobserved (i, j) /∈ ∆
(2)

Completing the Partially Observed Matrix
The second step of the algorithm is to reconstruct the full
similarity matrix A∗ ∈ RN×N based on the partially ob-
served matrix Ã. To this end, we need to make several rea-
sonable assumptions about the relationship between Ã and
A∗.

A simple approach is to assume Ãij = A∗ij ,∀(i, j) ∈ ∆;
in other words, assume that all the observed entries in ma-
trix Ã are correct. This, however, is unrealistic because Ã
is constructed from the partial clustering results generated
by different workers, and we expect a significant amount of
noise in individual clustering results. Thus, a more realistic
assumption is Ãij = A∗ij for most of the observed entries in
∆. We introduce the matrix E ∈ RN×N to capture the noise
in Ã, i.e.,

P∆(A∗ + E) = P∆(Ã), (3)

where P∆ is a matrix projection operator defined in (1). Un-
der this assumption, we expect E to be a sparse matrix with
most of its entries being zero.

The assumption specified in equation (3) is insufficient to
recover the full similarity A∗ as we can fill the unobserved
entries (i.e., (i, j) /∈ ∆) in A∗ with any values. An addi-
tional assumption is needed to make it possible to recover
the full matrix from a partially observed one. To this end,
we follow the theory of matrix completion (Candès and Tao
2010) by assuming the full similarityA∗ to be of low rank. It
was shown in (Jalali et al. 2011) that when the similarity ma-
trix A∗ is constructed from a given clustering (i.e. A∗ij = 1
when objects i and j are assigned to the same cluster and
zero, otherwise), its rank is equal to the number of clusters.
As a result, when the number of clusters is relatively small
compared to N , which is typically the case, it is reasonable
to assume A∗ to be of low rank.

Combining the two assumptions (E is sparse and A is of
low rank) together leads to the following approach, to re-
cover the full similarity matrix A∗ from the partially ob-
served matrix Ã. We decompose Ã into the sum of two ma-
tricesE andA∗, whereE is a sparse matrix that captures the
noise in Ã and A∗ is a low rank matrix that gives the simi-
larity between any two objects. Based on this idea, we cast
the matrix recovery problem into the following optimization
problem

min
A′,E

rank(A′) + C‖E‖1 s.t. P∆(A′ + E) = P∆(Ã) (4)

where ‖X‖1 =
∑

ij |Xij | is the `1 norm of matrix X that
measures the sparsity of X . Parameter C > 0 is introduced
to balance the two objectives, i.e., finding a low rank simi-
larity matrix A′ and a sparse matrix E for noise. Section 3.3

presents an approach to automatically determine the value
of C.

One problem with the objective function in (4) is that
it is non-convex because rank(·) is a non-convex func-
tion (Candès and Tao 2010). It is therefore computationally
challenging to find the optimal solution for (4). To address
this challenge, we follow (Candès and Tao 2010) and replace
rank(L) in (4) with its convex surrogate |A′|∗, the trace norm
of matrix A′. This allows us to relax (4) into the following
convex optimization problem

min
A′,E

|A′|∗ + C‖E‖1 s. t. P∆(A′ + E) = P∆(Ã). (5)

We use the efficient first order algorithm developed in (Lin
et al. 2010) to solve the optimization problem in (5).

A theoretical question is whether the similarity matrix ob-
tained by (5) is close to the true similarity matrix A∗. Our
theoretical analysis gives a positive answer to this question.
More specifically, under appropriate conditions about the
eigenvectors of A∗ (assumptions A1 and A2 given in the ap-
pendix), A∗ can be perfectly recovered by (5) if the number
of noisy data pairs is significantly smaller than the number
of observed data pairs. More details of our theoretical anal-
ysis can be found in the appendix.

Given the completed similarity matrix A∗ obtained from
(5), we apply the spectral clustering algorithm (Ng, Jordan,
and Weiss 2001) to compute the final data partition, which is
essentially an application of k-means algorithm (MacQueen
and others 1967) to the data projected into the space of the
top r eigenvectors ofA∗. Compared to the other kernel based
clustering methods (e.g., kernel k-means), spectral cluster-
ing is more robust to the noise in the similarity matrix due
to the projection of data points into the space spanned by the
top eigenvectors.

