Problem Solving Using Classical Planners
AAAI Technical Report WS-12-12

Making Reasonable Assumptions to Plan
with Incomplete Information: Abridged Report*

Sammy Davis-Mendelow
Department of Computer Science
University of Toronto
Toronto, Canada

Abstract

Many practical planning problems necessitate the generation
of a plan under incomplete information about the state of the
world. In this paper we propose the notion of Assumption-
Based Planning. Unlike conformant planning, which at-
tempts to find a plan under all possible completions of the
initial state, an assumption-based plan supports the assertion
of additional assumptions about the state of the world, sim-
plifying the planning problem. In many practical settings,
such plans can be of higher quality than conformant plans.
We formalize the notion of assumption-based planning, es-
tablishing a relationship between assumption-based and con-
formant planning, and prove properties of such plans. We
further provide for the scenario where some assumptions are
more preferred than others. Exploiting the correspondence
with conformant planning, we propose a means of comput-
ing assumption-based plans via a translation to classical plan-
ning. Our translation is an extension of the popular approach
proposed by Palacios and Geffner and realized in their TO
planner. We have implemented our planner, A0, as a variant
of TO and tested it on a number of expository domains drawn
from the International Planning Competition. Our results il-
lustrate the utility of this new planning paradigm.

Introduction

In many real-world planning problems, only a subset of the
state of the world may be known. Conformant planning,
conditional planning, probabilistic planning and contingent
planning are among the approaches used to address such
planning scenarios. Whereas classical planning assumes
complete information about the state of the world, confor-
mant planning assumes incomplete information but necessi-
tates generation of a plan that relies only on what is known.
This makes planning difficult and can lead to poor plans.

In this paper we define the notion of assumption-based
planning. Assumption-based planning attempts to find a
middle-ground between conformant and classical planning
wherein the planner dynamically asserts reasonable, calcu-
lated assumptions about the uncertainty in the world in order
to generate a valid plan given those assumptions. In contrast
to contingent planning that exploits strategic sensing to re-
solve uncertainty, assumption-based planning is well-suited

*An unabridged version of this paper appeared in the HSDIP
workshop of the ICAPS-2012 conference.

Jorge A. Baier
Depto. de Ciencia de la Computacién
Pontificia Universidad Catdlica de Chile
Santiago, Chile

16

Sheila A. Mcllraith
Department of Computer Science
University of Toronto
Toronto, Canada

to scenarios where resolving uncertainty directly is impossi-
ble, difficult, or expensive.

The term assumption-based planning has been coined for
a number of diverse planning activities that broadly relate to
assumptions. Albore and Bertoli (2004; 2006) used the term
to describe a notion of planning in which an assumption is
provided a priori as a linear temporal logic (LTL) formula
and a plan is generated predicated on this assumption. Their
work is more closely related to planning with LTL domain
control knowledge (e.g., Bacchus and Kabanza 2000). Pel-
lier and Fiorino (2004; 2005) also use the term to describe a
multi-agent approach to devising a shared global plan via a
conjecture/refutation cycle, where agents exchange propos-
als and counter-proposals in an argumentation dialogue.

Here, assumption-based planning is related to the char-
acterization of abduction as theory formation (e.g., Poole,
Goebel, and Aleliunas 1987) wherein additional facts about
the world are conjectured in order to explain an observa-
tion. It is also somewhat related to the notion of generating
explanations for dynamical systems (e.g., Sohrabi, Baier,
and Mcllraith 2011). Indeed, Reiter and de Kleer (1987)
established the relationship between abduction (explanation
generation) and assumption-based reasoning for static sys-
tems, and Conrad and Williams (2011) employed aspects
of assumption-based truth maintenance in their Drake ex-
ecutive for temporal plans. In (Gobelbecker, Gretton, and
Dearden 2011; Bonet and Geffner 2011; Albore and Geffner
2009), contingent planners may make assumptions that can
be verified through sensing later on.

In contrast to previous work, we provide a formal char-
acterization of assumption-based planning establishing a
correspondence to conformant planning. We show how
assumption-based plans can be computed via classical plan-
ning, proving the correctness of our approach. We also ar-
gue for the merit of preferred assumption-based plans and
propose a means of realizing such plans via cost-based plan-
ning. We implement these two approaches and illustrate and
assess some of their properties.

Characterization

In this section we formally define assumption-based plan-
ning and initial state assumption-based planning, as well as
state the equivalence of the two given deterministic actions
and no exogenous events.

Background

We now define the fundamental notions that will be used
in the rest of the paper. Our first definition is for planning
problems.

Definition 1 (Planning Problem) A planning problem is a
tuple P = (F,0,1,G) where F is a finite set of fluent sym-
bols, O is a finite set of action operators, I is a set of clauses
over F, defining the set of possible initial states, and G is a
boolean formula over symbols in F', that defines a goal con-
dition.

