

Towards Bridging the Gap Between Pattern Recognition and

Tsvi Achler
Los Alamos National Labs

achler@gmail.com

Abstract
Underlying symbolic representations are opaque within
neural networks that perform pattern recognition. Neural
network weights are sub-symbolic, they commonly do not
have a direct symbolic correlates. This work shows that by
implementing network dynamics differently, during the
testing phase instead of the training phase, pattern
recognition can be performed using symbolically relevant
weights. This advancement is an important step towards the
merging of neural-symbolic representation, memory, and
reasoning with pattern recognition.

Introduction

Sensory recognition is an essential foundation upon which
cognition and intelligence is based. Without recognition
the brain cannot interact with the world e.g.: form internal
understanding, memory, logic, display creativity, or
reason. Rich symbolic information is present in learned
recognition representations. However it remains difficult
to implement high-level human cognitive processes (e.g.,
rule-based inference) using low-level, brain-like
architectures that can perform simple recognition (e.g.,
neural networks). A significant part of the difficulty arises
because weights favorable for recognition relate poorly to
symbolic representations (e.g. Sun 2002). Thus cognitive
models using symbolic representations often assume that
sensory recognition is previously processed and
symbolically-coded representations are available. This
often limits the literature to less-satisfying examples
disconnected from the foundations of recognition models.
A neural form of information with better access to
underlying sub-symbolic relations will allow closer
integration of symbolic systems with neural network
structures. This work presents an artificial neural network
structure that can utilize symbolic-type weights.

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 In order to understand how symbolic-type weights are
attained, it is important to understand neural network
structures. Neural recognition methods are best described
based on their testing configuration (their recognition-
phase structure). Most supervised recognition algorithms
(e.g. neural networks) perform recognition using
feedforward weights during testing, thus described as
feedforward models. These methods may learn the
feedforward weights during training through dynamic,
gradient-descent methods: using feedforward and feedback
connections iteratively to adjust weights. However, once
the weights are learned, testing uses feedforward weights
(e.g. Rosenblatt 1958; Rumelhart & McClelland 1986).
 The key innovation presented here is a supervised
recognition algorithm that uses a feedforward-feedback
configuration to solve recognition where the dynamic-
phase, based on gradient-descent, is implemented during
testing. This allows learning to be much simpler and the
weights to represent symbolic-like expectations.
 It is shown that equivalent recognition can be
implemented using either feedforward or feedforward-
feedback methods. However, the feedforward-feedback
configuration is especially advantageous to the neural-
symbolic community because it learns and uses
symbolically-relevant weights. These weights can in turn
be better integrated with cognitive systems.

Structure/Method Dynamics Weights Relation

Feedforward During
Learning

W Sub-
Symbolic

Feedforward-
feedback

During
Testing

M Symbolic

Table 1: comparison of weights and dynamics between
feedforward and feedforward-feedback supervised classifiers

The following sections review the recognition literature
and derive a neural network that solves recognition with
symbolic-type weights. Subsequent sections provide
examples to demonstrate: symbolic weights, how learning
changes, how dynamics differentiates between algorithms,
and recognition systems using multiple patterns. Finally,

Symbolic Representation Within Neural Networks

2

Neural-Symbolic Learning and Reasoning
AAAI Technical Report WS-12-11

the current limitations of this method and future work are
discussed.

Background

Cognitive Symbolic Systems
Brain-motivated cognitive models that utilize symbolic
representations are designed to explain how the brain can
perform cognitive tasks and/or to understand the origins of
its observed limits. A small sample of such models
include: SHRUTI, LIDA, SOAR, ACT-R, CLARION,
EPIC, ICARUS (e.g. Franklin & Patterson 2006; Laird
2008; Meyer & Kieras 1997; Shastri 2000; Sun 2002).
Whether symbolic systems are more biologically-
motivated or rule-based, most assume that sensory
recognition is previously processed and symbolically
coded representations are available. The processed
representations are often hand coded. From this starting
point, the cognitive-symbolic processing is implemented.
This confines many symbolic systems to less-satisfying
examples with synthetic starting points. An advancement
where traditionally sub-symbolic information present in
neural networks becomes available to symbolic systems,
would be beneficial.