Selecting Parameter Values
Parameter C in (5) plays an important role in deciding the
final similarity matrix. Since no ground truth information
(true cluster labels) is available to determine C, we present
a heuristic for estimating the value of C.

We assume that the N objects to be clustered are roughly
evenly distributed across clusters; a similar assumption was
adopted in normalized cut algorithm (Shi and Malik 2000).
Based on this assumption, we propose to choose a value of
C that leads to the most balanced distribution of objects over
different clusters. To this end, we measure the imbalance of
data distribution over clusters by computing

∑N
i,j=1A

′
i,j =

1>A′1, where 1 is a vector of all ones. Our heuristic is to
choose a value for C that minimizes 1>A′1. The rationale
behind the imbalance measurement 1>A′1 is the following:
Let N1, · · · , Nr be the number of objects in the r clusters.
Since 1>A′1 =

∑r
k=1N

2
k and

∑r
k=1Nk = N , without

any further constraints, the optimal solution that minimizes
1>A′1 is Ni = N/r, i = 1, . . . , r, the most balanced data
distribution. Hence, 1>A′1, to some degree, measures the
imbalance of data distribution over clusters. The experimen-
tal results show that this heuristic works well. (Due to space
limitation, we omit the comparison between different C val-
ues in the experiments section.)
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(a) Bedroom (b) Suburb (c) Kitchen (d) Living Room (e) Coast (f) Forest (g) Highway

(h) Inside City (i) Mountain (j) Open Country (k) Street (l) Tall Building (m) Office

Figure 1: Some sample images from the 13 categories in the Scenes data set

(a) Human (b) Animal (c) Plant

Figure 2: Some sample images from the three categories in the Tattoo data set

Experiments
In this section, we first demonstrate empirically that the
proposed algorithm can achieve similar or better cluster-
ing performance as the Bayesian approach for crowdclus-
tering (Gomes et al. 2011) with significantly lower running
time. We further show that, as we reduce the number of pair-
wise labels, either by reducing the number of workers, or by
reducing the number of HITs performed by each worker, the
proposed algorithm significantly outperforms the Bayesian
approach.

Data Sets
Two image data sets are used for clustering:
• Scenes Data Set: This is a subset of the larger Scenes im-

age data set (Fei-Fei and Perona 2005) which has been
used in the previous study on crowdclustering (Gomes
et al. 2011). It is comprised of 1, 001 images belonging
to 13 categories. Figure 1 shows sample images of each
category from this data set. To obtain the crowdsourced
labels, 131 workers were employed to perform HITs. In
each HIT, the worker was asked to group images into
multiple clusters, where the number of clusters was de-
termined by individual workers. Pairwise labels between
images are derived from the partial clustering results gen-
erated in HITs. The data we used, including the subset
of images and the output of HITs, were provided by the
authors of (Gomes et al. 2011).

• Tattoo Data Set: This is a subset of the Tattoo image
database (Jain, Lee, and Jin 2007). It contains 3, 000 im-
ages that are evenly distributed over three categories: hu-
man, animal and plant. Some sample images of each cat-
egory in the Tattoo data set are shown in Figure 2. Un-
like the Scenes data set where the objective of HIT was
to group the images into clusters, the workers here were
asked to annotate tatoo images with keywords of their
choice. On average, each image is annotated by three dif-
ferent workers. Pairwise labels between images are de-
rived by comparing the number of matched keywords be-
tween images to a threshold (which is set to 1 in our
study).

Baseline and evaluation metrics
Studies in (Gomes et al. 2011) have shown that the Bayesian
approach performs significantly better than the ensemble
clustering algorithm (Strehl and Ghosh 2002), and Non-
negative Matrix Factorization (NMF) (Li, Ding, and Jor-
dan 2007) in the crowdclustering setting. Hence, we use the
Bayesian approach for crowdclustering as the baseline in our
study.

