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Abstract 
Artificial emotional intelligence is vital for integration of 
future robots into the human society. This work introduces 
one possible approach to representation and processing of 
emotional mental states and attitudes (appraisals) in a 
cognitive architecture. The developed framework will allow 
for implementation of emotional intelligence in artifacts, 
including emotionally informed behavior and self-
regulation, recognition of emotional motives in actions of 
other agents, and natural emergence of social emotional 
attitudes, interpreted here as higher-order appraisals. The 
proposed validation is based on a simulation of emergence 
of emotional relationships in a small group of agents. 
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 Introduction   
Recent years presented us with an explosion of research on 
computational models of emotions and affective computing 
(Picard, 1997; Hudlicka, 2011). Yet, there is no generally 
accepted complete, unifying theory of emotions that could 
take form of a computational model to be used in human-
level emotional artificial intelligence. Even the very word 
“emotion” is not generally accepted as a well-understood 
scientific term. Different schools sometimes speak 
different languages and maintain very different views. The 
consensus is limited to the level of a basic model (Osgood 
et al. 1957; Russell 1980) known by different names 
overviewed below. At the same time, there is no general 
consensus on the computational understanding of even 
basic emotions like joy or fear, and in this situation, higher 
human emotions (usually referred to as “complex” or 
“social” emotions in the literature) inevitably escape 
attention in the fields of artificial intelligence and cognitive 
modeling. Nevertheless, their computational understanding 
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is vital for the development of virtual agents and robots 
capable of adapting to the real world and working together 
with humans as partners (Buchsbaum et al. 2004; Parisi 
and Petrosino 2010).  
 Artificial emotional intelligence could be the key to a 
human-level artificial intelligence in general. From this 
perspective, adding advanced emotional capabilities to 
cognitive architectures (Gray 2007) is a critical milestone 
on the roadmap to human-level artificial intelligence. At 
the same time, the necessary for this step underlying 
theoretical and computational framework is missing. 
 In general, the notion of subjective emotional feeling is 
problematic in modern science: problems trace back to the 
general problems associated with the notion of 
consciousness (Chalmers 1996). At the same time, there is 
no need to solve the “hard problem” before describing 
psychological and functionalist aspects of emotions 
mathematically and using this description as a basis to 
replicate the same features in artifacts.  
 The purpose of the present study is to develop a simple 
computational framework capturing the functionality of 
emotions in general, including “complex” and “social” 
emotions. This framework is expected to result in 
development of new capabilities in artifacts, including 
automated recognition of higher-level emotional 
motivations in agent behavior, emotionally informed 
metacognition, and more. 

Theoretical Background 

Overview of the State of the Art 
Research literature on emotions is immense, while there is 
no generally accepted unifying theory, and the prospect for 
developing it in the near future is bleak. While most 
modern studies of emotions do not go beyond 
phenomenology, a scientific theory must introduce general 
principles or mechanisms explaining the nature of the 
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phenomenon that could be tested experimentally. 
Currently, a number of views and theories exist that 
attempt to relate emotions to first principles and/or to 
experimental data in neurophysiology, psychology, 
psychiatry, sociology, theory of evolution, theory of 
information, control theory, and beyond. A few of them are 
briefly outlined below. 

Neurophysiologically, emotional reactions are associated 
with certain brain structures (such as nucleus accumbens, 
anterior cingulate and orbitofrontal cortices, the amygdala, 
hypothalamus, ventral tegmental area, etc.) and certain 
neurotransmitters. E.g., dopamine release in nucleus 
accumbens results in a feeling of pleasure and is 
responsible for the development of emotional memories, 
e.g., leading to drug addiction (Olds 1956; Wise 1978; 
Kringelbach 2009). Neurophysiological constraints like 
these cannot be ignored in construction of models of 
emotional intelligence, yet they alone are not sufficient. 