Recognition Algorithms
Although many recognition algorithms have been
developed over the past half century, supervised
recognition systems share a commonality that they
predominantly utilize a feedforward architecture during
testing. Based on feedforward weights W they solve the
recognition relationship:

 Y=WX or Y=f(W,X) (1)
 Y represents the activity of a set of labeled nodes that
may be called output neurons, or classes in different
literatures and individually written as Y=(Y1, Y2, Y3,… YH)T.
In supervised classifiers the nodes are labeled, for
example: Y1 is associated with “dog”, Y2 is associated with
“cat”, and so on. Vector X represents sensory nodes that
sample the environment, or input space to be recognized,
and are composed of individual features X=(X1, X2, X3,...
XN)T. The input features can be sensors that detect edges,
lines, frequencies, and so on. W represents a matrix of
weights or parameters that associates inputs and outputs.
The relationship WX calculates the output using the
feedforward weights and inputs. Thus the direction of
information flow during recognition is feedforward: one-
way from inputs to the outputs.
 Learning W weights may require feedback, where the
outputs are compared to supervised labels and the error
signals from the outputs are projected to the inputs using
methods such as the delta rule (e.g. Rosenblatt 1958).

However once W is defined, recognition during testing is
feedforward.
 This configuration can be found within the majority of
recognition algorithms, for example: Single-layer
Perceptrons (Rosenblatt 1958), multilayer Neural
Networks with nonlinearities introduced into calculation of
Y (Rumelhart & McClelland 1986), and machine learning
methods such as Support Vector Machines (SVM) with
nonlinearities introduced into the inputs through the kernel
trick (Vapnik 1995). Although these algorithms vary in
specifics such as nonlinearities determining the function f,
they share the commonality in that recognition involves a
feedforward transformation using W during recognition.
 Some feedforward algorithms include lateral
connections for competition between output nodes Y. One
variant, Adaptive Resonance Theory (Carpenter &
Grossberg 1987) measures a goodness-of-fit after a
winner-take-all competition. However such competition
methods still rely on initially calculating Y node activities
based on the feedforward transformation W. Thus they fall
into the feedforward category.
 Recurrent networks are feedforward networks in a
hierarchy where a limited number of outputs are also used
as inputs. These networks can be unfolded into a recursive
feedforward network e.g. (Schmidhuber 1992; Williams &
Zipser 1994; Boden 2006). Thus they also fall into a
feedforward category.
 Networks based on feedforward-feedback structures are
auto-associative networks and generative models.
Typically in auto-associative networks, the feedforward
and feedback connections have the same weights; however
there are exceptions (McFadden et al 1992; Bogacz et al
1998). In generative models the feedback weight is the
opposite sign of the feedforward weight. Generally auto-
associative networks function during testing while
supervised generative models are used to aid learning.
 Two famous auto-associative networks are Anderson’s
“brain-state-in-a-box” and Hopfield networks (Anderson et
al 1977; Hopfield 1982). In these networks when part of a
learned input pattern is given, the network can complete
the whole pattern through a dynamic process. However,
the auto-associative networks do not perform supervised
classification and solve equation 1 above.
 Generative models are used to generate patterns and
subtract them from the inputs. This is a strategy used to
optimize learning of Bolzman (binary activation) networks
e.g. (Hinton & Salakhutdinov 2006) and unsupervised
networks where outputs are unlabeled e.g. (Olshausen &
Field 1996). However these methods do not use the
feedforward-feedback component during testing of
supervised networks. For example it common to see an
unsupervised generative network followed by a supervised
feedforward classifier e.g. (Zieler et al 2010).

