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Introduction
Crowdsourcing marketplaces (e.g., Amazon Mechanical
Turk) enable rapid construction of complex workflows (Lit-
tle et al. 2009; Bernstein et al. 2010) that seamlessly mix
human computation with computer automation to accom-
plish practical tasks. One of the biggest challenges facing
designers of crowdsourced applications is the variability of
worker quality.

Frequently, a task designer will experiment with several
alternative workflows to accomplish the task, but choose a
single one for the production runs (e.g. the workflow that
achieves the best performance during early testing). In the
simplest case, alternative workflows may differ only in their
user interfaces or instructions. For a more involved task like
text-improvement, one workflow may present workers with
several different improvements of a text and ask them to se-
lect the best one. A second workflow might instead present
workers with one improvement and ask them to rate it on a
scale from 1 to 10.

After choosing a single workflow, in order to ensure qual-
ity results, task designers often aggregate worker responses
on redundant runs of the workflows (Snow et al. 2008;
Whitehill et al. 2009; Dai, Mausam, and Weld 2010). For
instance, to determine the best text improvement from the
results of the second workflow, the task designer might se-
lect the one with the highest average rating.

Unfortunately, this seemingly natural design paradigm
does not achieve the full potential of crowdsourcing. Select-
ing a single best workflow is suboptimal, because alternative
workflows can compose synergistically to attain higher qual-
ity results.

Suppose after gathering some answers for a task, one
wishes to further increase one’s confidence in the results;
which workflow should be invoked? Due to the very fact that
it is different, an alternative workflow may offer independent
evidence, and this can significantly bolster one’s confidence
in the answer. If the “best” workflow is giving mixed results
for a task, then an alternative workflow is often the best way
to disambiguate.

Instead of selecting one a priori best workflow, a better so-
lution should reason about this potential synergy and dynam-
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Figure 1: AGENTHUNT’s decisions when executing a task.

ically switch between different workflows. We now present
a short summary of Lin et al. (2012).

Probabilistic Model for Multiple Workflows
We follow and extend Dai et al.’s probabilistic generative
model (2010; 2011). We assume that the task has 2 pos-
sible answer choices. For our model, there are K alterna-
tive workflows that a worker could use to arrive at an an-
swer. Let dk ∈ [0, 1] denote the inherent difficulty of com-
pleting a task using workflow k, and let γkw ∈ [0,∞) be
worker w’s error parameter for workflow k. Notice that ev-
ery worker has K error parameters. Having several param-
eters per worker incorporates the insight that some workers
may perform well when asked the question in one way but
not so well when asked in a different way.

The accuracy of a worker w, a(dk, γkw) =
1
2

(
1 + (1− dk)γk

w

)
, is the probability that she produces

the correct answer using workflow k.
We assume that given the workflow difficulty, dk, work-

ers’ answers are independent of each other. We also assume
that the workers do not collaborate with each other and that
they are not adversarial.

Decision-Theoretic Agent
Using our model, we design an automated agent, named
AGENTHUNT, that uses a Partially-Observable Markov De-
cision Process (POMDP) to dynamically switch between
workflows (Sondik 1971; Russell and Norvig 2002).

For AGENTHUNT, a state in the POMDP is a K + 1
tuple (d1, d2, . . . , dK , v), where dk is the difficulty of the
kth workflow and v is the true answer of the task. At each
time step, AGENTHUNT has a choice of K + 2 actions — it
can submit one of two possible answers or create a new job
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AGENTHUNT TURKONTROL AGENTHUNTRL
Avg Accuracy (%) 92.45 84.91 93.40

Avg Cost 5.81 6.26 7.25
Avg Net Utility -13.36 -21.35 -13.85

Table 1: Comparisons of accuracies, costs, and net utilities of various agents when run on Mechanical Turk.

with any of the K workflows. The process terminates when
AGENTHUNT submits any answer. When AGENTHUNT
creates a new job using workflow k, it will receive an ob-
servation containing one of the 2 answers chosen by some
worker w. This information, along with knowledge of γkw,
allows AGENTHUNT to update its belief. After submitting
an answer, AGENTHUNT can update its records about all the
workers who participated in the task using what it believes
to be the correct answer. Figure 1 is a flow-chart of decisions
that AGENTHUNT needs to make.

Learning the Model
In order to behave optimally, AGENTHUNT needs to learn
worker error parameters and a prior difficulty distribution.
We consider two unsupervised approaches to learning — of-
fline batch learning and online RL. In the first approach we
first collect training data by having a set of workers complete
a set of tasks using a set of workflows. Then we use an EM
algorithm, similar to that proposed by Whitehill et al. (2009)
to learn all parameters jointly. In our second approach, we
create AGENTHUNTRL, which is able to accomplish tasks
right out of the box by learning parameters on the fly. When
it begins a new task, it uses the existing parameters to recom-
pute the best policy and uses that policy to guide the next set
of decisions. After completing the task, AGENTHUNTRL
recalculates the maximum-likelihood estimates of the pa-
rameters using EM as above.

Experiments
We choose a named-entity recognition task, for which we
create K = 2 alternative workflows. We compare two
agents: TURKONTROL, a state-of-the-art controller for op-
timizing the execution of a single (best) workflow (Dai,
Mausam, and Weld 2010), and our AGENTHUNT, which can
switch between the two workflows dynamically.

We develop two workflows for the task. Both workflows
begin by providing users with a body of text and an entity.
The first workflow, called “WikiFlow,” displays the titles
and first sentences of Wikipedia articles and asks workers to
choose the one that best describes the entity. Then, it returns
the Freebase1 tags associated with the selected Wikipedia ar-
ticle. The second workflow, “TagFlow,” asks users to choose
the best set of Freebase tags directly.

After gathering training data using Mechanical Turk, and
confirming our suspicions with successful simulated exper-
iments, we perform real-world experiments using Mechan-
ical Turk. We set TURKONTROL to use the TagFlow since
our data show it to be easier for workers.

We generate 106 new tasks for this experiment, and use
gold labels supplied by a single expert. Table 1 shows that

1www.freebase.com

AGENTHUNT fares remarkably better in the real-world than
TURKONTROL given similar budgets.

Finally, we compare AGENTHUNT to AGENTHUNTRL.
We test it using the same 106 tasks from above. Table
1 suggests that the two agents are comparable and that
AGENTHUNT can perform in an “out of the box” mode,
without needing a training phase.

More details can be found in Lin et al. (2012). Our system
is available for use at http://cs.washington.edu/node/7714.

Related Work
The benefits from combining disparate workflows have been
previously observed. Babbage’s Law of Errors suggests that
the accuracy of numerical calculations can be increased by
comparing the outputs of two or more methods (Grier 2011).
AGENTHUNT embodies the first method for automatically
evaluating potential synergy and dynamically switching be-
tween workflows.
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