Psychological and computational models of emotions 
attempt to reduce a large variety of affects, appraisals, 
emotions, feelings, moods, traits, attitudes, preferences, 
etc.1 to a few universal constructs. Here, the main kinds of 
approaches are (Hudlicka 2011): (i) taxonomies, (ii) 
dimensional models, examples of which are the semantic 
differential model (Osgood et al. 1957) with its variations 
known by different names (EPA: evaluation, potency, 
arousal, PAD: pleasure, arousal, domainance, Circumplex: 
Russell 1980, etc.); and (iii) cognitive component models, 
or appraisal models, the most popular of which is currently 
OCC (Ortony, Clore and Collins 1988) because of its 
suitability for computer implementations (Steunebrink, 
Dastani, and Meyer 2007). The idea of OCC is to define all 
special circumstances under which emotions emerge, and 
also how emotion intensities change over time in those 
cases. However, this model is merely phenomenological, 
with the source of information being human intuition.  
Many alternative computational models of emotions are 
conceptually similar (e.g., Castelfranchi and Miceli 2009). 
Applications include modeling of relations development in 
social networks (e.g., trust relations: Sabater et al. 2006). A 
review of models of emotions cannot be provided here. 

The simple bottom line is that, fortunately, most of the 
basic emotions, affects, feelings, etc.1 can be efficiently 
characterized by a small number of very general semantic 
characteristics: attributes of emotions, that may include 
valence, dominance, arousal, surprise, etc. Together they 
form an attribute space, or “semantic map” of emotions 
that is known in many variations under different names 
(e.g., EPA, PAD), while in fact most of these models map 
onto each other. Adding more characteristics allows one to 
build more accurate representations (sliding to the level of 
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OCC-like models), while selecting fewer characteristics 
allows one to build simpler, more parsimonious models. 

Preliminary Observations 
Yet, something is missing in this picture. E.g., at the level 
of EPA, it may be hard to define a boundary between basic 
emotions like fear or anger and complex emotions like 
jealousy or shame. It seems that complex, or social 
emotions must be in principle distinct from basic emotions 
not in their EPA values, but because they involve an 
element that is not present in basic emotions, which makes 
them “complex” or “social”: for instance, this could be an 
element of metacognition. 

A related observation: typically in affective modeling, 
emotional and cognitive components are added to a 
cognitive architecture separately. Frequently, their 
integration appears to be a challenge. By contrast, in 
humans, cognition and emotions are intimately mixed from 
birth and develop inseparably (Phelps 2006). 

In general, despite the large amount of research literature 
on emotion modeling, the science of emotions appears to 
be at its infancy: it is limited to phenomenology, and even 
at this level there is no general consensus. In development 
of a theory based on phenomenology, the first step should 
consist in analysis of fundamental logical possibilities. The 
next step would be to choose parsimonious building blocks 
of the theory: in our case, abstract emotional constructs 
that can be implemented and studied computationally. 
Finally, the task would be to relate those primary as well as 
emergent in simulations constructs to known examples of 
emotions in real life. An attempt to make a move in this 
direction is undertaken in the present study. In order to 
proceed with it, two concepts need to be described first. 

Mental State Formalism 
The mental state formalism used here (Samsonovich, De 
Jong and Kitsantas, 2009) was developed in connection 
with the GMU BICA (Samsonovich and De Jong 2005) 
and Constructor (Samsonovich 2009) cognitive 
architectures  based on previous ideas (Samsonovich and 
Nadel 2005). Related yet different frameworks were 
independently described in the literature (e.g., McCarthy, 
1993; Nichols and Stich, 2003; Scally, Cassimatis and 
Uchida, 2012).  

The essence of the mental state formalism is in the 
observation that cognitive representations in human 
working memory are usually attributed to some instance of 
a Self of some agent. This attribution together with its 
governing laws appears to be the only mechanism that 
instantiates the Self of the subject in the brain (with other 
selves possibly also represented at the same time in the 
same working memory). According to this attribution, all 
higher-level symbolic representations in working memory 
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of a cognitive architecture can be partitioned into “boxes” 
labeled in an intuitive self-explanatory manner: “I-Now”, 
“I-Previous”, “He-Now”, and so on, accordingly to the 
represented mental perspectives (Figure 1).  