3

Given the context of the current literature,
method proposed here uses feedfo
connections to perform supervised rec
symbolic-like weights and solve equation
during recognition. Let’s derive how it wor

Mathematical Derivations
Equation 2 of a linear perceptron can be rew
inverse of equation 1:

Lets define matrix M as the inverse or p

matrix W. The relation becomes:

Models founded on this equation are

generative models because they
reconstruction. The term MY is an intern
pattern(s) constructed using learned inform
best matches patterns present in X.
 Information flows from Y to X using M
is determined in the input or X domain.
information describes top-down feedback
direction of feedforward. The fixed-points
equations 3 and 1 are identical, so the same
feedforward and feedback equations. This d
that analogous network connectivity can
using both feedforward and feedback per
feedback perspective is more symbolically r
 However equation 3 does not provide a
input information to the outputs. To get
use dynamic networks or equations tha
equation 3. One method that can be used is
squares to minimize the energy function:
Taking the derivative relative to Y an
equation becomes:

This equation can be iterated until steady
(with no weights adjusted) resulting in t
solution that is equivalent to Y=WX. Bo
and feedback weights are designated
transforms Y information into the X d
feedback process. Transposed weights M
information into the Y domain, thus a feedfo
Another way to converge to equation 3 is to
Feedback e.g. (Achler 2011; Achler & Bet
The equation can be written as:

where

In alternative notation, this can be written as

MY − X = 0

dY

dt
= M T MY − X()

dY

dt
= Y

1

V
M T X

MY
−1 V =

the recognition
orward-feedback
cognition with

1 dynamically
rks.

written using an

(2)
seudoinverse of

(3)
referred to as
“generate” a

nal prototype of
mation M, that

and recognition
 This flow of

k, the opposite
s or solutions of
e Y’s match the
duality suggests
n be described
spectives. The
relevant.
a way to project
around this, we
at converge to
s based on least-
E=||X - MY||2.

nd solving the

(4)

y state, dy/dt=0
the fixed point
oth feedforward
by M. MY

domain, thus a
MT transform X
orward process.

o use Regulatory
ttencourt 2011).

(5)

s:

where are the dimensions
type models have the identical
Bettencourt 2011).
 In summary, Y can be found
domain. The derivations establish
to equation 1 can be solved by th
equations: 4, 5, or 6. The end poin
networks are indicated by the we
the basis of symbolic association w
can be understood from M.

Demonstrat

Several examples are given here
example showing how feedforwa
are symbolic as opposed to feedfo
second shows that generalized le
intuitively using M. The thir
classification scenarios.

A Simple Example Using Sym
Let’s define a matrix that represen
pose a simplified recognition prob
to discriminate between drawings
unicycle using features of whee
vertical lines. We can describe t
those features in the expectation m

Expectation matrix Exp indicates
bicycles and unicycles based on featur
horizontal lines, X3: vertical lines, X4

binary values are given they can b
example if 50% of bicycles have seats

Two wheels are expected in a
vertical frame features are expec
wheel is expected and no vert
expected in a moving unicycle.
A matrix such as this is easy to le
the expectation of the features re
stored. This can be determined
function or co-occurrence of feat
also be determined by symbolic ex

In the above example, given a su
[1,0,1,1]T, a unicycle, then the sys
Y=[0, 1]T, indicating a unicycle lab

M ji

j=1

N

dYi

dt
=

Yi

M ji

j=1

N
Mki

k=1

N Xk

Mkh

h=1

H

Y

M NxH

X1 X2 X3 X4 …

2 1 1 1 Y1

1 0 1 1 Y2 [] Exp=

(6)

of M. Both generative-
fixed points (Achler &

using M in the testing
h that the same solutions
he generative method in
nt solutions or purpose of
eights in M. This forms
where the role of weights

tions

e. The first is a simple
ard-feedback weights M
orward weights W. The
earning can be achieved
rd refers to multiclass

mbolic Weights
nts expectations and let’s
blem. Suppose we want
s of a moving bicycle or
els horizontal lines and
the expectation based of

matrix Ex below.

the differences between
res X1= circles (wheels), X2:
4 : seat features. Although
be any real number. For
then the entry can be 0.5.

bicycle. Horizontal and
cted in a bicycle. One
ical frame features are

arn since it only requires
elative to the label to be
 by a simple averaging
ures with labels. It can

xpressions.
upervised classifier if X=
stem should respond with
bel.