Two metrics are used to evaluate the clustering perfor-
mance. The first one is the normalized mutual informa-
tion (NMI for short) (Cover and Thomas 2006). Given the
ground truth partition C = {C1, C2, . . . , Cr} and the par-
tition C′ = {C ′1, C ′2, . . . , C ′r} generated by a clustering al-
gorithm, the normalized mutual information for partitions C
and C ′ is given by

NMI(C,C ′) =
2MI(C,C ′)

H(C) +H(C ′)
,

where MI(X,Y ) represents the mutual information be-
tween the random variables X and Y , and H(X) represents
the Shannon entropy of random variable X .

The second metric is the pairwise F-measure (PWF for
short). Let A be the set of data pairs that share the same
class labels according to the ground truth, and let B be the
set of data pairs that are assigned to the same cluster by a
clustering algorithm. Given the pairwise precision and recall
that are defined as follows

precision =
|A ∩ B|
|A|

, recall =
|A ∩ B|
|B|

,

the pairwise F-measure is computed as the harmonic mean
of precision and recall, i.e.

PWF =
2× precision× recall

precision + recall
.

Both NMI and PWF values lie in the range [0, 1] where
a value of 1 indicates perfect match between the obtained
partition by a clustering algorithm and the ground truth par-
tition and 0 indicates completely mismatch. Besides clus-
tering accuracy, we also evaluate the efficiency of both al-
gorithms by measuring their running time. The code of the
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Data sets Scenes Data Set Tattoo Data Set
NMI PWF CPU time (seconds) NMI PWF CPU time (seconds)

Matrix Completion 0.738 0.584 6.02× 102 0.398 0.595 8.85× 103

Bayesian Method 0.764 0.618 5.18× 103 0.292 0.524 4.79× 104

Table 1: Clustering performance and running time of the proposed algorithm (i.e. matrix completion) and the baseline algorithm
(i.e. Bayesian method) on two data sets

(a) Highway and Inside city (b) Bedroom and Kitchen (c) Mountain and Open country (d) Tall building and Street

Figure 3: Sample image pairs that are grouped into the same cluster by more than 50% of the workers but are assigned to different clusters
according to the ground truth.

Threshold d1 0.1 0.3 0.5 0.7 0.9
Consistency percentage 18.02% 28.10% 35.53% 43.94% 61.79%
NMI 0.507 0.646 0.678 0.700 0.738
PWF 0.327 0.412 0.431 0.445 0.584

Table 2: Performance of the proposed clustering algorithm as a function of different threshold values and the percentage of 1
entries in the matrix Ã that are consistent with the cluster assignments for the Scenes data set

baseline algorithm was provided by the authors of (Gomes et
al. 2011). Both the baseline algorithm and the proposed al-
gorithm were implemented in MATLAB and run on an Intel
Xeon 2.40 GHz processor with 64.0 GB of main memory.

Experimental results with full annotations
To evaluate the clustering performance of the proposed algo-
rithm, our first experiment is performed on the Scenes and
Tattoo data sets using all the pairwise labels derived from
the manual annotation process. For both data sets, we set d0

to 0. We set d1 to 0.9 and 0.5 for the Scenes and Tattoo data
sets, respectively. Two criteria are deployed in determining
the value for d1: (i) d1 should be large enough to ensure
that most of the selected pairwise labels are consistent with
the cluster assignments, and (ii) it should be small enough
to obtain sufficiently large number of entries with value 1
in the partially observed matrix Ã. Table 1 summarizes the
clustering performance and running time (CPU time) of both
algorithms.

We observed that for the Scenes data set, the proposed al-
gorithm yields similar, though slighlty lower, performance
as the Bayesian crowdclustering algorithm but with signifi-
cantly lower running time. For the Tattoo data set, the pro-
posed algorithm outperforms the Bayesian crowdclustering
algorithm in both accuracy and efficiency. The higher effi-
ciency of the proposed algorithm is due to the fact that the
proposed algorithm uses only a subset of reliable pairwise
labels while the Bayesian crowdclustering algorithm needs
to explore all the pairwise labels derived from manual anno-
tation. For example, for the Scenes data set, less than 13%
of image pairs satisfy the specified condition of “reliable
pairs”. The small percentage of reliable pairs results in a

rather sparse matrix Ã, and consequently a high efficiency in
solving the matrix completion problem in (4). The discrep-
ancy in the clustering accuracy between the two data sets can
be attributed to the fact that many more manual annotations
are provided for the Scene dataset than for the Tattoo data
set. As will be shown later, the proposed algorithm is more
effective than the Bayesian method with a reduced number
of annotations.

