
Additive Counterexample-Guided Cartesian Abstraction Refinement

Jendrik Seipp and Malte Helmert
Universität Basel

Basel, Switzerland
{jendrik.seipp,malte.helmert}@unibas.ch

Abstract
We recently showed how counterexample-guided abstraction
refinement can be used to derive informative heuristics for
optimal classical planning. In this work we introduce an al-
gorithm for building additive abstractions and demonstrate
that they outperform other state-of-the-art abstraction heuris-
tics on many benchmark domains.

Introduction
Recently, we presented a new algorithm for deriving admis-
sible heuristics for classical planning (Seipp and Helmert
2013) based on the counterexample-guided abstraction re-
finement (CEGAR) methodology (Clarke et al. 2000).

Starting from a coarse abstraction of a planning task, we
iteratively compute an optimal abstract solution, check if
and why it fails for the concrete planning task and refine it so
that the same failure cannot occur in future iterations. After
a given time or memory limit is hit, we use the abstraction
as an admissible search heuristic.

As the number of CEGAR iterations grows, one can ob-
serve diminishing returns: it takes more and more iterations
to obtain further improvements in heuristic value. There-
fore, we propose building multiple smaller additive abstrac-
tions instead of a single big one and show that this increases
the number of solved benchmark tasks.

Background
We consider optimal planning in the classical setting, using
a SAS+-like (Bäckström and Nebel 1995) representation.
Definition 1. Planning tasks.
We define a planning task as a 5-tuple Π = 〈V,O, c, s0, s?〉.
• V is a finite set of state variables vi, each with an associ-

ated finite domain D(vi).
A fact is a pair 〈v, d〉 with v ∈ V and d ∈ D(v).
A partial state is a function s defined on a subset of V .
This subset is denoted by Vs. For all v ∈ Vs, we must
have s(v) ∈ D(v). Partial states defined on all variables
are called states, and S(Π) is the set of all states of Π.
The update of partial state s with partial state t, s⊕ t, is
the partial state defined on Vs∪Vt which agrees with t on
all v ∈ Vt and with s on all v ∈ Vs \ Vt.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• O is a finite set of operators. Each operator o has a
precondition pre(o) and effect eff(o), which are partial
states. The cost function c assigns a cost c(o) ∈ N0 to
each operator.

• s0 is the initial state and s? is a partial state, the goal.
A planning task Π = 〈V,O, c, s0, s?〉 induces a transition

system with states S(Π), labelsO, initial state s0, goal states
{s ∈ S(Π) | s? ⊆ s} and transitions {〈s, o, s⊕ eff(o)〉 | s ∈
S(Π), o ∈ O, pre(o) ⊆ s}. Optimal planning is the problem
of finding a shortest path from the initial to a goal state in
the transition system induced by a planning task, or proving
that no such path exists. For a formal definition of transition
systems we refer to Seipp and Helmert (2013).

Abstractions
Abstracting a planning task means losing some distinctions
between states to obtain a more “coarse-grained”, and hence
smaller, transition system.

Definition 2. Abstraction.
An abstraction of a transition system T = 〈S,L, T, s0, S?〉
is a pair A = 〈T ′, α〉 where T ′ = 〈S′, L′, T ′, s′0, S

′
?〉 is a

transition system called the abstract transition system and
α : S → S′ is a function called the abstraction mapping,
such that L′ = L, 〈α(s), l, α(s′)〉 ∈ T ′ for all 〈s, l, s′〉 ∈ T ,
α(s0) = s′0, and α(s?) ∈ S′

? for all s? ∈ S?.

Abstraction preserves paths in the transition system and
can therefore be used to define admissible and consistent
heuristics for planning. Specifically, hA is defined as the
cost of an optimal plan starting from s′0 in the abstract tran-
sition system.

We call a set of abstractions additive if the sum of their
heuristic estimates is admissible.

Additive Abstractions Algorithm
Our algorithm for building additive abstractions is based on
the following observation:

Theorem 3. Consider transition systems T and T ′ that only
differ in the weight of a single transition a → b, which is w
in T and w′ in T ′. Let h and h′ denote the goal distance
functions in T and T ′.

If h(a)− h(b) ≤ w′ ≤ w, then h = h′.

119

Late-Breaking Developments in the Field of Artificial Intelligence
Papers Presented at the Twenty-Seventh AAAI Conference on Artificial Intelligence

Proof. T and T ′ only differ in the weight of a → b, so
it suffices to show h′(a) = h(a). We have h′(a) ≤ h(a)
because w′ ≤ w. It remains to show h′(a) ≥ h(a).

Clearly h′(b) = h(b): we can assume that shortest paths
from b are acyclic, hence do not use the transition a → b,
and all other transitions have the same cost in T ′ and T .

If a shortest path from a in T ′ does not use a → b, then
clearly h′(a) = h(a). If it does, then its cost is h′(a) =
w′ + h′(b) = w′ + h(b) ≥ h(a)− h(b) + h(b) = h(a).

Assume we are given an abstraction heuristic h with ab-
stract transition system T . By iteratively applying the the-
orem, we can reduce the cost of each transition a → b to
max(0, h(a)− h(b)) without affecting h. For each operator
o, let c′(o) be the maximal transition cost after this modifica-
tion over all transitions induced by o. Then we can interpret
h as an admissible heuristic under a cost partitioning (Katz
and Domshlak 2010) with cost function c′, and the remain-
ing operator cost c(o) − c′(o) can be used to define further
heuristics that can be admissibly added to h.