Yh

−Yi

 Moving Bicycle

 Moving Unicycle

(7)

4

 [] W1= (8)

Optimal Feedforward Weights are Sub-Symbolic
Even though supervised weights W may store image-label
associations as well, it is not trivial to incorporate symbolic
expectations into W. Let’s assume feedforward weights
represent symbolic expectations and set W0 = Exp to
demonstrate the difficulty. Let’s set the input to represent a
moving unicycle: Xtest = [1,0,1,1]T. How does recognition
fair? Solving Y=W0 Xtest we get Y=[4 3]T. This is not the
expected solution: Y=[0, 1]T. W should be trained using
the symbolic expectation matrix as a training set.

Solving recognition directly using M
Using the proposed method one should be able to: take the
expectation matrix and make it equal to M (M1=Exp),
then insert M1 and Xtest into either equations 5 or 6, and
wait until the dynamics go to zero: dY/dt 0. The solution
for Xtest = [1,0,1,1]T is Y=[0,1]T. Xtest is correctly
recognized as a unicycle. Now if Xtest=[2,1,1,1]T
representing a bicycle, then Y=[1,0]T. Thus both patterns
are correctly recognized. This demonstrates how
recognition can be achieved using the expectation matrix.

M vs. W
To demonstrate the relation of M to W and feedforward
recognition, let’s go back to equation 2 and calculate W1
from M1 using the pseudoinverse. Since these matrixes
may not be square, the standard pseudoinverse method is
used where W=(MTM)-1MT. The transpose W1 is shown.

W represents the feedforward weights. W1 is more
complex, has negative values, and the values are sub-
symbolic. To demonstrate that W1 denotes the correct
feedforward weights lets calculate Y=W1 Xtest. The
answers are again Y=[1,0]T for Xtest=[2,1,1,1]T and
Y=[0,1]T for Xtest = [1,0,1,1]T. The same answers were
obtained from equation 5 using expectation values from
matrix 7, as the feedforward method in equation 1 using W
values from matrix 8. The disadvantage of the feedforward
method is that W is sub-symbolic.

Retrieving Symbolic Information
Suppose now we want to ask symbolic questions: do
bicycles have wheels? How many? Using M1 we can
look up label for bicycle Y1 and feature for wheel X1 and
read the value: 2. If we want to do the same thing for
unicycle we can look up label for unicycle Y2 and feature
for wheel X1 and read the value: 1. If we attempt this with
W1 we do not retrieve symbolically useful information.
Thus M has symbolic properties while also representing a
neuraly-plausible recognition model.

Learning Example Using Symbolic Weights
We have shown the relationship between M and W. The
purpose of this example is to show that learning through M
can achieve the same results as learning through W, but
learning through M can be simpler, faster, and more
intuitive. This example demonstrates the training and
classifying of linearly separable data. 400 training data
points are generated and separated into two labels along a
linear separation (see figure 1). 100 separate points are
generated as test points.
Both a single-layer linear preceptron and the feedforward-
feedback method are trained on the same learning data and
tested on the same testing data. The performance, number
of cycles, and computation time are calculated.

Figure 1 training and testing data points separated by a linear
boundary.

