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Abstract 
Underlying symbolic representations are opaque within 
neural networks that perform pattern recognition.  Neural 
network weights are sub-symbolic, they commonly do not 
have a direct symbolic correlates.  This work shows that by 
implementing network dynamics differently, during the 
testing phase instead of the training phase, pattern 
recognition can be performed using symbolically relevant 
weights.  This advancement is an important step towards the 
merging of neural-symbolic representation, memory, and 
reasoning with pattern recognition.  

Introduction   

Sensory recognition is an essential foundation upon which 
cognition and intelligence is based.  Without recognition 
the brain cannot interact with the world e.g.: form internal 
understanding, memory, logic, display creativity, or 
reason.  Rich symbolic information is present in learned 
recognition representations.  However it remains difficult 
to implement high-level human cognitive processes (e.g., 
rule-based inference) using low-level, brain-like 
architectures that can perform simple recognition (e.g., 
neural networks).  A significant part of the difficulty arises 
because weights favorable for recognition relate poorly to 
symbolic representations (e.g. Sun 2002).  Thus cognitive 
models using symbolic representations often assume that 
sensory recognition is previously processed and 
symbolically-coded representations are available.  This 
often limits the literature to less-satisfying examples 
disconnected from the foundations of recognition models.  
A neural form of information with better access to 
underlying sub-symbolic relations will allow closer 
integration of symbolic systems with neural network 
structures.  This work presents an artificial neural network 
structure that can utilize symbolic-type weights.   
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 In order to understand how symbolic-type weights are 
attained, it is important to understand neural network 
structures.  Neural recognition methods are best described 
based on their testing configuration (their recognition-
phase structure).  Most supervised recognition algorithms 
(e.g. neural networks) perform recognition using 
feedforward weights during testing, thus described as 
feedforward models.  These methods may learn the 
feedforward weights during training through dynamic, 
gradient-descent methods: using feedforward and feedback 
connections iteratively to adjust weights.  However, once 
the weights are learned, testing uses feedforward weights 
(e.g. Rosenblatt 1958; Rumelhart & McClelland 1986).  
 The key innovation presented here is a supervised 
recognition algorithm that uses a feedforward-feedback 
configuration to solve recognition where the dynamic-
phase, based on gradient-descent, is implemented during 
testing.  This allows learning to be much simpler and the 
weights to represent symbolic-like expectations. 
 It is shown that equivalent recognition can be 
implemented using either feedforward or feedforward-
feedback methods.  However, the feedforward-feedback 
configuration is especially advantageous to the neural-
symbolic community because it learns and uses 
symbolically-relevant weights.  These weights can in turn 
be better integrated with cognitive systems. 
 

Structure/Method Dynamics Weights Relation 

Feedforward During 
Learning 

W Sub-
Symbolic 

Feedforward-
feedback 

During 
Testing 

M Symbolic 

 

Table 1: comparison of weights and dynamics between 
feedforward and feedforward-feedback supervised classifiers  
 

The following sections review the recognition literature 
and derive a neural network that solves recognition with 
symbolic-type weights.  Subsequent sections provide 
examples to demonstrate: symbolic weights, how learning 
changes, how dynamics differentiates between algorithms, 
and recognition systems using multiple patterns.  Finally, 
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the current limitations of this method and future work are 
discussed. 

Background  

Cognitive Symbolic Systems 
Brain-motivated cognitive models that utilize symbolic 
representations are designed to explain how the brain can 
perform cognitive tasks and/or to understand the origins of 
its observed limits.  A small sample of such models 
include: SHRUTI, LIDA, SOAR, ACT-R, CLARION, 
EPIC, ICARUS (e.g. Franklin & Patterson 2006; Laird 
2008; Meyer & Kieras 1997; Shastri 2000; Sun 2002).  
Whether symbolic systems are more biologically-
motivated or rule-based, most assume that sensory 
recognition is previously processed and symbolically 
coded representations are available.  The processed 
representations are often hand coded.  From this starting 
point, the cognitive-symbolic processing is implemented.  
This confines many symbolic systems to less-satisfying 
examples with synthetic starting points.  An advancement 
where traditionally sub-symbolic information present in 
neural networks becomes available to symbolic systems, 
would be beneficial. 