In our additive abstraction algorithm, we exploit this idea
by iteratively computing a sequence of CEGAR heuristics
h1, . . . , hn (Seipp and Helmert 2013) where hi+1 uses the
remaining operator costs after computing hi. The key for an
informative overall estimate is to diversify the heuristics so
that the operator costs are not consumed early on in the pro-
cess. Towards this end, we follow a simple strategy: we set
n to the number of goal facts of the planning task and only
consider the i-th goal fact when constructing hi. If many
operators are only relevant for a small number of goals, this
may lead to the desired diversity.

Note that the algorithm depends on the order in which the
goal facts are considered. However, we observed only mi-
nor variations in coverage for different orderings (including
random ones).

As a final remark, we point out that the overall idea of
the algorithm can be used with any abstraction method. One
advantage of CEGAR abstractions is that they are compara-
tively easy to diversify. Also, they use an explicit represen-
tation of the transition system allowing for an easy compu-
tation of the c′ values. This is not true, for example, for the
most efficient implementations of merge-and-shrink heuris-
tics (Nissim, Hoffmann, and Helmert 2011), whose use of
label reduction removes information about which operator
induces which transition.

Experiments
We implemented additive CEGAR abstractions in the Fast
Downward system and compared them to state-of-the-art
abstraction heuristics already present in the planner: hiPDB

(Sievers, Ortlieb, and Helmert 2012) and the two merge-
and-shrink heuristics that competed as components of plan-
ner portfolios in the IPC 2011 sequential optimization track,
hm&s

1 and hm&s
2 (Nissim, Hoffmann, and Helmert 2011). We

applied a time limit of 30 minutes and memory limit of 2 GB
and let hCEGAR refine for at most 15 minutes. For hCEGAR

add we
distributed the refinement time equally among the abstrac-
tions.

Coverage h0 hiPDB hm&s
1 hm&s

2 hCEGAR hCEGAR
add

airport (50) 19 21 22 15 19 32
blocks (35) 18 28 28 20 18 18
depot (22) 4 7 7 6 4 5
driverlog (20) 7 13 12 12 10 12
elevators-08 (30) 11 20 1 12 13 12
freecell (80) 14 20 16 3 15 15
grid (5) 1 3 2 3 2 2
gripper (20) 7 7 7 20 7 7
logistics-00 (28) 10 21 16 20 14 20
logistics-98 (35) 2 4 4 5 3 6
miconic (150) 50 55 50 74 55 77
mprime (35) 19 22 23 11 24 24
mystery (19) 15 16 16 7 16 16
openstacks-08 (30) 19 19 9 19 19 19
parcprinter-08 (30) 10 12 15 17 11 16
pegsol-08 (30) 27 4 2 29 27 28
pipesworld-nt (50) 14 17 15 8 15 14
pipesworld-t (50) 10 17 16 7 11 11
psr-small (50) 49 49 50 49 49 49
rovers (40) 5 7 6 8 6 7
satellite (36) 4 6 6 7 6 7
scanalyzer-08 (30) 12 13 6 12 12 12
sokoban-08 (30) 19 29 3 23 20 20
tpp (30) 5 6 6 7 6 10
trucks (30) 6 8 6 8 7 13
woodworking-08 (30) 7 7 14 9 9 11
zenotravel (20) 8 11 9 11 9 12

Sum (1026) 372 442 367 422 407 475

Table 1: Number of solved tasks by domain.

Table 1 shows the number of solved instances for most
pre-2011 IPC domains. We omit three domains were all
heuristics yield the same coverage. In 14 of the 27 domains
hCEGAR

add solves more problems than hCEGAR, raising the total
coverage by 68 problems. While the single hCEGAR heuristic
solves fewer tasks than hiPDB and hm&s

2 in total, the additive
version outperforms all competitors. In a direct comparison
hCEGAR

add solves more tasks than hiPDB, hm&s
1 and hm&s

2 on 11,
16 and 12 domains.

The heuristic estimate for the initial state made by hCEGAR
add

is 31% higher on average than the one made by hCEGAR.

Conclusion
We presented an algorithm for building additive abstrac-
tions of classical planning tasks and showed that the derived
heuristics often outperform state-of-the-art heuristics.

Future research could try to refine each abstraction until
its heuristic values do not increase fast enough anymore in-
stead of applying fixed timeouts.

Acknowledgments
The Swiss National Science Foundation (SNSF) supported
this work as part of the project “Abstraction Heuristics for
Planning and Combinatorial Search” (AHPACS).

120

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In
Emerson, E. A., and Sistla, A. P., eds., Proceedings of the
12th International Conference on Computer Aided Verifica-
tion (CAV 2000), 154–169.
Katz, M., and Domshlak, C. 2010. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence
174(12–13):767–798.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), 1983–
1990.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Proceedings of the
Twenty-Third International Conference on Automated Plan-
ning and Scheduling (ICAPS 2013). AAAI Press.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
implementation of pattern database heuristics for classical
planning. In Borrajo, D.; Felner, A.; Korf, R.; Likhachev,
M.; Linares López, C.; Ruml, W.; and Sturtevant, N., eds.,
Proceedings of the Fifth Annual Symposium on Combinato-
rial Search (SOCS 2012), 105–111. AAAI Press.

121