Testing the Linear Perceptron
The perceptron network is trained using the 400 samples
until W is found where the number of errors on the training
sample is 0. The learning rate is 0.5. The number of
iterations required and the computer time on a PC running
matlab are recorded. Then the perceptron is tested on the
100 tests. The number correct and the computer time
required to perform the tests are also recorded. The exact
numbers are not as important as comparing when each
method takes more time. The number of required
iterations for training the perceptron varied depending on
the random sets and initial conditions. A typical data set
required about 6000 iterations and about 18 seconds.
Testing the perceptron on the 100 samples was very fast
and required about 0.001 of a second. The perceptron did
not have any testing errors as long as the testing points did
not fall on the linear separator.

Testing the Feedforward-Feedback Algorithm
The feedforward-feedback algorithm is trained and tested
on the same data. Performance, number of iterations and
time are also recorded and compared.
To determine the expectation matrix M from the training
data, the points corresponding to each label are averaged.
All of the black points above the line and all of the green
points below the line are averaged together. The resulting

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.6 -0.2 -0.2
-0.2 -0.8 0.6 0.6

5

values from one run are shown in equation 9. Calculating
the mean is not iterative and took only 0.02 seconds.

The regulatory feedback equations (5, 6) were used for
testing. The time required was about 0.2 seconds for the
100 tests total. The average number of iterations per test
was 21. The time and number of iterations were sensitive
to the threshold value of dY/dt used to stop the simulation.
When all nodes of Y changed less than 0.0001 then the
simulation was stopped. The identification of Y was
determined by the node within Y with the highest value.

The performance was analogous to the perception and
did not have any testing errors as long as the testing points
did not fall on the linear separator.

Comparing Methods
The feedforward-feedback method was much faster in
learning, about 900 times faster. However the percetron
was much faster in testing, over 20 times faster. This is
because the dynamic aspect of the perceptron algorithm is
during learning and the dynamic aspect of the feedforward-
feedback algorithm is during testing. The dynamics take
the most time. It is important to note that the dynamics of
the feedforward-feedback testing was faster than those of
the perceptron in part because the perceptron learning
requires dynamics on all of the training data, while the
feedforward-feedback dynamics were only required for
individual test data points. Thus dynamics during testing is
more efficient because it does not have to iterate using all
data points, only for each test point individually as needed.
In the benchmarks, the time reported is combined for all of
the 100 tests. Beyond the test and training times, both
methods performed similarly and both are governed by the
same limitations. These limitations are discussed further in
the discussion section.

Multiclass Classification
We showed differences in symbolic-like relations between
M & W followed by differences in learning. Here we
point the reader to comparisons in multiclass classification.
A random pattern set is generated with arbitrary supervised
input-label patterns. We tested up to 200 patterns. The
most important issue in both the linear perceptron and the
feedforward-feedback network is to make sure that there
are more input features than patterns. Otherwise, the
patterns will not be linearly separable. As long as the
patterns are linearly separable, when each pattern is
presented, the networks correctly identify the patterns.

For further analysis, the reader is encouraged to look at
previous multiclass classification work e.g. (Achler, Omar,
Amir 2008, Achler, Vural, Amir, 2009; Achler 2011). In

that work, the input patterns are further manipulated and
presented as mixtures to demonstrate mixture processing.

Discussion

In feedforward algorithms the fixed points (stable
solutions) are opaque and cannot be directly observed
through matrix W. For equations 1-6 including the
feedforward equations, M describes the fixed points or
solutions. This is why determining network behavior using
M is easier. The solutions of the network mirror the values
of M. Thus performing recognition based on M has two
advantages: 1) learning is easier because the desired
network can be set by simple, representative entries in M,
2) the solutions or purpose of the network and its
components can be read from M. These properties form
the basis of the neural-symbolic associations shown here.
Thus the advantage of using M and feedforward-feedback
architectures for the symbolic community is a new ability
to model high-level human cognitive processes (e.g. rule-
based inference) directly from brain-like architectures that
perform recognition.
 M can be determined by the expectation of the features
relative to the label to be stored. Expectation can be
determined by a simple averaging function, co-occurrence,
or symbolic-like expressions between features with labels.
This does not require feedback dynamics or error
propagation during learning. Subsequently, M can be
learned using simple Hebbian-type learning, or one can
calculate the likelihood a feature is present when a label is
present, or one can average the number of times a feature is
present when a label is present as was done in the learning
example presented here. There are other possible methods
to optimally determine expectation or label-to-feature
correlation. Such methods may use hierarchy, focus on
reducing condition numbers, or avoid ill-formed matrices.