 

 
Figure 1. Examples of possible mental state labels (boxes) and 
relations (lines) in working memory. From Samsonovich et al. 
(2009). Each box contains elements of awareness (not shown). 

 
 
These boxes represent mental states. Each “box” is filled 

with elements of awareness (not shown in Figure 1). In 
GMU BICA and Constructor these elements are 
instantiated using schemas2 that may represent objects, 
relations, features, events, etc. The box label characterizes 
the mental perspective of the subject who is aware of them.  

A mental state can be defined as the content of 
awareness of a subject that is associated with one mental 
perspective (Samsonovich et al., 2009). This mental 
perspective is efficiently captured by the self-explanatory 
mental state label (e.g., “I-Now”). The entire diagram 
(Figure 1) represents a state of working memory of one 
agent. Episodic memory (not shown) consists of similar 
structures that are “frozen” in long-term memory. 

For the present purposes we shall stay at a high level of 
abstraction, ignoring the contents of mental states as much 
as possible, and will focus on relations of mental states to 
each other. Contents of interest here are emotional states 
and attitudes that represent subject’s feelings about self and 
others, as well as about objects, relations, and about other 
feelings. The term “attitude” here stands for an attribute of 
a schema (Samsonovich et al. 2006). Example: an apple 
(schema) may have an attitude “imagined, desired”. 

Weak Semantic Cognitive Mapping 
The term “weak semantic cognitive mapping” was 
described by Samsonovich, Goldin and Ascoli (2010). In 
general, the idea of semantic cognitive mapping is to 
allocate representations (e.g., words) in an abstract space 
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based on their semantics. This paradigm is common for a 
large number of techniques, from the latent semantic 
analysis (LSA) to circumplex models. Traditionally, the 
metrics that determines allocation of symbols in space is a 
function of their semantic dissimilarity. In contrast, the 
idea of weak semantic cognitive mapping is not to separate 
all different meanings from each other, but to arrange them 
based on the very few principal semantic dimensions. 
These dimensions emerge automatically, if the strategy is 
to pull synonyms together and antonyms apart 
(Samsonovich and Ascoli 2007, 2010).  

The beauty of this approach is that nobody needs to 
define semantic features of the space a priori: they are 
created by energy minimization, and their semantics are 
defined by the entire distribution of representations on the 
map. Most experts who first see weak semantic cognitive 
maps cannot understand the difference between this 
approach and LSA. However, these are two completely 
different approaches. In traditional techniques based on 
LSA (Landauer et al. 2007), the starting point is a feature 
space, where dimensions have definite semantics a priori. 
In weak semantic mapping, the space coordinates have no 
semantics associated with them a priori: instead, words are 
allocated randomly in a multidimensional space. Then an 
energy minimization process starts that pulls synonym 
vectors together and antonym vectors apart. The optimized 
distribution of words has emergent semantics of its 
dimensions. Only then the principal component analysis is 
used to reveal the main emergent semantic dimensions of 
the map (Samsonovich and Ascoli 2007, 2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. A sample from the weak semantic cognitive map 
described by Samsonovich and Ascoli (2010). The “synesthetic” 
color enhancement follows the ideas of Michael Sellers. Colors 
represent, green: PC1 (pleasure), red: PC2 (dominance/arousal). 
The sum of RGB values is fixed.  
 