Recognition Algorithms 
Although many recognition algorithms have been 
developed over the past half century, supervised 
recognition systems share a commonality that they 
predominantly utilize a feedforward architecture during 
testing.  Based on feedforward weights W they solve the 
recognition relationship: 

 Y=WX        or          Y=f(W,X) (1) 
 Y represents the activity of a set of labeled nodes that 
may be called output neurons, or classes in different 
literatures and individually written as Y=(Y1, Y2, Y3,… YH)T.  
In supervised classifiers the nodes are labeled, for 
example: Y1 is associated with “dog”, Y2 is associated with 
“cat”, and so on.  Vector X represents sensory nodes that 
sample the environment, or input space to be recognized, 
and are composed of individual features X=(X1, X2, X3,... 
XN)T.  The input features can be sensors that detect edges, 
lines, frequencies, and so on.  W represents a matrix of 
weights or parameters that associates inputs and outputs.  
The relationship WX calculates the output using the 
feedforward weights and inputs.  Thus the direction of 
information flow during recognition is feedforward: one-
way from inputs to the outputs.  
 Learning W weights may require feedback, where the 
outputs are compared to supervised labels and the error 
signals from the outputs are projected to the inputs using 
methods such as the delta rule (e.g. Rosenblatt 1958).  

However once W is defined, recognition during testing is 
feedforward.   
 This configuration can be found within the majority of 
recognition algorithms, for example: Single-layer 
Perceptrons (Rosenblatt 1958), multilayer Neural 
Networks with nonlinearities introduced into calculation of 
Y (Rumelhart & McClelland 1986), and machine learning 
methods such as Support Vector Machines (SVM) with 
nonlinearities introduced into the inputs through the kernel 
trick (Vapnik 1995).  Although these algorithms vary in 
specifics such as nonlinearities determining the function f, 
they share the commonality in that recognition involves a 
feedforward transformation using W during recognition.   
 Some feedforward algorithms include lateral 
connections for competition between output nodes Y.  One 
variant, Adaptive Resonance Theory (Carpenter & 
Grossberg 1987) measures a goodness-of-fit after a 
winner-take-all competition.  However such competition 
methods still rely on initially calculating Y node activities 
based on the feedforward transformation W.  Thus they fall 
into the feedforward category. 
 Recurrent networks are feedforward networks in a 
hierarchy where a limited number of outputs are also used 
as inputs.  These networks can be unfolded into a recursive 
feedforward network e.g. (Schmidhuber 1992; Williams & 
Zipser 1994; Boden 2006).  Thus they also fall into a 
feedforward category. 
 Networks based on feedforward-feedback structures are 
auto-associative networks and generative models.  
Typically in auto-associative networks, the feedforward 
and feedback connections have the same weights; however 
there are exceptions (McFadden et al 1992; Bogacz et al 
1998).  In generative models the feedback weight is the 
opposite sign of the feedforward weight.  Generally auto-
associative networks function during testing while 
supervised generative models are used to aid learning. 
 Two famous auto-associative networks are Anderson’s 
“brain-state-in-a-box” and Hopfield networks (Anderson et 
al 1977; Hopfield 1982).  In these networks when part of a 
learned input pattern is given, the network can complete 
the whole pattern through a dynamic process.  However, 
the auto-associative networks do not perform supervised 
classification and solve equation 1 above. 
 Generative models are used to generate patterns and 
subtract them from the inputs.  This is a strategy used to 
optimize learning of Bolzman (binary activation) networks 
e.g. (Hinton & Salakhutdinov 2006) and unsupervised 
networks where outputs are unlabeled e.g. (Olshausen & 
Field 1996).  However these methods do not use the 
feedforward-feedback component during testing of 
supervised networks.  For example it common to see an 
unsupervised generative network followed by a supervised 
feedforward classifier e.g. (Zieler et al 2010).   
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Given the context of the current literature, 
method proposed here uses feedfo
connections to perform supervised rec
symbolic-like weights and solve equation 
during recognition.  Let’s derive how it wor

Mathematical Derivations 
Equation 2 of a linear perceptron can be rew
inverse of equation 1: 

   
Lets define matrix M as the inverse or p

matrix W.  The relation becomes:  