Every action a € O is defined by a conjunction of fluent
literals, prec(a) (preconditions) and a set of conditional ef-
fects C' — L where L is a fluent literal that is made true
when the action is executed and the conjunction of fluent
literals C' holds.

Example 1 Consider a car-driving domain in which a car
can drive between locations. There are three actions:
drive(z,y), turnOn, and turnOff. There are only two lo-
cations: home and office. Initially we only know that the
car is at home and that its engine is not on. Hence, the initial
state T is given by {at(home), —~at(office), mengineOn}.
Action turnOn turns the engine on if the battery is work-
ing, represented by the conditional effect {batteryOk —
engineOn }, and has no preconditions (i.e., prec(a) = true).
Action drive(z,y) requires as precondition that at(z) and
that engineOn, and has the (unconditional) effects at(y),
—at(x). Action fizBattery has no precondition and a single
conditional effect —batteryOk — batteryOFk. Finally, the
objective is to bring the car to the office: G = at(office).

A planning state s is defined by a set of fluent symbols,
which represent all that is true. Each system state s induces
a propositional valuation M : F' — {true,false} that maps
any fluent literal in s to true, and all other literals to false.

We say a state s is consistent with a set of clauses C, if
M; | ¢, for every ¢ € C. Intuitively, My = ¢ stands for
“boolean formula ¢ holds true in state s”.

An action a is executable in a state s if My = prec(a).
If a is executable in a state s, we define its successor state
as d(a,s) = (s\ Del) U Add, where Add contains a flu-
ent f iff C — f is an effect of a and M = C. On the
other hand Del contains a fluent f iff C — —f is an ef-
fect of a, and M, = C. We define §(apay ...an,s) =
d(ay...an,d(ag,s)), and d(e,s) = s. A sequence of ac-
tions « is executable in s if 6(c, s) is defined. Furthermore
« is executable in P iff it is executable in s, for any s con-
sistent with 1.

Below we define the notion of execution trace which in-
tuitively characterizes maximal state trajectories that could
result from the execution of an action sequence when per-
formed in some of the possible initial states of a planning
problem.

Definition 2 (Execution Trace) A sequence of planning
states o = sgS1---Sp Is an execution trace of a =
apay .. .ay in planning problem P = (F,0,1,QG) iff (1)
so is consistent with I, (2) §(a;, ;) = Siv1, for all i < k,
and (3) either k = n+ 1 ork < n+ 1 and §(sk, ar) is
undefined.

17

Definition 3 (Successful Execution Trace) An execution

trace o for o is successful iff |o| = |a| + 1.

Naturally, we are interested in execution traces that lead
to goal satisfaction, i.e., for which the goal holds in the final
state of the sequence of planning states. Formally,

Definition 4 (Leads to) An execution trace o = sg- - - Sk
leads to (goal formula) G, iff My, E G.

With the previous definitions in hand, we define the stan-
dard notion of conformant plan.

Definition 5 (Conformant Plan) A sequence of actions «
is a conformant plan for P = (F, 0,1, G) iff every execu-
tion trace of « is successful and leads to G.

In our car-driving example, the sequence
fizBattery; turnOn; drive(home, office) is a confor-
mant plan. The reader can easily verify that action
fixBattery is needed in any conformant plan.

Assumption-Based Planning

Consider an extension of our car-driving example where,
in addition to the battery, many other car components are
modeled as potentially malfunctioning. In the absence of
information regarding the status of each component, a con-
formant plan would require fixing each component, which
would result in either a long, poor quality plan, or possibly
no plan at all. A contingent plan could be similarly poor,
requiring significant computation or contingencies for un-
likely scenarios. Instead we would like the planning system
to simplify the task, as people do, by automatically assum-
ing, in the absence of evidence to the contrary, that the bat-
tery and other components are functioning correctly in the
initial state. Later on, we would like the planner to be capa-
ble of assuming that the freeway is not blocked in the state
immediately before entering it. In general, we would like
the planner to be able to make reasonable assumptions about
any state along the execution.

Given a planning problem with an incomplete initial state,
the task of assumption-based planning requires computing
two elements: (1) a set of assumptions that are made at
different states during the execution of the plan, and (2) a
sequence of actions that, given the assumptions, is guaran-
teed to reach the goal. As such, the main difference between
assumption-based planning and conformant planning is re-
lated to the computation of assumptions in addition to the
computation of a plan.

