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Abstract

Many crimes can happen every day in a major city, and fig-
uring out which ones are committed by the same individual
or group is an important and difficult data mining challenge.
To do this, we propose a pattern detection algorithm called
Series Finder, that grows a pattern of discovered crimes from
within a database, starting from a “seed” of a few crimes. Se-
ries Finder incorporates both the common characteristics of
all patterns and the unique aspects of each specific pattern.
We compared Series Finder with classic clustering and clas-
sification models applied to crime analysis. It has promising
results on a decade’s worth of crime pattern data from the
Cambridge Police Department.

Introduction
The job of a crime analyst is to find patterns of crime. If
crime analysts locate an ongoing pattern of crime commit-
ted by the same offender (a “series”), preemptive measures
may be applied to prevent the next crime or to apprehend a
suspect. Using a database of past crimes, Series Finder pro-
cesses information similarly to how crime analysts process
information instinctively: it searches through the database
looking for similarities between crimes in a growing pattern
and in the rest of the database, and tries to identify the modus
operandi (M.O.) of the particular offender or group commit-
ting these crimes. As more crimes are added to the set, the
M.O. becomes more well-defined. Our approach to pattern
discovery captures several important aspects of patterns:

• Each M.O. is different. Different criminals can have very
different M.O.’s. Some offenders operate during week-
days and target apartment buildings, others may operate
mainly on the weekends, targeting single family houses.
Different combinations of crime features can be more im-
portant than others for characterizing different M.O’s.

• General commonalities in M.O. do exist. Each pattern is
different but, for instance, similarities in time and space
are important and should generally be weighted highly.

• Patterns can be dynamic. Sometimes the M.O. shifts dur-
ing a pattern. For instance, early on, the criminal uses bod-
ily force to open the doors as a means of entry, whereas
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later in the pattern, he uses tools to pry the door open.
Methods that consider an M.O. as stationary (e.g., clus-
tering) would not naturally capture these dynamics.

Series Finder for Pattern Detection
We use P “ tC1,C2, . . . ,C|P|u to denote a true pattern of
crime, where each of the Ci’s represents a crime. Only a seed
of a few crimes from P are known. Series Finder uses the
seed to grow a set of discovered crimes P̂, in hopes that P̂
will eventually be similar to the underlying (and unknown)
set P. Specifically, it selects crimes from a candidate crimes
set CP̂ to add to P̂ sequentially. In practice, CP̂ is usually
a set of crimes occurring in the same year as P. We need
several definitions, stated below.

Crime-crime similarity The pairwise similarity γ mea-
sures how similar crimes Ci and Ck are in a pattern set
P̂. We model it in the following form: γP̂pCi,Ckq “
řJ

j“1 λ jηP̂, js jpCi,Ckq, where tλ ju j are “pattern-general”
weights, and tηP̂, ju j are “pattern-specific” weights. We form
J similarity measures between crimes, and s j is the similar-
ity measure for the jth attribute. Two crimes have a high γ
if they are similar along attributes that are important specif-
ically to that crime pattern, and generally to all patterns.

The pattern-specific weights ηP̂, j capture characteristics
common to most or all crimes within a specific pattern.
These weights are defined as:

ηP̂, j :“
1

ΓP̂

1

|P̂|p|P̂| ´ 1q{2

|P̂|
ÿ

i“1

|P̂|
ÿ

k“1

s jpCi,Ckq,

where ΓP̂ is the normalizing factor ΓP̂ “
řJ

j“1 ηP̂, j.
The pattern-general weights λ j are learned from all pat-

terns, using a coordinate-based optimization algorithm (not
described here) that optimizes a balance of precision and re-
call. They consider the general importance of each attribute.

Pattern-crime similarity Pattern-crime similarity S mea-
sures whether crime i is similar enough to set P̂ that it should
be potentially included in P̂. The pattern-crime similarity
incorporates the dynamics in M.O. discussed in the intro-
duction. The dynamic element is controlled by a parameter
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d, called the degree of dynamics. The pattern-crime similar-
ity is defined as follows for pattern P̂ and crime C P CP̂:

S pP̂,Cq :“
´

1
|P̂|

ř|P̂|

n“1 γP̂pC,Cnq
d
¯p1{dq

where d ě 1. This

is a soft-max, that is, an `d norm over Cn P P̂. Use of the
soft-max allows the pattern P̂ to evolve: crime i needs only
be very similar to a few crimes in P̂ to be considered for
inclusion in P̂ when the degree of dynamics d is large. On
the contrary, if d is small, this forces patterns to be very sta-
ble and stationary, as new crimes would need to be similar
to most or all of the crimes already in P̂ to be included. For
our purpose, d is chosen appropriately to balance between
including the dynamics (d large), and stability and compact-
ness of the pattern (d small).

