
Fast, Near-Optimal Computation for Multi-Robot Path Planning on Graphs∗

Jingjin Yu
Coordinated Science Lab

University of Illinois, Urbana, IL 61801
jyu18@uiuc.edu

Steven M. LaValle
Department of Computer Science

University of Illinois, Urbana, IL 61801
lavalle@uiuc.edu

Abstract

We report a new method for computing near optimal
makespan solutions to multi-robot path planning problem on
graphs. Our focus here is with hard instances - those with up
to 85% of all graph nodes occupied by robots. Our method
yields 100-1000x speedup compared with existing methods.
At the same time, our solutions have much smaller and often
optimal makespans.

Introduction and Problem Formulation
In this paper, we study centralized multi-robot path plan-
ning problems on graphs, also known as cooperative path-
finding (Silver 2005; Ryan 2008; Standley and Korf 2011;
Surynek 2012b). Our focus is on finding plans with opti-
mal or near optimal makespans for problems in which the
graph nodes are heavily populated with robots. This problem
finds many direct applications in AI and robotics, including
microfludics (Ding, Chakrabarty, and Fair 2001) and ware-
house automation (Wurman, D’Andrea, and Mountz 2008).

Let G = (V,E) be a connected, undirected, simple graph
with vertex set V = {vi} and edge set E = {(vi, vj)}. Let
R = {r1, . . . , rn} be a set of robots that move with unit
speeds along the edges of G, with initial and goal locations
on G given by the injective maps xI , xG : R → V , respec-
tively. A path is a map pi : Z+ → V . A path pi is feasible for
a robot ri if it satisfies the following properties: (1) pi(0) =
xI(ri), (2) for each i, there exists a smallest kmin

i ∈ Z+

such that for all k ≥ kmin
i , pi(k) ≡ xG(ri), and (3) for any

0 ≤ k < kmin
i , (pi(k), pi(k+1)) ∈ E or pi(k) = pi(k+1).

We say that two paths pi, pj are in collision if there exists
k ∈ Z+ such that pi(k) = pj(k) (collision on a vertex, or
meet) or (pi(k), pi(k + 1)) = (pj(k + 1), pj(k)) (collision
on an edge, or head-on). If p(k) = p(k + 1), then the robot
stays at vertex p(k) between the time steps k and k + 1.

Problem (MPPpr). Given (G,R, xI , xG), find a set of
paths P = {p1, . . . , pn} such that pi’s are feasible paths for
respective robots ri’s and no two paths pi, pj are in collision.

∗This work was supported in part by NSF grant 0904501
(IIS Robotics), NSF grant 1035345 (Cyberphysical Systems),
MURI/ONR grant N00014-09-1-1052, and AFOSR grant FA9550-
12-1-0193.
Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Note that MPPpr (“pr” stands for parallel and rotation,
respectively) allows rotations of robots along fully occupied
cycles, which differs from the pebble motion problem (PMG
for short) studied in (Kornhauser, Miller, and Spirakis 1984)
and its parallel extension (MPPp for short) studied in (Silver
2005; Surynek 2012b). Since robots capable of moving in
parallel should also be able to move along fully occupied
cycles, MPPpr is a more natural model than MPPp.

A natural criterion for measuring path set optimality is
the number of time steps until the last robot reaches its
goal. This is sometimes called the makespan, which can be
computed from {kmin

i } for a feasible path set P as TP =
max1≤i≤n k

min
i . Our goal in this paper is to compute solu-

tions to MPPpr and MPPp that minimizes the makespan TP .

Our Method
In (Yu and LaValle 2013a), a complete algorithm was given
for solving MPPpr with minimum makespan using multi-
flow. Let us denote the integer linear programming (ILP)
based algorithm as BASEILP. Since the problem is NP-Hard
(Yu and LaValle 2013b), fast computational method for solv-
ing the minimum makespan MPPpr must resort to heuristics
and approximations. We provide such a heuristic here, aug-
mented by additional heuristics obtained via exploring the
structure of the ILP model.
The k-splitting heuristic. Our key heuristic uses the sim-
ple idea of divide-and-conquer, with the goal of obtaining
smaller MPPpr instances that are then fed to the BASEILP
algorithm. Due to limited space, we only provide a high level
description of the heuristic here, using k = 2.

For each robot ri, given its start vertex, xI(ri), and its
goal vertex, xG(ri), we compute all vertices of G such
that the resulting set of vertices are of equal distance to
xI(ri) and xG(ri) or differ in distance by at most one (i.e.,
such a vertex mi satisfies the property |dist(xI(ri),mi) −
dist(xG(ri),mi)| ≤ 1), ignoring the presence of other
robots. Let this set of vertices be Mi. A member of Mi is
then picked as a waypoint for robot ri. Denote the set of
waypoints as {w1, . . . , wn}. This splits the original prob-
lem into two subproblems. One of the problem has xI(R)
({wi}) as the start (goal) configuration and the other prob-
lem has {wi} (xG(R)) as the start (goal) configuration. It
is possible that Mi ⊆ {w1, . . . , wi−1}, i.e., the “best” way-
points for ri are already used by a robot. In this case, Mi is

155

Late-Breaking Developments in the Field of Artificial Intelligence
Papers Presented at the Twenty-Seventh AAAI Conference on Artificial Intelligence

Figure 1: Computational result for MPPpr..

expanded incrementally to include additional vertices such
that |dist(xI(ri),mi)− dist(xG(ri),mi)| ≤ 2, 3, . . ., until
a waypoint for ri becomes available.
Additional heuristics. To get the most performance out
of a solver, it is beneficial to have a leaner model (i.e., fewer
columns and rows). When it comes to translating the models
for an ILP solver, some of the variables can be removed. In
our implementation, reachability analysis was used to elim-
inate (binary) variables that must remain zero. We omit the
details of these heuristics due to limited space.