Formally an assumption-based planning problem is a tu-
ple P = (F,0,1,G,T), where F, O, I, and G are defined
exactly as for regular planning problems (Definition 1), and
T is a subset of F' and denotes the set of assumable fluents.
T may be equivalent to the set of domain fluents or it may be
restricted to an application-specific subset, such as the set of
fluents corresponding to the normal functioning of car com-
ponents in our car example. An assumption-based plan is a
pair (p, &) where oo = ag - - - ay, is a sequence of actions and
p = hg--- hpy1 is a sequence of boolean formulae. Each h;
is a boolean formula over the fluents in 7" and represents as-
sumptions made about the ¢-th state visited when performing
.

The execution traces that we will be interested in are those
that conform to p; i.e., are such that they are consistent with
the assumptions. Formally,

Definition 6 (Conforms to) An execution trace o =
$1 - - - S conforms to a sequence of boolean formulae p =
hy---hywithk < niff Mg, | hy, foreveryi € {1,... k}.
Finally, each of the execution traces of « that conform to
p must actually lead to the goal. A formal definition of an
assumption-based plan follows.

Definition 7 (Assumption-Based Plan) The pair (p,«),
where « is a sequence of k actions, and p is a sequence of
k + 1 boolean formulae over T is an assumption-based plan
for P = (F,0,1,G,T) iff any execution trace of « that
conforms to p is successful and leads to G, and furthermore
at least one such execution trace exists.

Intuitively for every consistent completion of the initial
state the execution trace is either successful and leads to the
goal or is pruned by p. Assumption-based planning may be
reduced to a conformant plan when all assumptions are re-
stricted to be trivial. An assumption is trivial when it is en-
tailed by the state in which it is made. Trivial assumptions
may be forced by restricting the set 7', the extreme case be-
ing when 7' is empty.

In our car example, @ = (p,a), with p =
batteryOk; true; true, a = turnOn; drive(home, office) is
an assumption-based plan that assumes the battery is ini-
tially working and uses two actions to achieve the goal.

An important fact to note at this point is that, given the
current definition of the problem, assumptions may in some
cases provide too much flexibility. This issue can be tackled
by defining a notion of quality over assumption-based plans.
We discuss this in more detail in the preferred assumption-
based planning section.

Initial-State Assumption-Based Planning

In many settings it is convenient or sufficient to make as-
sumptions only about the initial state of the world. In other
words, to make h; = true for every ¢ > 0. We call this
class of problems initial-state assumption-based planning.
An initial-state assumption-based plan is denoted by (hg,),
where hg is a boolean formula over 7" that corresponds to an
assumption made on the initial state.

The formal relation between conformant planning and
initial-state assumption-based planning is straightforward,
and is established in the following proposition.

Proposition 1 The tuple (ho,«) is an initial-
state assumption-based plan for planning problem
P = (F,0,I,G,T) iff o is a conformant plan for
P'=(F,0,1Uhy,G).

Note that this proposition does not imply that an
assumption-based plan can be directly computed using a
conformant planner, since a conformant planner is not able
to compute assumptions. In addition, a relation between
assumption-based planning and initial-state assumption-
based planning can be established.

Theorem 1 If P = (F,0,1,G,T) and (p,«) is an
assumption-based plan for P, then there exists an hg such
that (hg,) is an initial-state assumption-based plan for P.

18

F(L;{lthﬁrmore, ho can be computed from p, P and o in time
2,

As a consequence of this theorem, if « is a sequence of
actions for which there is some p such that (p,«) is an
assumption-based plan, then we can construct an assump-
tion hg on the initial state using « such that (hg, «) is an
assumption-based plan. The proof of the above theorem
(omitted here for space) actually gives a constructive algo-
rithm for A that relies on regressing G over a. We now
analyze aspects that relate to the complexity of assumption-
based planning. As it turns out, the definition of assumption-
based planning is general enough that its complexity seems
to lie across a spectrum of complexity classes, depending on
which literals are allowed to be assumed. Below we provide
two complexity results showing that assumption-based plan-
ning is complete for two complexity classes. Our first result
follows directly from the fact that conformant planning is
EXPSPACE-complete (Haslum and Jonsson 1999).

Theorem 2 Given an assumption-based planning problem
P = (F,0,I,G,T), where T contains no fluents men-
tioned in non-unary clauses of I, deciding whether or not
an assumption-based plan exists is EXPSPACE-complete.

However, as more information can be assumed, the com-
plexity of the decision problem move down to that of classi-
cal planning.

Theorem 3 Given an assumption-based planning problem
P = (F,0,1,G,T), where T contains all fluents men-
tioned in non-unary clauses of I, deciding whether or not
an assumption-based plan exists is PSPACE-complete.

Naive Approach to Assumption-Based Planning

Theorem 3 implies that when the set of assumable fluents
contain all fluents appearing in non-unary clauses of I,
assumption-based planning can be reduced to classical plan-
ning. Indeed, a naive algorithm for this type of assumption-
based planning can be proposed by building a classical plan-
ning problem in which the planner first has to “guess” an
assumption on the initial state, and then find a sequence of
actions.