   
Models founded on this equation are 

generative models because they 
reconstruction.  The term MY is an intern
pattern(s) constructed using learned inform
best matches patterns present in X. 
 Information flows from Y to X using M 
is determined in the input or X domain. 
information describes top-down feedback
direction of feedforward.  The fixed-points
equations 3 and 1 are identical, so the same
feedforward and feedback equations.  This d
that analogous network connectivity can
using both feedforward and feedback per
feedback perspective is more symbolically r
 However equation 3 does not provide a
input information to the outputs.  To get 
use dynamic networks or equations tha
equation 3.  One method that can be used is
squares to minimize the energy function: 
Taking the derivative relative to Y an
equation becomes: 

 
This equation can be iterated until steady
(with no weights adjusted) resulting in t
solution that is equivalent to Y=WX.  Bo
and feedback weights are designated 
transforms Y information into the X d
feedback process.  Transposed weights M
information into the Y domain, thus a feedfo
Another way to converge to equation 3 is to
Feedback e.g. (Achler 2011; Achler & Bet
The equation can be written as: 

  
where
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s: 

where  are the dimensions 
type models have the identical 
Bettencourt 2011).   
 In summary, Y can be found 
domain.  The derivations establish
to equation 1 can be solved by th
equations: 4, 5, or 6.  The end poin
networks are indicated by the we
the basis of symbolic association w
can be understood from M.   
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Several examples are given here
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intuitively using M.  The thir
classification scenarios. 

A Simple Example Using Sym
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to discriminate between drawings
unicycle using features of whee
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those features in the expectation m
 
 

 
 
 

Expectation matrix Exp indicates 
bicycles and unicycles based on featur
horizontal lines, X3: vertical lines, X4

binary values are given they can b
example if 50% of bicycles have seats 
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vertical frame features are expec
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the expectation of the features re
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function or co-occurrence of feat
also be determined by symbolic ex
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 [             ] W1= (8) 

Optimal Feedforward Weights are Sub-Symbolic  
Even though supervised weights W may store image-label 
associations as well, it is not trivial to incorporate symbolic 
expectations into W.  Let’s assume feedforward weights 
represent symbolic expectations and set W0 = Exp to 
demonstrate the difficulty. Let’s set the input to represent a 
moving unicycle: Xtest = [1,0,1,1]T.  How does recognition 
fair?  Solving Y=W0 Xtest we get Y=[4 3]T.  This is not the 
expected solution: Y=[0, 1]T.  W should be trained using 
the symbolic expectation matrix as a training set.   

Solving recognition directly using M  
Using the proposed method one should be able to: take the 
expectation matrix and make it equal to M (M1=Exp), 
then insert M1 and Xtest into either equations 5 or 6, and 
wait until the dynamics go to zero: dY/dt 0.  The solution 
for Xtest = [1,0,1,1]T is Y=[0,1]T.  Xtest is correctly 
recognized as a unicycle.  Now if Xtest=[2,1,1,1]T 
representing a bicycle, then Y=[1,0]T.  Thus both patterns 
are correctly recognized.  This demonstrates how 
recognition can be achieved using the expectation matrix. 

M vs. W  
To demonstrate the relation of M to W and feedforward 
recognition, let’s go back to equation 2 and calculate W1 
from M1 using the pseudoinverse.  Since these matrixes 
may not be square, the standard pseudoinverse method is 
used where W=(MTM)-1MT.  The transpose W1 is shown.   
 

 
 
 

W represents the feedforward weights. W1 is more 
complex, has negative values, and the values are sub-
symbolic.  To demonstrate that W1 denotes the correct 
feedforward weights lets calculate Y=W1 Xtest.  The 
answers are again Y=[1,0]T for Xtest=[2,1,1,1]T and 
Y=[0,1]T for Xtest = [1,0,1,1]T.  The same answers were 
obtained from equation 5 using expectation values from 
matrix 7, as the feedforward method in equation 1 using W 
values from matrix 8.  The disadvantage of the feedforward 
method is that W is sub-symbolic. 

Retrieving Symbolic Information 
Suppose now we want to ask symbolic questions: do 
bicycles have wheels?  How many?  Using M1 we can 
look up label for bicycle Y1 and feature for wheel X1 and 
read the value: 2.  If we want to do the same thing for 
unicycle we can look up label for unicycle Y2 and feature 
for wheel X1 and read the value: 1.  If we attempt this with 
W1 we do not retrieve symbolically useful information.  
Thus M has symbolic properties while also representing a 
neuraly-plausible recognition model. 