We also examine how well the conditions specified in our
theoretical analysis (see Appendix) are satisfied for the two
image data sets. The most important condition used in our
analysis is that a majority of the reliable pairwise labels de-
rived from manual annotation should be consistent with the
cluster assignments (i.e. m1 − m0 ≥ O(N log2N)). We
found that for the Scenes data set, 95% of the reliable pair-
wise labels identified by the proposed algorithm are consis-
tent with the cluster assignments, and for the Tattoo data set,
this percentage is 71%.

We finally evaluate the significance of the filtering step
for the proposed algorithm. First, we observe that a large
portion of pairwise labels derived from the manual annota-
tion process are inconsistent with the cluster assignment. In
particular, more than 80% of pairwise labels are inconsistent
with the cluster assignment for the Scenes data set. Figure 2
shows some example image pairs that are grouped into the
same cluster by more than 50% of the workers but belong to
different clusters according to the ground truth.

To observe how the noisy labels affect the proposed algo-
rithm, we fix the threshold d0 to be 0, and vary the threshold
d1 used to determine the reliable pairwise labels from 0.1
to 0.9. Table 2 summarizes the clustering performance of
the proposed algorithm for the Scenes data set with different
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(a) NMI values as a function of number of workers for the Scenes data
set

(b) NMI values as a function of percentage of annotations for the Tattoo
data set

Figure 4: NMI values as a function of number of workers and percentage of annotations for two data sets

values of d1 and the percentage of resulting reliable pairwise
labels that are consistent with the cluster assignments. Over-
all, we observe that the higher the percentage of consistent
pairwise labels, the better the clustering performance.

Experimental results with sampled annotations
The objective of the second experiment is to verify that the
proposed algorithm is able to obtain an accurate clustering
result even with a significantly smaller number of manual
annotations. To this end, we use two different methods to
sample the annotations: for the Scenes data set, we use the
annotations provided by 20, 10, 7 and 5 randomly sampled
workers, and for the Tattoo data set, we randomly sample
10%, 5%, 2% and 1% of all the annotations. Recall that for
the Tattoo data set we have only 3 annotators per image.
Then we run both the baseline and the proposed algorithm
on the sampled annotations. All the experiments in this study
are repeated five times, and the performance averaged over
the five trials is reported in Figure 4 (due to space limitation,
we only report the NMI values).

As expected, reducing the number of annotations deteri-
orates the clustering performance for both the algorithms.
However, the proposed algorithm appears to be more robust
and performs better than the baseline algorithm for all lev-
els of random sampling. The robustness of the proposed al-
gorithm can be attributed to the fact that according to our
analysis, to perfectly recover the cluster assignment matrix,
the proposed algorithm only requires a small number of re-
liable pairwise labels (i.e. O(N log2 /N)). In contrast, the
Bayesian crowdclustering algorithm requires a large num-
ber of manual annotations to overcome the noisy labels and
to make a reliable inference about the hidden factors used
by different workers to group the images. As a consequence,
we observe a significant reduction in the clustering perfor-
mance of the Bayesian approach as the number of manual
annotations is decreased.