Specifically, the classical problem P’ is like P but aug-
mented with additional actions that can only be performed at
the initial state and have as an objective to generate an initial
state consistent with /. There is an exponential number of
these actions. If aga; .. . a, is a plan for P, we construct the
initial-state assumption-based plan « as follows. hg is con-
structed with the facts true in the state s that ay generates. a
is simply set to a; ...a,. Of course, the approach derived
by the proof of this theorem is very impractical as it grows
the size of the problem exponentially. In an extended ver-
sion of our car example, in which we have n components of
the car whose state is unknown, we would have 2™ actions
that complete the initial state. Alternatively, some domains
may lend themselves to achieve the same completion effect
by applying a sequence of actions. In our example, each
sequence of these actions generates one of the possible 2"
states.

An important limitation of both of the aforementioned
approaches is that actions performed at the beginning of

the plan make an explicit commitment to a single initial
state. In many practical applications, such a compromise
seems too excessive. Computationally, committing to a sin-
gle state may lead the search astray. From a high-level
perspective, committing to a single state produces assump-
tions that may be too restrictive, which may be undesir-
able. Both approaches outlined above have been used in
the past to tackle diagnosis problems in which the ini-
tial state is unknown (Sohrabi, Baier, and Mcllraith 2010;
Haslum and Grastien 2011).

A Translation-Based Approach

In this section we propose an alternative translation of
assumption-based planning into classical planning that
builds on top of Palacios and Geffner’s K ps translation
(2009) — henceforth denoted by P&G— which translates con-
formant planning into classical planning. The main objec-
tive of our translation is to avoid the excessive commitment
exhibited by the naive translation of assumption-based plan-
ning into classical planning. We describe the basics of the
translation, analyze its properties, and finally compare it to
other extensions of P&G.

The K. 74’ s Translation

Given a planning problem P = (F,0,I,(), we gener-
ate a new planning problem P’ = (F',0', I’ G’); we call
this process the K’T“’ s translation, which builds on P&G.
For each literal L we associate a set of merges, M. Each
merge is a finite set of fags, which in turn are conjunctions
of literals that are unknown in the initial state. Each merge
characterizes a partition of the initial state in the sense that
I &= V,¢,, t is required to hold for each merge m.

A tag intuitively represents a partial completion of the ini-
tial state in which every L € ¢ is initially true — it is a “case”
in which L is initially true. Problem P’ contains fluents of
the form KL, for each L € F, Kt and K-t for each tag t,
and K L/t for each L € F and each tag t in a merge of M.
K L intuitively represents that L is known. K L/t represents
the fact that L is known given that ¢ is true in the initial state.

The main difference between P&G and our translation is
that we consider a set of assumption actions, which allow
the planner to assume that a tag ¢t was true in the initial
state. More specifically, given a set T of assumable tags,
there is an assumption action associated to each ¢t € 7 that
assumes t is true in the initial state. Instead of using the
standard P&G merge actions, we use the contingent merge
actions introduced by Albore, Palacios, and Geffner (2009).
Furthermore, our translation augments P&G with additional
conditional effects to handle assumptions. More precisely,
P’ is such that the following holds.

M) I'={KL|IELYU{KL/t| I,t = L}U{ok}.
I’ differs from P&G only in the ok fluent which is added to
keep track of consistency and is explained in detail later.

(2) For each literal L, and each tag ¢ in some merge of My,
O contains the so-called contingent merges proposed origi-
nally by Albore, Palacios, and Geffner (2009), of the form
(Aiem (KL/t vV K=t)] — K L. These generalize the P&G
merge actions for the case where ¢ is refuted by assumptions.

19

(3) Like in P&G, for each action a with conditional effect
C — L, O’ contains the conditional effects [/ ..~ K¢/t] —
KL/t and [\ . ~K—c/t] — —K-L/t, for each tag t in
some merge of M7 .

(4) In addition, for each tag ¢ in the set of assumable tags,
T, we create an assumption action Assume(t), with precon-
dition ~ K -t AN—~Kt \=K—-t' A=Kt and effects Kt, =K —t,
K—t', =Kt for every tag t’ that is inconsistent with ¢, i.e.,
contains the complement of a literal in .

(5) For each merge set M|, that contains tag ¢, and each
merge m € M, the conditional effects KL/t — KL, and
KL/t N K-L — —ok are added to the Assume(t) action.
The first conditional effect makes L known if it is the case
that K'L/t. The second conditional effect takes care of po-
tential inconsistencies that could arise when assuming a lit-
eral that implies that L is known, when — L is already known.
In such cases the action deletes the fluent ok signaling incon-
sistency.

