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Abstract

Reinforcement-learning (RL) algorithms are often
tweaked and tuned to specific environments when ap-
plied, calling into question whether learning can truly
be considered autonomous in these cases. In this work,
we show how more robust learning across environments
is possible by adopting an ensemble approach to rein-
forcement learning. Our approach learns a weighted lin-
ear combination of Q-values from multiple independent
learning algorithms. In our evaluations in generalized
RL environments, we find that the algorithm compares
favorably to the best tuned algorithm. Our work pro-
vides a promising basis for further study into the use of
ensemble methods in RL.

The task of creating a single reinforcement-learning (RL)
agent that can learn in many possible environments with-
out modification is not a simple one. It is typical for al-
gorithm designers to modify state representations, learning
protocols, or parameter values to obtain good performance
on novel environments. However, the more problem-specific
tuning needed, the less “autonomous” an RL system is, erod-
ing some of the value of RL systems in practice. Often, the
process of tuning itself requires agents to repeatedly learn
and relearn in the target environment—an approach that sim-
ply cannot be used in practice.

Across a wide range of computational domains, ensemble
learning methods have proven extremely valuable for reli-
ably tackling complex problems. Ensemble (or sometimes
modular or portfolio) methods harness multiple, perhaps
quite disparate, algorithms for a problem class to greatly ex-
pand the range of specific instances that can be addressed.
They have emerged as state-of-the-art approaches for word
sense disambiguation (Florian and Yarowsky 2002), cross-
word solving (Littman, Keim, and Shazeer 2002), satisfia-
bility testing (Xu, Hoos, and Leyton-Brown 2010), movie
recommendation (Bell, Koren, and Volinsky 2010) and ques-
tion answering (Ferrucci et al. 2010). We believe the suc-
cess of ensemble methods on these problems stems from the
fact that they can deal with a range of instances that require
different low-level approaches. RL instances share this at-
tribute, suggesting that an ensemble approach could be valu-
able there as well.
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

TD Combination of RL Agents
In this work, we present an approach to ensemble-based
RL using a linear Temporal Difference (TD) learning al-
gorithm as a meta learner to combine the value estimates
from multiple base RL algorithm agents. Our approach goes
beyond earlier efforts in ensemble RL (Wiering and van
Hasselt 2008) in that we develop a fusion method that is
adjusted given the performance of the base agents in the
ensemble instead of combining low-level agents according
to a fixed rule. In the ensemble classifier approach, given
m classifiers, each classifier i has a prediction di,j(x) as
to whether the data point x belongs to class ωj . The fi-
nal prediction of the meta learner, µj(x), for class ωj is
µj(x) =

∑m
i=1 wi,jdi,j(x). The supervised meta learner

uses held out labeled training data to learn the combination
weightswi for each base classifier. Whereas supervised clas-
sifiers map instances to labels, in a value-function-based set-
ting, RL algorithms map states and actions to action values
(the so-called Q-function).

Using the supervised ensemble weighted learning as a
guide, we can develop a parallel approach in which separate
RL algorithms (base agents) create their own Q functions.
The RL meta learner then estimates the environment’s Q-
function via a weighted linear combination of the Q-values
learned by the base agents. The final Q-value given n RL
base agents is QW(st, at) =

∑n
k=1 wkQk(st, at), where

wk are the weights and Qk(s, a) is the estimated Q-value
of state s and action a for RL base agent k. The RL meta
learner learns the weightswk for each base agent. Given that
labeled examples are not available in the RL setting, another
error metric needs to be used. In TD-based algorithms (Sut-
ton 1988), the natural error metric is the Bellman error,

ERL,w =
∑
t

[r(st+1, at+1) + γQW(st+1, at+1) (1)

−QW(st, at)]
2,

where r(st+1, at+1) is the reward observed from being in
state st+1 and performing action at+1 and γ is the discount
factor. An advantage of this error metric is that it does not
require labeled examples. This formulation, arrived at by
translating standard linear ensemble methods to the RL set-
ting, is an exact match for the problem solved by linear TD
methods. The twist is that the role of “state” in this formu-
lation is the Q-value estimates produced by the base agents.
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With that substitution in place, any existing TD method can
be applied to learn weights for the meta learner.

Given that both the base agents and the meta learner need
to adapt, we run learning in two stages. First, the base agents
are trained on the environment in question by themselves,
then they are frozen and then the meta learner adapts its
weights to combine the Q-values of the base agents. We have
experimented with adapting the meta learner and base agents
simultaneously, but the results were less stable.