Ill formed matrices are defined as an ambiguous
situation when M has linearly dependent rows. This means
the same pattern has two labels. This violates the linear
dependence limitation imposed on both the perceptron and
the feedforward-feedback methods.

This limitation is important because even after an ideal
learning, degraded information or illusions may cause an
ill-posed state equivalent to an ambiguous scenario. For
example if common information to two nodes is present in
X, but no distinctive information between the two nodes is
available, the two nodes can behave as if they are linearly
dependent. This can also happen for example if a data

 X1 X2

0.36 0.69 Y1 Black Label

0.66 0.33 Y2 Green Label

(9) [] M=

6

point falls on the linear separator line. Two or more
labeled nodes will be equidistant from that point.

With an ill-formed M, the network does not have
enough information to choose from dependent patterns. In
such case, the initial conditions will determine which of the
linear dependant patterns will predominate. This is not
catastrophic for the rest of the network, because the
dependent nodes interact with the rest of the network as
one node. Subsequently, other nodes in the network can
still be recognized correctly (Achler 2011). Thus the
network obtains a reasonable result even for linearly
dependent, ill-formed matrices.

Similar difficulties can occur within the learning
dynamics of feedforward methods. Thus it is also fair to
ask similar questions about the dynamics of learning W.
In some cases learning may not converge in scenarios
where data is not separable. Failure during feedforward
learning may be more problematic because all of the
representations are learned together. Poor convergence
affects learning of all representations and it may not be as
clear which of the representations are problematic.
Moreover, the larger the data set the more this is likely
(Bottou & Le Cun 2004).

The symbolic properties of M can help answer questions
such as do bicycles have wheels. It may also be possible to
manipulate M for more complex recognition-logic
questions. For example, a neuro-symbolic classifier may
be extended to answer more complex questions such as do
cows have opposable thumbs. Suppose cow and thumb
have been learned. It is possible based on the label cow to
generate the patterns composed of features associated with
cows. Subsequently those patterns can be used as inputs.
A node of interest (e.g. thumb) can be evaluated for its
response to the generated patterns. Such possibilities are
referred to as recognition logic and planned for future
work.

The most important finding presented here is that the
form of information stored in M represents fixed points,
and forms a bridge between weights favorable for
recognition and weights favorable for neural-symbolic
representations. Without the weights representing fixed
points, it is not possible to manipulate the representations
and perform symbolic analysis on the stored patterns.

It is important to state, as any work on recognition and
classification work should, that all of the methods
proposed suffer from difficulties of recognition in the real
world involving: shading, lighting, size or rotation
invariance, size invariance, and so on. So there is still
much work to be able to perform recognition like a human.

In summary, this paper presents a method towards
bridging the gap between pattern recognition and symbolic
representation within neural networks. With the advent of
recognition with more symbolic-like weights, a better
merging of connectionist and symbolic systems is possible.

References
Achler T., 2011 Non-Oscillatory Dynamics to Disambiguate
Pattern Mixtures, Chapter 4 in Relevance of the Time Domain to
Neural Network Models, Eds: Rao R, Cecchi G A, Springer

Achler T., Bettencourt L., 2011 Evaluating the Contribution of
Top-Down Feedback and Post-Learning Reconstruction,
Biologically Inspired Cognitive Architectures AAAI Proceedings

Achler, T., Amir, E., 2008 Hybrid Classification and Symbolic-
Like Manipulation Using Self-Regulatory Feedback Networks,
NESY, Ceur-ws.