(6) For each action a € O the version of a in O’ contains
the precondition 0k A A\ cpree(a) KL

(7) The planner should not make inconsistent assumptions.
Thus whenever we assume a tag ¢, we may need to update
the knowledge about other tags. We achieve this by adding
specific conditional effects to assumption actions. Such ef-
fects reflect logical inferences among clauses defining the
initial state and we obtain them by performing resolution.
For the sake of space, we refer the reader to the unabridged
paper for a detailed explanation of the resolution step.
(8) Finally, G’ = {KL | L € G} U{ok}.

Just like P&G, our K4 ,, translation is sound in the fol-
lowing sense.

Theorem 4 The K{«‘ translation is sound; i.e., if o is a

plan for K{{ a1 (P), then there is an assumption-based plan

(p,) for the original problem. Furthermore, (p,c’) can
be computed from o in linear time.

The K (P) Translation

As with P&G’s K7) translation, the K 74’ a7 translation does
not define explicitly how the merges/tags are computed from
the original problem. In addition, it provides no complete-
ness guarantees. A practical realization of P&G’s K s is
given by the so-called K; translation (Palacios and Geftner
2009). K; defines an explicit way to compute merges. It is
a sound translation (in the sense defined above). In addition,
if 7 is not greater than the so-called width of the problem P,
then it is also complete.

We have defined an analogous version of the K; trans-
lation, that we call K*. K7 is a version of K; in which
merges and tags are computed using the same procedure as
for the case of K;. Due to lack of space we cannot elab-
orate on this process, but we refer the reader to Palacios
and Geffner’s paper (2009) for reference. After the tags and
merges are determined, however, it may be that the set of
tags does not capture the set of assumable fluents. In such
a case, we create additional tags for those assumable fluents
that are not captured.

Since KZ-A is a particular form of the translation K s,

we obtain that it is sound as a corollary of Theorem 4. Fur-
thermore,

Theorem 5 Given an assumption-based planning problem
P = (F,0,1,G,T), with width w(P) < i, the K{* trans-
lation is complete; i.e. if there exists an assumption-based
plan (p, &) for P, in which p are conjunctions of literals in
T, then a plan exists for Ki*(P).

In the previous result, w(P) is defined analogously to P&G.

Negative Results Given P, K;(P) is polynomial in the
width of P (Palacios and Geffner 2009). Since our imple-
mentation involves a step in which previously we do a res-
olution fixpoint computation (Step (7)) we cannot guarantee
that the K translation is polynomial on the width of P.

Preferred Assumption-Based Planning

The definition of an assumption-based plan allows the plan-
ner to assume any aspect of the state that can be constructed
from the subset of assumable literals and consistently as-
sumed. However, some assumptions will be more reason-
able than others. E.g., in our car example, if it’s summer, it
may be much more reasonable to assume batteryOFk than
that the car hasGas. In the cold of winter, the opposite
may be true. To define the notion of a preferred assumption-
based plan, we employ a preference relation =, a transitive
and reflexive relation in II x II, where II contains precisely
all assumption-based plans for a particular planning instance
(following Baier and Mcllraith 2008). Plan optimality is de-
fined in the obvious way given relation <.

For the purposes of this paper, we will appeal to the
uniform notion of action cost in order to characterize pre-
ferred assumption-based plans, rather than defining < di-
rectly. Specifically, given an assumption-based planning
problem P, we build its translated instance K{{ u(P) =
(F,0,I,@G), and then augment this instance to produce a
cost-based planning problem Pc = (F,0,1,G) such that
each action a € O has a non-negative cost C(a). Note that
this means that actions of the form Assume(t) will have a
cost associated with them. Likewise, so do the domain ac-
tions and merge actions. The task reduces now to finding a
cost-optimal plan.

Specifying how a domain expert would specify these pref-
erences in the original problem specification and ensuring
that the corresponding cost-based planning problem respects
the induced < relation can be achieved in a variety of ways.
Detailed discussion of this issue is beyond the scope of this
paper. For the purposes of illustrating some of the properties
of this approach, we can directly and intuitively add costs to
the translated classical planning problem, as we do in the
section to follow.

Implementation and Experiments

The K{! translation was implemented in our AO planner as
an augmentation of Palacios and Geffner’s TO planner. In the
absence of the specification of assumables, the assumables
are set to all the fluents less those involved in G, precluding
assumption-based plans that assume G. We use FF (Hoft-
mann and Nebel 2001) to generate classical plans with the

20

translated domains and convert them back into assumption-
based plans. To generate preferred assumption-based plans,
we associate a cost with each action in the (translated) clas-
sical planning problem. The resulting cost-based planning
problem is solved using Metric-FF and LAMA.