As the meta-learner searches for the best linear combi-
nation of the base learner Q-values, using them as features,
convergence guarantees are similar to those of other linear
TD learning algorithms (Tsitsiklis and Van Roy 1997). With
the above description of the combination of base agents,
we can view each base agent’s Q-value as a feature for the
meta learner that is dependent on a state and action pair,
(s, a). The two-stage meta learner is a least squares algo-
rithm (Boyan 2002) that minimizes Equation 1.

Ensemble Approach to Solving MDPs
To assess the ensemble approach in an RL setting, we car-
ried out our evaluation in the generalized MDPs framework
(Whiteson et al. 2009). Instead of creating an RL algo-
rithm by iteratively tuning learning parameters on a fixed
environment, the generalized MDP perspective is to imag-
ine that MDPs are drawn from a generalized environment
G : Θ → [0, 1] from which individual MDPs can be sam-
pled. A learning system can draw MDPs from this distri-
bution for “training”. At the end of the training period, a
concrete RL algorithm is produced and it is evaluated by
running it in fresh MDPs drawn from G. This approach to
evaluation is designed to encourage the development of al-
gorithms that do not “overfit” and can thus generalize better
across environments.

The environment in our experiments is the classic
mountain-car environment. The mountain-car environment
was generalized by adjusting observations from the environ-
ment (noisy observations), as well the outcomes of the ac-
tions taken (stochastic actions). The implementation of the
generalized mountain-car environment was taken from the
2008 RL competition (Whiteson, Tanner, and White 2010).

A standard approach would be to tune the learning param-
eters of a specific algorithm to perform well, on average, on
the training MDPs. The output of the learning system, us-
ing the training MDPs, would be an RL learner with tuned
parameters. In the ensemble approach, one would create a
diverse set of learners that would be tuned for generalization
on the training MDPs. These learners would then be used to
tackle the test MDPs. Thus, the output of the learning system
would be an ensemble RL learner comprising of a diverse set
of parameters.

Using this approach, we had access to 10 training MDPs.
For each of the training MDP, 10 learners with different pa-
rameters were trained and evaluated. The parameters of the
top learner from each of the MDPs were compared against
each other for diversity. Some of the parameters were equiv-
alent and thus only 4 parameters were used for the base
learners of the meta learner. The candidate parameter com-
parison for diversity can be accomplished by a clustering
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Figure 1: A meta-learner that combines the results of multi-
ple RL algorithms achieves higher reward across a collection
of environments than individual RL algorithms.

algorithm but in this case was done manually. The RL base
learners created using the 4 parameters were also evaluated
individually on the test MDPs.

For evaluation, the learners (4 individual Q-Learning base
learners) and the metalearner (Least Squares Temporal Dif-
ference Learning) had 1000 training episodes on each test
MDP. The meta learner equally allocated episodes of inter-
action between itself and each of its base learners. Evalua-
tion was on the last 50 learning episodes. The meta learner’s
exploration rate (ε) was fixed at 0.05 for all tests. The accu-
mulated rewards for each test MDP configuration were aver-
aged over 5 runs and are shown in Figure 1. The meta learner
consistently performs better than the best single base learner.
Further, if a single set of parameters was used across all the
MDPs, the resulting algorithm would not have performed as
well as the meta-learner.

Further Work
We have presented an ensemble RL algorithm that weighs
and combines estimates from multiple RL algorithms. Us-
ing a TD algorithm, the high-level (“meta”) learner is able to
identify how to weigh and combine low-level (base) agents
so as to obtain high returns. Since the meta learner weighs
and combines Q values, other algorithms for the base agents
can be added/substituted as long as they estimate Q values.
Model-based RL algorithms such as RMax (Brafman and
Tennenholtz 2003) could be substituted for the base agents
as they compute Q-functions indirectly. The meta learner’s
TD algorithm can also be substituted with other more ef-
ficient algorithms. For example, we could have the meta
learner be a selective learner by using LARS-TD (Kolter and
Ng 2009).

There is an opportunity to improve some of the state-of-
the-art algorithms in RL by using them in an ensemble set-
ting, since doing so has been shown to reduce error. The ef-
fects of varying parameters, such as the discount factor, are
still not clear could provide better insight in diversity cre-
ation for the ensemble RL setting. Furthermore, investigat-
ing how the size of ensemble can be dynamically changed—
removing or adding base agents—is another avenue worth
investigating. These promising initial results indicate that
reinforcement-learning algorithms can benefit substantially
from the ensemble approach.
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