The map a part of which is shown in Figure 2 includes 
15,783 words and was constructed based on the dictionary 
of English synonyms and antonyms available as a part of 
Microsoft Word (Samsonovich and Ascoli, 2010; a similar 
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map was also constructed using WordNet in the same 
work). This map does not separate well different meanings 
from each other: e.g., basic and complex feelings. 
However, it classifies meanings consistently with their 
semantics. Figure 2 represents the first two principal 
components (PC) of the distribution. The axes of the map 
are defined by the PCs. In a very approximate sense, PC1 
(the horizontal dimension in Figure 2, coded by the green-
magenta gradient) can be associated with valence, 
positivity, pleasure, attractiveness, while PC2 combines the 
notions of dominance, arousal, potency, strength (the 
vertical dimension in Figure 2, coded by red-cyan).  

In the following sections we will need the actual map 
coordinates for some of the word examples. They are given 
in Table 1. Normalized values of PC1 and PC2 are taken 
from the same map as shown in Figure 2, available as part 
of the materials of Samsonovich and Ascoli (2010).  

 
Table 1.  Weak semantic cognitive map coordinates for actions 
(values taken from materials of Samsonovich and Ascoli 2010). 

 
 PC1 PC2 
hit 0.26 1.07 
yield 0.43 -1.03 
greet 0.93 0.15 
withdraw -1.66 -0.42 

 

Introducing Building Blocks 

Basic Ideas 
As always in science, it makes sense to start with the most 
basic questions and simplest possible answers. The first 
question is, how to choose the simplest possible general 
elements representing emotions that can be added locally 
to any system of mental states, without destroying the 
formalism? There are a few possibilities here. E.g., one can 
add an emotional characteristic to a mental state, or to an 
element of a mental state – an instance of a schema in it. 
This gives us two new elements that extend the formalism. 
In the first case, the new global characteristic assigned to a 
mental state will be called an emotional state (Figure 3 
A). In the second case, the characteristic assigned to an 
instance of a schema will be called an emotional attitude, 
or appraisal3 (Figure 3 B, C). This schema may represent 
another agent: then it will link two mental states. 

                                                
3 The term “attitude” in the mental state formalism has a more general and 
possibly counterintuitive meaning (Samsonovich et al., 2009). The more 
pertinent to emotions term “appraisal” will be used here in order to refer 
to emotional attitudes. 

 Consider an example (Figure 3 C): I can be aware of 
another agent A represented by a schema of A in my I-
Now. This schema also serves as a link to A-Now: my 
mental simulation of the mind of A. An instance of my 
appraisal of A is attached as an attribute to the schema in I-
Now. It tells me (the subject) how I emotionally evaluate 
that agent. For example, when I honor A, or when I submit 
to A, my appraisal of A has positive dominance (Figure 3 
C). At the same time, if I take an action to yield to A, then 
my appraisal of the yield action in I-Now has a negative 
dominance (Table 1), while my appraisal of A increases its 
dominance due to the performed action. 

 
 
 
A   B 
 
 
 
 
 
C 
 
 

Figure 3. A-C: Examples of simplest emotional elements in the 
mental state formalism. Boxes represent mental states. Mental 
state labels are underlined, emotional characteristics are 
italicized. A: an example of an emotional state; B: appraisals of 
processes and events; C: appraisal of an agent. The arrow goes 
from the subject who is apprising to the appraised target. 

 
 
As to the nature of values that the new characteristics 

can take, the parsimonious choice made here is to use 
vectors from the weak semantic cognitive map as values 
for all emotional characteristics, including emotional states 
and appraisals of animate and inanimate elements.  

Understanding “Complex”, or “Social” Emotions 
The next level of complexity of building blocks in this 
framework must be represented by feelings about feelings: 
this is the remaining possibility. These elements are by 
definition higher-order feelings, and therefore they will be 
represented as appraisals of appraisals, or higher-order 
appraisals (HOA). The general building block that is used 
to create them is a schema called here a HOA schema. 

It appears that in many cases higher-order feelings map 
nicely on what is known in the literature as complex, or 
social emotions: e.g., envy, jealousy (Parrott 2001). It is 
tempting to represent them by schemas. Related ideas were 
discussed recently in an attempt to explain the unity of 
social emotions (Castelfranchi and Miceli 2009). Figure 4 
illustrates this possibility using one and the same abstract 
HOA schema in four contexts with different outcomes.  