Conclusion and Discussion
We have presented a matrix completion framework for
crowdclustering. The key to the proposed algorithm is to
identify a subset of data pairs with reliable pairwise labels
provided by different workers. These reliable data pairs are
used as the seed for a matrix completion algorithm to de-
rive the full similarity matrix, which forms the foundation
for data clustering. Currently, we identify these reliable data

pairs based on the disagreement among workers, and as a
result, a sufficient number of workers are needed to deter-
mine which data pairs are reliable. An alternative approach
is to improve the quality of manual annotations. Given that
our matrix completion approach, needs only a small number
of high quality labels, we believe that combining appropri-
ately designed incentive mechanisms with our matrix com-
pletion algorithm will lead to greatly improved performance.
In (Shaw, Horton, and Chen 2011), the authors discussed dif-
ferent incentive mechanisms to improve the quality of work
submitted via HITs. In particular, they studied a number of
incentive mechanisms and their affect on eliciting high qual-
ity work on Turk. They find that a mechanism based on ac-
curately reporting peers’ responses is the most effective in
improving the performance of Turkers. As part of our future
work, we plan to investigate the conjunction of appropri-
ate incentive mechanisms with clustering algorithms for this
problem. Another direction for our future work is to com-
bine the pairwise similarities obtained by HITs and the ob-
ject attributes.
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Appendix A: Theoretical Analysis for Perfect
Recovery using Eq. 5

First, we need to make a few assumptions about A∗ besides
being of low rank. Let A∗ be a low-rank matrix of rank r,
with a singular value decompsition A∗ = UΣV >, where

U = (u1, . . . ,ur) ∈ RN×r and V = (v1, . . . ,vr) ∈ RN×r

are the left and right eigenvectors of A∗, satisfying the fol-
lowing incoherence assumptions.
• A1 The row and column spaces of A∗ have coherence

bounded above by some positive number µ0, i.e.,

max
i∈[N ]

‖PU (ei)‖22 ≤
µ0r

N
, max

i∈[N ]
‖PV (ei)‖22 ≤

µ0r

N

where ei is the standard basis vector.
• A2 The matrix E = UV > has a maximum entry bounded

by
µ1
√
r

N
in absolute value for some positive µ1, i.e.

|Ei,j | ≤
µ1
√
r

N
,∀(i, j) ∈ [N ]× [N ],

where PU and PV denote the orthogonal projections on the
column space and row space of A∗, respectively, i.e.

PU = UU>, PV = V V >

To state our theorem, we need to introduce a few nota-
tions. Let ξ(A′) and µ(A′) denote the low-rank and sparsity
incoherence of matrix A′ defined by (Chandrasekaran et al.
2011), i.e.

ξ(A′) = max
E∈T (A′),‖E‖≤1

‖E‖∞ (6)

µ(A′) = max
E∈Ω(A′),‖E‖∞≤1

‖E‖ (7)

where T (A′) denotes the space spanned by the elements of
the form uky

> and xv>k , for 1 ≤ k ≤ r, Ω(A′) denotes
the space of matrices that have the same support to A′, ‖ · ‖
denotes the spectral norm and ‖·‖∞ denotes the largest entry
in magnitude.
Theorem 1. Let A∗ ∈ RN×N be a similarity matrix of
rank r obeying the incoherence properties (A1) and (A2),
with µ = max(µ0, µ1). Suppose we observe m1 entries
of A∗ recorded in Ã with locations sampled uniformly at
random, denoted by S. Under the assumption that m0 en-
tries randomly sampled from m1 observed entries are cor-
rupted, denoted by Ω, i.e. A∗ij 6= Ãij , (i, j) ∈ Ω. Given
PS(Ã) = PS(A∗ + E∗), where E∗ corresponds to the cor-
rupted entries in Ω. With

µ(E∗)ξ(A∗) ≤ 1

4r + 5
, m1 −m0 ≥ C1µ

4n(log n)2,

and C1 is a constant, we have, with a probability at least
1 − N−3, the solution (A′, E) = (A∗, E∗) is the unique
optimizer to (5) provided that

ξ(A∗)− (2r − 1)ξ2(A∗)µ(E∗)

1− 2(r + 1)ξ(A∗)µ(E∗)

< λ <
1− (4r + 5)ξ(A∗)µ(E∗)

(r + 2)µ(E∗)

We skip the proof of Theorem 1 due to space limitation.
As indicated by Theorem 1, the full similarity matrixA∗ can
be recovered if the number of observed correct entries (i.e.,
m1) is significantly larger than the number of observed noisy
entries (i.e., m0).
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