Since the notion of assumption-based planning is

new, there are no systems to benchmark against. We
sought instead to evaluate the running time of A0 + FF
compared to an implementation of so-called naive
assumption-based planning, and to various cost distributions
for cost-based assumption-based planning. We also sought
to assess gross properties of the translation: proportion of
solution time; and size relative to its TO counter part, and to
the original problem.
Domains: We exploited four domains from the Interna-
tional Planning Competition (IPC) benchmark suite: logis-
tics, raokeys, coins, and blocks. Experiments are still in
progress for the latter two domains, but initial results are
promising; details will be given in the full paper. We aug-
mented the logistics domain by adding gas levels to trucks
that decremented, gas stations and refueling actions, and we
modified some intracity connections to be uni-directional or
missing. We refer to this modified domain as alogistics.
The 12 instances we constructed varied in the number of
cities and trucks (2-4), and locations within a city. Varying
amounts of uncertainty were introduced into the initial state
of each instance via unknown truck gas levels and locations,
and the connectedness within cities.

The second domain we used was raokeys, a conformant
planning benchmark from IPC-2008. The problem requires
reasoning about n locks with n different possible keys in
n different possible locations, making the number of initial
states combinatorial explosive. Conformant plans for this
domain are long and must consider a combinatorially explo-
sive number of possible initial states. In contrast the problem
is simple for a human. This makes it a challenging problem
for assumption-based planning. We experimented with 4 in-
stances of this conformant domain, forn = 2,...,5.
Experiments: We ran 7 different experimental con-
figurations on the 16 problem instances described above
and 4 preliminary results from coins. (1) We ran A0 +
FF on the translated domains. (2) We generated a naive
assumption-based planning problem by augmenting each
problem instance with actions that create each of the dif-
ferent consistent completions of the initial state, then solved
with FF. (3)-(7) These configurations all relate to generating
preferred assumption-based plans. The configurations differ
with respect to the cost of the assumption actions relative to
the domain actions. E.g., x = 0.5 denotes that assumption
actions are twice as expensive as domain actions. All merge
actions were assigned equal (low) cost. Instances solved via
A0 + Metric-FF or LAMA.

Table 1 shows the results obtained on the seven configu-
rations for 20 instances. On the classical settings, A0 does
not take much more time than the naive method but makes
far fewer assumptions. Problems alog-1 to alog-4, are all
variants of the same problem instance but with progressively
more unimportant uncertainty. This domain is contrasted by
the raokeys problem instances in which AO seems to take ex-

Table 1: Comparing the seven configurations with the total time to solve in seconds on the left and plan length on the right. The
number of assumptions made appears in parentheses. The results are preliminary and experiments are in progress (X: unknown
failure in back-end planner. TTO: time out during translation. STO: time out during solving classical plan). All experiments
were run on a 2.80GHz machine with 2GB memory and a 30 minute timeout.

Prob Classical (t(s)/len) Cost-Based Metric-FF (t(s)/len) Cost-Based LAMA (t(s)/len)