I-Now: 
Happy 

I-Now: 

exciting work 
desired sleep 
horrifying deadline 

I-Now: 

dominant A 
A-Now

A
Adominant 
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Figure 4.  Examples of abstract higher-order appraisals (HOA) 
that can emerge in working memory as different states of one and 
the same HOA schema (the filled “figure 8”). An interpretation 
relates them to familiar notions like jealousy (Parrott 2001) that 
develops in the sequence A, B, C. Colors correspond to Figure 2. 
 

Examples of Figure 4 illustrate a possibility that one 
HOA schema may play different roles in different contexts, 
and therefore account for a family of related social 
emotions rather than just one of them. In this case, the 
framework could predict the emergence of new “abstract” 
feelings that can be then identified with familiar real-life 
stereotypes. This could lead to an understanding of the 
mechanisms of complex, or social emotions like shame, 
pride, resentment, jealousy, compassion, humor, etc. While 
the labeling in Figure 4 remains a speculation, the above 
consideration supports the view that “complex”, or “social” 
emotions in principle can be understood based on HOA. 

 
  

 
 
Figure 5.  Essential core UML class diagram of the Constructor 
cognitive architecture extended to enable emotional intelligence. 
Emotional elements (shown in red) include two attributes 
(Emotional State, Appraisal) and higher-order appraisal (HOA) 
schemas. Appraisal values are shown in Figure 2. For details of 
the architecture, see (Samsonovich et al. 2006, Samsonovich 
2009). 

Putting the Framework Together 
In summary, the proposed emotional extension of the 
formalism of schemas and mental states that underlies 
aforementioned cognitive architectures is based on three 
new elements: 
• emotional states; 
• first-order appraisals: appraisals of objects, facts, events, 

actions, relations, etc.; as well as appraisals of agent 
minds and personalities; 

• appraisals of appraisals, or HOA. 
All these characteristics take values on the weak semantic 
cognitive map (or in the EPA space). As to their specific 
implementation, the first two can be added to the lists of 
standard attributes of mental states and schemas, whereas 
the third element can be added to the framework as a 
schema on its own (Figure 5). For details of GMU BICA 
and Constructor architectures, the Reader is referred to 
previous publications (Samsonovich and De Jong 2005, 
Samsonovich et al. 2006, 2009; Samsonovich 2009). 

In addition to these elements, in order to complete the 
framework, laws of interactions between emotional and 
other elements need to be specified, including: (i) effects of 
events on emotional states and appraisals; (ii) effects of 
emotional states and appraisals on cognitive processes, 
e.g., selection of actions. This is done in a simple 
illustrative example in the following section. 

A Simple Computational Illustration 
The paradigm includes a group of N agents embedded in 
some virtual environment (Figure 6 A). For the purpose of 
a simplest example we shall ignore any environmental 
(including  spatial) aspects of the problem and assume that 
agents interact continuously regardless of where they are. 
They interact by spontaneously performing actions from a 
pre-defined repertoire. The repertoire includes four 
possible actions: hit, yield, greet, or withdraw. All of these 
actions are appraised by the agents (the action appraisal 
values are fixed and given in Table 1). The goal in this 
exercise is to see what stable patterns of emotional 
relationships among agents will emerge, and how the 
outcome may depend on model parameters. The meta-goal, 
however, is to better articulate the model and show it at 
work, albeit in a trivial example. There is only one working 
memory in this extremely simplified multi-agent cognitive 
architecture. This generic working memory is presumed to 
correctly describe working memory of any of the 
participating agents: there are no false beliefs or subjective 
biases. This also assumes that all agents receive the same 
information about the world and always “correctly 
interpret” each other’s motivations. The obvious indexical 
differences between the N agent perspectives are easily 
taken into account in derivation of the dynamic equations.  
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Figure 6. Left: The simulation paradigm. Agents are embedded in 
some virtual environment. Right: A typical configuration with N 
= 4 agents on the weak semantic map. Colors are arbitrary. 
 