Learning Example Using Symbolic Weights 
We have shown the relationship between M and W.  The 
purpose of this example is to show that learning through M 
can achieve the same results as learning through W, but 
learning through M can be simpler, faster, and more 
intuitive.  This example demonstrates the training and 
classifying of linearly separable data.  400 training data 
points are generated and separated into two labels along a 
linear separation (see figure 1).  100 separate points are 
generated as test points. 
Both a single-layer linear preceptron and the feedforward-
feedback method are trained on the same learning data and 
tested on the same testing data.  The performance, number 
of cycles, and computation time are calculated.   

 
Figure 1 training and testing data points separated by a linear 
boundary. 

Testing the Linear Perceptron 
The perceptron network is trained using the 400 samples 
until W is found where the number of errors on the training 
sample is 0.  The learning rate is 0.5.  The number of 
iterations required and the computer time on a PC running 
matlab are recorded.  Then the perceptron is tested on the 
100 tests.  The number correct and the computer time 
required to perform the tests are also recorded.  The exact 
numbers are not as important as comparing when each 
method takes more time.  The number of required 
iterations for training the perceptron varied depending on 
the random sets and initial conditions.  A typical data set 
required about 6000 iterations and about 18 seconds. 
Testing the perceptron on the 100 samples was very fast 
and required about 0.001 of a second.  The perceptron did 
not have any testing errors as long as the testing points did 
not fall on the linear separator. 

Testing the Feedforward-Feedback Algorithm 
The feedforward-feedback algorithm is trained and tested 
on the same data.  Performance, number of iterations and 
time are also recorded and compared.   
To determine the expectation matrix M from the training 
data, the points corresponding to each label are averaged.  
All of the black points above the line and all of the green 
points below the line are averaged together.  The resulting 
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values from one run are shown in equation 9.  Calculating 
the mean is not iterative and took only 0.02 seconds.   
 
 

 
 

The regulatory feedback equations (5, 6) were used for 
testing.  The time required was about 0.2 seconds for the 
100 tests total.  The average number of iterations per test 
was 21.  The time and number of iterations were sensitive 
to the threshold value of dY/dt used to stop the simulation.  
When all nodes of Y changed less than 0.0001 then the 
simulation was stopped.  The identification of Y was 
determined by the node within Y with the highest value. 

The performance was analogous to the perception and 
did not have any testing errors as long as the testing points 
did not fall on the linear separator. 

Comparing Methods 
The feedforward-feedback method was much faster in 
learning, about 900 times faster.  However the percetron 
was much faster in testing, over 20 times faster.  This is 
because the dynamic aspect of the perceptron algorithm is 
during learning and the dynamic aspect of the feedforward-
feedback algorithm is during testing.  The dynamics take 
the most time.  It is important to note that the dynamics of 
the feedforward-feedback testing was faster than those of 
the perceptron in part because the perceptron learning 
requires dynamics on all of the training data, while the 
feedforward-feedback dynamics were only required for 
individual test data points.  Thus dynamics during testing is 
more efficient because it does not have to iterate using all 
data points, only for each test point individually as needed.  
In the benchmarks, the time reported is combined for all of 
the 100 tests.  Beyond the test and training times, both 
methods performed similarly and both are governed by the 
same limitations.  These limitations are discussed further in 
the discussion section. 

Multiclass Classification  
We showed differences in symbolic-like relations between 
M & W followed by differences in learning.  Here we 
point the reader to comparisons in multiclass classification.  
A random pattern set is generated with arbitrary supervised 
input-label patterns.  We tested up to 200 patterns.  The 
most important issue in both the linear perceptron and the 
feedforward-feedback network is to make sure that there 
are more input features than patterns.  Otherwise, the 
patterns will not be linearly separable.  As long as the 
patterns are linearly separable, when each pattern is 
presented, the networks correctly identify the patterns.   

For further analysis, the reader is encouraged to look at 
previous multiclass classification work e.g. (Achler, Omar, 
Amir 2008, Achler, Vural, Amir, 2009; Achler 2011).  In 

that work, the input patterns are further manipulated and 
presented as mixtures to demonstrate mixture processing. 