A0 naive x=0.1 x=0.5 x=1 x=2 x=10 x=0.1 x=0.5 x=1 x=2 x=10
alog-1 0.06/44(2)| 0.00/39(4) 0.26/39(2)[0.04/39(2)| 0.03/39(2)| 0.05/39(3)| 0.29/39(3)| 101.75/36(1)| 37.58/36(1) 0.03/38(2) 0.02/38(2) 0.02/38(2)
alog-2 0.07/44(2)| 0.01/51(16) 0.33/39(2)|0.04/39(2)| 0.04/39(2)| 0.06/39(3)| 0.36/39(3) 6.03/36(1) 0.03/38(2) 0.02/38(2)| 220.53/36(2)| 251.66/36(2)
alog-3 0.06/44(2)| 0.02/ 61(26) 0.33/39(2)[0.03/39(2)| 0.04/39(2)| 0.06/39(3)| 0.35/39(3) 6.03/36(1) 0.03/38(2) 0.03/38(2) 0.03/38(2)| 253.99/36(2)
alog-4 0.11/44(2)[0.27/ 129(94) 0.41/39(2)[0.05/39(2)| 0.05/39(2)| 0.06/39(3)| 0.43/39(3) 6.35/36(1)| 475.12/36(1) 0.04/41(2)| 589.5/36(2) 0.05/41(2)
alog-5 0.06/50(2) 0.01/47(5) 0.39/45(2)[0.05/45(2)| 0.05/45(2)| 0.09/45(3)| 0.69/45(3)| 54.14/42(1)| 38.67/44(2)| 38.71/44(2)| 38.53/44(2)| 38.04/44(2)
alog-6 0.07/50(2)| 0.01/50(8) 0.41/45(2)[0.06/45(2)| 0.05/45(2)| 0.11/45(4)| 0.77/45(4) 4.45/42(1) 1.41/43(2) 1.49/43(2) 1.41/43(2) 1.45/43(2)
alog-7 0.07/52(3)| 0.01/54(5) 0.03/51(3)[0.03/51(3)| 0.03/51(3)| 0.03/51(3)| 0.07/51(3) 0.65/54(3) 0.67/54(3) 0.64/54(3) 0.66/54(3) 0.65/54(3)
alog-8 0.1/54(3)| 0.01/50(6) 0.04/53(2)[0.03/53(2)| 0.04/53(3)| 0.05/52(4)| 2.45/51(3) 13.6/55(2)| 13.25/55(2)| 13.32/55(2)| 524.5/49(3)| 669.47/51(3)
alog-9 0.08/56(5)| 0.01/51(10) 0.10/61(2)[0.16/61(2)| 0.15/61(4)| 0.08/57(6)| 9.80/51(4)| 427.26/60(2)| 423.53/52(3)| 424.44/52(3)|423.99/52 93)| 424.19/52(3)
alog-10 | 0.06/39(5)| 0.01/36(6) 0.36/37(4)[0.04/39(5)| 0.03/39(6)| 0.06/36(5)| 0.50/36(5) 8.93/33(1)| 12.52/34(1) 0.03/37(4) 0.02/37(4)| 156.15/33(4)
alog-11 | 0.14/55(6)| 0.01/50(14)|1671.78/46(7)|0.21/48(9)| 0.23/48(9)| 1.56/52(11)[975.88/46(9)| 53.21/43(1) 7.29/50(1)| 71.76/51(6)| 3.49/50(11)| 99.78/49(11)
alog-12 | 0.16/61(8)| 0.04/72(17)| 160.64/61(5)|0.25/61(5)| 0.32/58(4)| 2.75/56(5) STO X X X X X
rao-2 0.05/10(2)| 0.01/10(2)| 0.02/10(2){0.02/10(2)[0.03/ 10(2)| 0.12/10(2)| 33.33/10(2) 0.02/10(2) 0.02/10(2) 0.02/10(2) 0.02/10(2) 0.02/10(2)
rao-3 36.39/16(3)| 0.04/24(14) X X X X X| 60.79/17(3)| 57.93/18(3)| 61.75/17(3)| 75.57/17(4)| 80.81/17(4)
rao-4 X 3.96/ 36 X X X X X X X X X X
rao-5 X X X X X X X X X X X X
coins-1 0.02/8(3)[0.01/10(4) 0.01/8(3)| 0.01/8(3) X X X 0.02/9(0) X 0.02/8(3) 0.02/8(3) 0.02/8(3)
coins-7 | 0.05/13(5)[0.01/15(6) 0.03/13(5)[0.03/13(5)| 0.04/13(5) [137.67/13(5) STO 9.1/26(0) 0.12/13(4) 0.07/13(5) 0.07/13(5) 0.04/13(5)
coins-8 | 0.08/14(5)| 0.01/16(6) 0.04/14(5)[0.03/14(5)| 0.04/14(5) [137.86/14(5) STO| 10.07/26(0) 0.29/14(4) 0.07/14(5) 0.07/14(5) 0.04/14(5)
coins-17| 0.61/21(7)| 0.09/24(10) X X X X X| 137.61/22(6) 4.85/21(7) 3.7121(7) 2.79/21(7) 2.93/21(7)
coins-29 X| 31.51/70(33) X X X X X [129.55/70(20) | 149.45/68(20) | 137.65/70(20) | 132.58/69(20) | 146.67/70(20)

ponentially more time while the naive method works fairly
well. Strong conclusions cannot be made however because
of the small number of instances that can be solved.

The cost-based run on metric-FF showed a clear trend that
x = 0.1 and x = 10 took longer to solve than values of x
closer to 1. All the alogistic instances require both assump-
tions and regular actions to be solved. When the cost dis-
crepancies are high, the search may be too focused building
plan prefixes with the cheapest action, without considering
other (useful) actions.

We evaluated the size of our AQ translations relative to the
original problem and to a comparable TO translation. Given
the diversity of domains and the small number, our observa-
tions are somewhat anecdotal. For the alogistics domains,
AO0 and TO performed reasonably consistently. The number
of atoms was approximately double that in the original do-
main and there was a very small increase in the number of
actions. In the raokeys domains AQ and TO both doubled the
number of actions, but there was no other clear trend, ex-
cept that AO had one or two orders of magnitude more con-
ditional effects than the original domain, whereas TO only
had a constant factor increase. These large number of con-
ditional effects are due to the dependencies between clauses
in the domain which results in a high number of clauses that
can be produced by the resolution algorithm.