There are N mental states in working memory, each 
corresponding to the state of awareness of one agent taken 
at the present moment. The appraisal of a given mental 
state is the same for all appraisers in this model: this 
justifies using one working memory. Emotional states and 
higher-order appraisals are not simulated. Therefore, there 
are only N dynamic emotional characteristics in this model: 
appraisals of the N agents. They are initiated to very small 
random values at the beginning of the simulation epoch, in 
order to break the symmetry. Each of the four possible 
actions has a fixed appraisal given in Table 1. Appraisal 
values A are 2-D vectors that are treated here for 
convenience of implementation as complex numbers: 

� � �������� ����	�	�� . In this case, 
valence = Re(A), and dominance = Im(A). 

The simulation epoch consists of a sequence of iterations 
performed at each moment of discrete time t. One iteration 
includes the following essential steps: (i) compute action 
probabilities, (ii) select and perform action, (iii) update 
appraisals of the actor and the target of action. Dynamical 
equations used to update the appraisals are:     

�������
���

� � � � �������
�

� ��������            (1) 
������
���

� � � � ������
�

� ��������
�  

Here t is the moment of discrete time, r is a small positive 
number (a model parameter that was set to 0.01). The 
likelihood L of a specific action is proportional to 

��������� � �� ������� ������
�

� �������
�

. 

Here � � is equal to the positive values of x and is zero 
otherwise, A* is the complex conjugate of A. Intuitively, 
this formula means that the action is more likely to be 
selected, when its appraisal matches the appraisal of the 
actor and also matches the appraisal of the target, in which 
the dominance component is inverted. 
 This model is easy to solve approximately analytically: 
first, in a reasonably good approximation, the two 
dimensions become independent; then, an observation is 
made that dynamics are close to iterative multiplication of 
a matrix, which results in singling out its main eigenvector 
(details will not be given here). This analytical prediction 
is consistent with the simulation results. 

Results 
It is found that stable patterns of mutual appraisals (that 
correspond to configurations of emotional relationships 
among agents) develop in this model in ~100 iterations. 
E.g., with the choice of parameters specified above, a 
pattern always develops in which all N appraisals have 
positive valence. At a small N, each actor reaches its 
stationary position in ~100 iterations. At large N, the final 
configuration remains stationary only macroscopically (as 
a “cloud”), while there is no microscopically stationary 
configuration. The qualitative outcome for N=2 is nearly 
obvious based on the above analysis. In a stationary 
configuration, the two agent vectors tend to be complex 
conjugates of each other with the positive real part. At N=3 
the stable configuration remains qualitatively the same, 
while the third actor takes position in the middle between 
the two, at zero dominance (analytical and numerical 
result). At N≥4 the configuration is microscopically 
undetermined: actors do not have permanent stationary 
positions in the cloud. They tend to spread uniformly in a 
vertical line at a positive valence, and keep drifting up and 
down, switching positions with each other. 
 Now it is interesting to see what happens when HOA are 
added to dynamics of the system. In the language of this 
simple model, adding HOA schemas that have effect on 
dynamics means adding nonlinear in A terms to (1). This 
can stabilize microscopic configurations above N=3: in 
other words, permanent relations in a large population of 
agents may be expected to emerge in the system. The study 
will be continued and presented elsewhere. 