Series Finder algorithm Starting with the seed, crimes
are added iteratively from CP̂ to P̂. At each iteration, the
candidate crime with the highest pattern-crime similarity to
P̂ is tentatively added to P̂. Then P̂’s cohesion is evaluated,
which measures the cohesiveness of P̂ as a pattern of crime:
CohesionpP̂q “ 1

|P̂|

ř

CnPP̂
S pP̂ztCnu,Cnq. While the cohe-

sion is above a threshold, we will continue to grow P̂. Here
is the formal algorithm:

1: Initialization: P̂Ð tSeed crimesu
2: repeat
3: Ctentative P arg maxCPpCP̂zP̂q

S pP̂,Cq

4: P̂Ð P̂Y tCtentativeu

5: Update: ηP̂, j for j P t1, 2, . . . Ju, and CohesionpP̂q
6: until Cohesion(P̂q ă threshold
7: P̂final :“ P̂zCtentative

8: return P̂final

Experiments
We use a dataset of 4855 housebreaks in Cambridge MA,
USA, between 1997 to 2006. Crime attributes include geo-
graphic location, date, day of week, time frame, location of
entry, means of entry, an indicator for “ransacked,” type of
premise, an indicator for whether residents were present, and
suspect and victim information. We also have 51 patterns
that were hand-labeled by crime analysts. We developed 13
pairwise crime metrics s j, not discussed here.

The evaluation metrics we use are standard quality mea-
sures in information retrieval, namely the average precision
and reciprocal rank. These evaluation measures consider the
rank order in which the returned crimes are found.

We compare with hierarchical agglomerative clustering
and an incremental nearest neighbor approach as compet-
ing baseline methods. For all methods, the seed was chosen
to be the first two crimes, chronologically, recorded by the
Cambridge Police Department for each pattern.

Hierarchical agglomerative clustering begins with every
crime as a singleton cluster. At each step, the most simi-
lar (according to the similarity criterion) two clusters are
merged into a single cluster, producing one less cluster at
the next level. The incremental nearest neighbor approach

begins with the seed set. At each step, the nearest neighbor
(according to the similarity criterion) of the set is added to
the pattern set, until the nearest neighbor is no longer suf-
ficiently similar. Each model is used with three different
criteria for cluster-cluster or cluster-crime similarity: Sin-
gle Linkage (SL), which considers the most similar pair of
crimes; Complete Linkage (CL), which considers the most
dissimilar pair of crimes, and Group Average (GA), which
uses the averaged pairwise similarity (Hastie et al. 2005).

Each model was trained on 35 patterns and tested on 16
patterns. The average precisions and reciprocal ranks are
plotted in Figure 1. Each boxplot contains 16 average preci-
sions/reciprocal ranks computed for the 16 patterns. This fig-
ure shows a substantial advantage of Series Finder in terms
of both metrics. Note that the weights used by the competing
models are provided by detectives based on their experience,
while the weights of Series Finder are learned from data.
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Figure 1: Average precisions and reciprocal ranks for all
models. SF represents “Series Finder”, NN represents “In-
cremental nearest neighbor classification” and AC repre-
sents “Agglomerative clustering”.

Related Work

Many classic data mining techniques have been successful
for crime analysis, such as association rule mining (Ng et
al. 2007; Buczak and Gifford 2010), classification (Wang,
Chen, and Atabakhsh 2004), clustering, and pattern detec-
tion (Nath 2006). For a general overview, readers can refer
to (Chen et al. 2004). Domains related to our work include
finding hot-spots, which are localized high-crime-density ar-
eas, e.g. see (Eck et al. 2005), and near repeats, which are
localized in time and space (Ratcliffe and Rengert 2008).
Much of the work from the UCLA group behind the PRED-
POL software package has focused on predicting hotspots
(Short et al. 2008; Cantrell, Cosner, and Manásevich 2012;
Mohler et al. 2011) and near repeats (Short et al. 2009). A
previous work on serial pattern detection is that of (Dah-
bur and Muscarello 2003), which uses a cascaded network
of Kohonen neural networks followed by heuristic process-
ing of the network outputs. However, feature grouping in the
first step makes an implicit assumption that features manu-
ally selected to group together have the same importance,
which our work shows is not necessarily the case. The work
of (Nath 2006) uses a weighting of attributes provided by
detectives, similar to our baseline comparison methods.
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