We also evaluated the proportion of solution time ded-
icated to the translation. For the alogistics domains this
ranged from 5 - 25%, whereas with the raokeys domain,
it was closer to 50%. On the other hand, A0 took about
0.1 — 0.6 times the amount of time to translate alogistics
problem instances as TO. On raokeys2 the time spent was
about the same, but on raokeys3 A0 took almost 100 times
as long. Again, this is due to the unit propagation required

21

for the assumption actions.

Summary and Concluding Remarks

In this paper we introduce the notion of
assumption-based planning. We provide a formal char-
acterization of assumption-based planning, establishing
a correspondence to conformant planning. Exploiting
this correspondence, we provide a translation of an
assumption-based planning problem to a classical planning
problem, building on the popular translation developed by
P&G. We prove the soundness and completeness of our
translation. This provides us with a means of generating
assumption-based plans using classical planners. We also
argue for the merit of preferred assumption-based plans and
propose a means of realizing such plans using cost-based
planning. We describe A0, a planner that addresses the
subset of initial state assumption-based planning problems
and present experiments that illustrate the viability of our
approach and that assess some properties of our translation.

While this paper explores the generation of
assumption-based plans via a translation to classical
planning, the correpondence to conformant planning opens
the door to adapting a variety of conformant planners for
assumption-based planning (e.g., To, Son, and Pontelli
2010). Beyond planning, the assumption-based planning
paradigm has compelling applications in diagnosis and
verification of dynamical systems.

Acknowledgements: We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC). Jorge Baier was partly funded by
Fondecyt grant no. 11110321.

References

Albore, A., and Bertoli, P. 2004. Generating safe
assumption-based plans for partially observable, nondeter-
ministic domains. In Proc. of the 19th National Conference
on Artificial Intelligence (AAAI), 495-500.

Albore, A., and Bertoli, P. 2006. Safe 1tl assumption-based
planning. In Proc. of the 16th International Conference on
Automated Planning and Scheduling (ICAPS), 193-202.

Albore, A., and Geffner, H. 2009. Acting in partially ob-
servable environments when achievement of the goal cannot
be guaranteed. In Proc. of ICAPS Workshop on Planning
and Plan Execution for Real-World Systems.

Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Proc.
of the 21st International Joint Conference on Artificial Intel-
ligence (IJCAI), 1623-1628.

Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123-191.

Baier, J. A., and Mcllraith, S. A. 2008. Planning with pref-
erences. Artificial Intelligence Magazine 29(4):25-36.

Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In Proc. of the 22nd International Joint Conference on Arti-
ficial Intelligence (IJCAI).

Conrad, P. R., and Williams, B. C. 2011. Drake: An effi-
cient executive for temporal plans with choice. Journal of
Artificial Intelligence Research 42:607-659.

Gobelbecker, M.; Gretton, C.; and Dearden, R. 2011. A
switching planner for combined task and observation plan-
ning. In Proc. of the 26th AAAI Conference on Artificial
Intelligence (AAAI).

Haslum, P., and Grastien, A. 2011. Diagnosis as planning:
Two case studies. In Proc. of the International Scheduling
and Planning Applications workshop (SPARK).

Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Proc. of
the 5th European Conference on Planning (ECP), 308-318.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253-302.

Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research 35:623—675.

Pellier, D., and Fiorino, H. 2004. Assumption-based plan-
ning. In In Proceedings of the International Conference on
Advances in Intelligence Systems Theory and Applications,
Luxemburg.

Pellier, D., and Fiorino, H. 2005. Multi-agent assumption-
based planning. In Proc. of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI), 1717-1718.

Poole, D.; Goebel, R.; and Aleliunas, R. 1987. Theorist:
a logical reasoning system for defaults and diagnosis. In
Cercone, N., and McCalla, G., eds., The Knowledge Fron-

tier: Essays in the Representation of Knowledge. New York:
Springer Verlag. 331-352.

22

Reiter, R., and de Kleer, J. 1987. Foundations of
assumption-based truth maintenance systems: Preliminary
report. In Proc. of the 6th National Conference on Artificial
Intelligence (AAAI), 183—189.

Sohrabi, S.; Baier, J.; and Mcllraith, S. A. 2010. Diagnosis
as planning revisited. In Proc. of the 12th International Con-
ference on Knowledge Representation and Reasoning (KR),
26-36.

Sohrabi, S.; Baier, J. A.; and Mcllraith, S. A. 2011. Pre-
ferred explanations: Theory and generation via planning. In
Proc. of the 26th AAAI Conference on Artificial Intelligence
(AAAI), 261-267.

To, S. T.; Son, T. C.; and Pontelli, E. 2010. A new ap-
proach to conformant planning using cnf*. In Proc. of the

20th International Conference on Automated Planning and
Scheduling (ICAPS), 169-176.