Discussion 
Traditionally, emotional information processing in 
cognitive modeling is contrasted with rational cognition, 
and it is considered a challenge to put the two together in 
one cognitive architecture. By contrast, one basic idea 
underlying this study is that cognitive architectures should 
be designed in such manner that all information processing 
in them could be regarded as “emotional”. In particular, 
this means that (i) goals should originate from intrinsic 
emotions rather than from externally given instructions; (ii) 
emotional components should be essential to any part of 
the cognitive process in the architecture; and (iii) the 
outcome of each cognitive process should be captured by a 
certain emotional state. From this point of view, it would 
be misleading to think that emotions, moods and feeling 
may only subserve impulsive responses or biases, whereas 
rational planning and decision making is emotion-
independent. Instead, emotional elements should find their 
proper place in all basic mechanisms of cognition in future 
cognitive architectures. But this can only happen if the 
right approach can be found to implement and use them. 
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Do Artifacts Need Emotional Intelligence? 
The simulated example paradigm was inspired by the 
paradigm used by Heider and Simmel (Figure 7) in their 
behavioral study of human subjects (Heider and Simmel, 
1944). Besides its main purpose to serve as a test for 
humans, their example clearly demonstrates that in order to 
be emotionally understood and accepted by humans on an 
equal footing, artifacts do not need to be human-level 
realistic in their appearance, or in their ability to control 
voice and motion. Regardless of physical abilities, they 
need to demonstrate a human-level emotional competency, 
and therefore they need to be emotionally intelligent at a 
human level. The same conclusion follows from research 
on the sense of presence in virtual environments (Herrera 
et al., 2006). On the other hand, research on human 
learning tells us that emotions play a vital role in it 
(Zimmerman 2008), and therefore it seems that it is 
necessary for artifacts to have human-level emotional 
intelligence to be able to learn like humans. 

 
Figure 7. A frame from the animation by Heider and Simmel 
(available at http://www.youtube.com/watch?v=76p64j3H1Ng) 
used in their study (Heider and Simmel, 1944). The three small 
shapes are the actors that create an impression of emotional 
relationships among them by simply moving around the square. 
 

Emotions in Mainstream Cognitive Architectures 
Soar (Laird et al., 1987) and ACT-R (Anderson and 
Lebiere 1998) are the two most widely known and used 
cognitive architectures. There were recently numerous 
works on implementation and study of emotions in Soar 
and ACT-R, along with other nowadays popular features 
like episodic memory, which is not discussed here. It is 
relatively easy to implement some aspect of emotions in a 
cognitive architecture. But this does not necessarily solve 
the problem. For example, the recently extended version of 
Soar (Laird 2008) implements an appraisal theory of 
Scherer (that belongs to the same family as OCC) in its 
Appraisal Detector, which is used for reinforcement 
learning. A limitation here is that appraisal is evaluated as 
a global characteristic of the situation of the agent. 
 

Potential Applications 
Today’s large volumes of surveillance data pose a 
challenge of extracting vital information from the data 
automatically. The task may remain unsolved even after 
relevant objects, features and apparent relations have been 
identified and represented in a symbolic format. In many 
important cases, the remaining task involves higher 
cognitive analysis of human mental states (elements in 
human Theory of Mind), which today requires a human 
analyst. 

Biologically-inspired affective cognitive architectures 
increasingly attract attention in this context as an efficient, 
robust and flexible solution to the challenge of real-world 
sensory data analysis. At the same time, modeling of 
higher cognition in cognitive architectures is often limited 
to simplistic algorithms and separated from biologically 
inspired information processing.  

Examples of potential applications of future intelligent 
agents that will be based on this approach include: (i) 
detection, anticipation and control of ad hoc social 
interactions related to spontaneous violence, accidents or a 
natural disaster, (ii) detection of individual and group 
activities that are likely to be related to terrorism, (iii) 
prediction of a potentially harmful individual condition: 
e.g., psychological breakdown of a human operator, driver, 
or air traffic controller. 

Metacognitive Theory-of-Mind skills that a human 
analyst must have in order to be efficient in the above tasks 
include the abilities to infer, attribute, simulate and predict 
mental states of actors involved in the ongoing action. The 
approach developed in this work supports the view that an 
artifact can and should have similar metacognitive abilities 
in order to be human-level intelligent and successful in 
solving tasks of the mental state analysis.  
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