Discussion 

In feedforward algorithms the fixed points (stable 
solutions) are opaque and cannot be directly observed 
through matrix W.  For equations 1-6 including the 
feedforward equations, M describes the fixed points or 
solutions.  This is why determining network behavior using 
M is easier.  The solutions of the network mirror the values 
of M.  Thus performing recognition based on M has two 
advantages: 1) learning is easier because the desired 
network can be set by simple, representative entries in M, 
2) the solutions or purpose of the network and its 
components can be read from M.  These properties form 
the basis of the neural-symbolic associations shown here.  
Thus the advantage of using M and feedforward-feedback 
architectures for the symbolic community is a new ability 
to model high-level human cognitive processes (e.g. rule-
based inference) directly from brain-like architectures that 
perform recognition.   
 M can be determined by the expectation of the features 
relative to the label to be stored.  Expectation can be 
determined by a simple averaging function, co-occurrence, 
or symbolic-like expressions between features with labels.  
This does not require feedback dynamics or error 
propagation during learning.  Subsequently, M can be 
learned using simple Hebbian-type learning, or one can 
calculate the likelihood a feature is present when a label is 
present, or one can average the number of times a feature is 
present when a label is present as was done in the learning 
example presented here.  There are other possible methods 
to optimally determine expectation or label-to-feature 
correlation.  Such methods may use hierarchy, focus on 
reducing condition numbers, or avoid ill-formed matrices.   

Ill formed matrices are defined as an ambiguous 
situation when M has linearly dependent rows.  This means 
the same pattern has two labels.  This violates the linear 
dependence limitation imposed on both the perceptron and 
the feedforward-feedback methods.   

This limitation is important because even after an ideal 
learning, degraded information or illusions may cause an 
ill-posed state equivalent to an ambiguous scenario.  For 
example if common information to two nodes is present in 
X, but no distinctive information between the two nodes is 
available, the two nodes can behave as if they are linearly 
dependent.  This can also happen for example if a data 

  X1   X2 

0.36 0.69 Y1   Black Label 

0.66 0.33 Y2   Green Label 

(9) [       ] M= 
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point falls on the linear separator line.  Two or more 
labeled nodes will be equidistant from that point. 

With an ill-formed M, the network does not have 
enough information to choose from dependent patterns.  In 
such case, the initial conditions will determine which of the 
linear dependant patterns will predominate.  This is not 
catastrophic for the rest of the network, because the 
dependent nodes interact with the rest of the network as 
one node.  Subsequently, other nodes in the network can 
still be recognized correctly (Achler 2011).  Thus the 
network obtains a reasonable result even for linearly 
dependent, ill-formed matrices.   

Similar difficulties can occur within the learning 
dynamics of feedforward methods.  Thus it is also fair to 
ask similar questions about the dynamics of learning W.  
In some cases learning may not converge in scenarios 
where data is not separable.  Failure during feedforward 
learning may be more problematic because all of the 
representations are learned together.  Poor convergence 
affects learning of all representations and it may not be as 
clear which of the representations are problematic.  
Moreover, the larger the data set the more this is likely 
(Bottou & Le Cun 2004).   

The symbolic properties of M can help answer questions 
such as do bicycles have wheels.  It may also be possible to 
manipulate M for more complex recognition-logic 
questions.  For example, a neuro-symbolic classifier may 
be extended to answer more complex questions such as do 
cows have opposable thumbs.  Suppose cow and thumb 
have been learned.  It is possible based on the label cow to 
generate the patterns composed of features associated with 
cows.  Subsequently those patterns can be used as inputs.  
A node of interest (e.g. thumb) can be evaluated for its 
response to the generated patterns.  Such possibilities are 
referred to as recognition logic and planned for future 
work.   

The most important finding presented here is that the 
form of information stored in M represents fixed points, 
and forms a bridge between weights favorable for 
recognition and weights favorable for neural-symbolic 
representations.  Without the weights representing fixed 
points, it is not possible to manipulate the representations 
and perform symbolic analysis on the stored patterns. 

It is important to state, as any work on recognition and 
classification work should, that all of the methods 
proposed suffer from difficulties of recognition in the real 
world involving: shading, lighting, size or rotation 
invariance, size invariance, and so on.  So there is still 
much work to be able to perform recognition like a human.   

In summary, this paper presents a method towards 
bridging the gap between pattern recognition and symbolic 
representation within neural networks.  With the advent of 
recognition with more symbolic-like weights, a better 
merging of connectionist and symbolic systems is possible. 
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