Preliminary Computational Results
We implemented our algorithm in Java and used Gurobi 5.1
(Gurobi Optimization 2012) as our solver. The experiments
were carried on an Intel 3970K PC using a 16GB javaVM.
As mentioned, our focus is with the hard cases - prob-
lems with up to 85% of all vertices occupied by robots. For
these problems, the only viable solution appears to be the
iCOBOPT method from (Surynek 2012b), which is only de-
signed to solve MPPp prbolems suboptimally. Our method
is designed for MPPpr but can also be used for MPPp.

MPPpr. The computation result on MPPpr is given in
Fig. 1. Three graph classes are used for this purpose: (1) 8×8
grids with no obstacles, (2) 16× 16 grids with no obstacles,
and (3) 32×32 grids with 20% of vertices removed to simu-
late obstacles. Our goal here is to test the effectiveness of the
k-splitting huristic (all other heuristics are active in all runs).
The start and goal locations are uniformly randomly picked
from all available vertices. For each graph/agent combina-

Figure 2: Computational result for MPPp.

tion, ten sequentially randomly generated problems were
used for testing. A data point is included only if all ten prob-
lems are solved within 1000 seconds. Note that BASEILP al-
ways produces true optimal solutions. In the makespan plots,
the reference makespan line is computed by treating each
robot as the only robot on the graph. Thus, this line is an
underestimate of the true optimal makespan.

We observe that the running time decreases rapidly as k is
increased in the k-splitting heuristic. Moreover, by picking
k appropriately (i.e., a smaller k should be used for a prob-
lem with a smaller makespan), the k-splitting heuristic also
yields near optimal makespans. As an example, for moving
100 robots on a 16 × 16 grid, BASEILP cannot produce a
solution within 1000 seconds wheres the 4-splitting heuris-
tic takes only 1.8 seconds on average. At the same time, the
makespan obtained in this case by the 4-splitting heuristic
is 25.5 steps. The reference line has a value of 25.2 - the
difference is within two percent.

MPPp. The k-splitting heuristic has some flexibility in
selecting waypoints. This allows us to solve MPPp via sim-
ulation by randomly trying different waypoints until we get
a solution that contains no cyclic rotations. Figure 2 sum-
marizes some of our results using this method (same prob-
lem instances used for MPPpr were used here) on 8× 8 and
16× 16 grids.

Although this method for solving MPPp is indirect, it still
handily beats the current best minimum makespan MPPp
solver, iCOBOPT (Surynek 2012a; 2012b). As an example,
iCOBOPT requires 910 seconds for computing an instance of
MPPp with 16 robots on a 16×16 grid. Using 2-splitting, our
method can compute instances with 20 robots under one sec-
ond, a roughly 1000x speedup. In this case, our method also
produced a makespan of 22.6, which is optimal (since it is
the same as the reference makespan). In general, our method
has a speedup of about 100 times at the least and at the same
time, produces plans with much better (smaller) makespan.
Note that the computer hardware used from (Surynek 2012a;
2012b) is on par with ours.

156

References
Ding, J.; Chakrabarty, K.; and Fair, R. B. 2001. Schedul-
ing of microfluidic operations for reconfigurable two-
dimensional electrowetting arrays. IEEE Transactions on
Computer-aided Design of Integrated Circuits and Systems
20(12):1463–1468.
Gurobi Optimization, I. 2012. Gurobi optimizer reference
manual.
Kornhauser, D.; Miller, G.; and Spirakis, P. 1984. Co-
ordinating pebble motion on graphs, the diameter of per-
mutation groups, and applications. In Proceedings of the
25th Annual Symposium on Foundations of Computer Sci-
ence (FOCS ’84), 241–250.
Ryan, M. R. K. 2008. Exploiting subgraph structure in
multi-robot path planning. Journal of Artificial Intelligence
Research 31:497–542.
Silver, D. 2005. Cooperative pathfinding. In The 1st Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, 23–28.
Standley, T., and Korf, R. 2011. Complete algorithms for co-
operative pathfinding problems. In Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence, 668–673.
Surynek, P. 2012a. A sat-based approach to cooperative
path-finding using all-different constraints. In The 5th An-
nual Symposium on Combinatorial Search (SoCS).
Surynek, P. 2012b. Towards optimal cooperative path plan-
ning in hard setups through satisfiability solving. In Pro-
ceedings 12th Pacific Rim International Conference on Arti-
ficial Intelligence.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine 29(1):9–19.
Yu, J., and LaValle, S. M. 2013a. Planning optimal paths for
multiple robots on graphs. to appear.
Yu, J., and LaValle, S. M. 2013b. Structure and intractability
of optimal multi-robot path planning on graphs. to appear.

157