Achler, T., Vural D., Amir E., "Counting Objects with
Biologically Inspired Regulatory-Feedback Networks." 2009
IEEE Proceedings on Neural Networks (IJCNN'09), 2009.

Anderson J., Silverstein J., Ritz S., Jones R. (1977). Distinctive
features, categorical perception, and probability learning: Some
applications of a neural model. Psych. Rev., 84, 413-451

Anderson J. R., Bothell D., Byrne M. D., Douglass S., Lebiere C.,
Qin Y. (2004) An integrated theory of the mind. Psychological
Review, 1036–1060

Boden, M. (2006) A guide to recurrent neural networks & back-
propagation www.itee.uq.edu.au/~mikael/papers/rn_dallas.pdf

Bogacz R., Giraud-Carrier C., 1998 BRAINN: A Connectionist
Approach to Symbolic Reasoning. Proc ICSC/IFAC Symposium
on Neural Computation (NC’98).

Bottou L, LeCun Y: Large Scale Online Learning, Advances in
Neural Information Processing Systems (NIPS 2003)

Carpenter, G. A., Grossberg S. (1987) A Massively Parallel
Architecture for a Self-Organizing Neural Pattern-Recognition
Machine. Computer Vision Graphics and Image Processing 37(1):
54-115.

Franklin, S., Patterson, F. G. J. (2006). The LIDA Architecture:
Adding New Modes of Learning to an Intelligent, Autonomous,
Software Agent IDPT-2006

Hinton G. E., Salakhutdinov R. R. (2006) Reducing the dimen-
sionality of data with neural networks. Science 313:5786 504-7

Hopfield, J. J. (1982) Neural networks and physical systems with
emergent collective computational abilities PNAS v79.8 p2554–8

Hyvärinen A, J Karhunen, E. Oja (2001) Independent Component
Analysis, New York: Wiley, ISBN 978-0-471-40540-5

Laird, J. E. 2008. Extending the Soar Cognitive Architecture.
Artificial General Intelligence Conference, Memphis, TN.

McFadden F.E., Peng Y., Reggia J.A., Local Conditions for
Phase-Transitions in Neural Networks with Variable Connection
Strengths. Neural Networks, 1993. 6(5): p. 667-676.

Meyer D.E., Kieras D.E., (1997) A computational theory of
executive cognitive processes and multiple-task performance:
Part 1. Basic mechanisms. Psychological Review, 104(1), 3-65.

Olshausen, B A, Field D J. 1996. “Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images.” Nature 381: 607-609.

Rosenblatt, F. 1958. The perceptron: a probabilistic model for
information storage and organization in the brain. Psychological
Review 65 6:386-408.

Rumelhart D. E, McClelland J. L. 1986. Parallel distributed
processing: explorations in the microstructure of cognition. V1

7

Schmidhuber. J. (1992) Learning complex, extended sequences
using the principle of history compression. Neural Computation,
4(2):234-242.

Shastri L. 2000 Types and Quantifiers in SHRUTI: A
Connectionist Model of Rapid Reasoning and Relational
Processing. In Wermter & Sun (eds.) Hybrid Neural Symbolic
Integration Lecture Notes in Artificial Intelligence, pp. 28–45.

Sun, R. (2002). Duality of the Mind: A Bottom-up Approach
Toward Cognition. Mahwah, NJ: Lawrence Erlbaum Associates.

Vapnik, V. N. 1995 The Nature of Statistical Learning Theory.
New York: Springer Verlag

Williams R. J. Zipser D. (1994) Gradient-based learning
algorithms for recurrent networks and their computational
complexity. In Back-propagation:. Hillsdale, NJ: Erlbaum.

Zeiler M, Krishnan D, Taylor G, Fergus R, 2010 Deconvolutional
Networks for Feature Learning CVPR

8

