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Abstract

One of the challenges to information extraction is the require-
ment of human annotated examples. Current successful ap-
proaches alleviate this problem by employing some form of
distant supervision i.e., look into knowledge bases such as
Freebase as a source of supervision to create more examples.
While this is perfectly reasonable, most distant supervision
methods rely on a hand coded background knowledge that
explicitly looks for patterns in text. In this work, we take a
different approach – we create weakly supervised examples
for relations by using commonsense knowledge. The key in-
novation is that this commonsense knowledge is completely
independent of the natural language text. This helps when
learning the full model for information extraction as against
simply learning the parameters of a known CRF or MLN. We
demonstrate on two domains that this form of weak supervi-
sion yields superior results when learning structure compared
to simply using the gold standard labels.

1 Introduction
Supervised learning is one of the popular approaches to in-
formation extraction from natural language text where the
goal is to learn relationships between attributes of inter-
est – learn the individuals employed by a particular orga-
nization, identifying the winners and losers in a game, etc.
There have been two forms of supervised learning particu-
larly used for this task: First, is the pure supervised learn-
ing approach. For instance, the NIST Automatic Content
Extraction (ACE) RDC 2003 and 2004 corpora, has over
1000 documents that have human labeled relations lead-
ing to over 16000 relations being mentioned in the doc-
uments (Mintz et al. 2009). ACE systems then use tex-
tual features – lexical, syntactic and semantic features – to
learn the mentions of the target relations (Zhou et al. 2005;
Surdeanu and Ciaramita 2007).

But pure supervised approaches are quite limited in scal-
ability due to the requirement of high quality labels. An
attractive very successful second approach is distant super-
vision where, labels of relations in the text are created by
applying a heuristic in a common knowledge base such as
Freebase (Mintz et al. 2009; Riedel, Yao, and McCallum
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2010; Takamatsu, Sato, and Nakagawa 2012). An impor-
tant property of such methods is that the quality of the la-
bels are crucially dependent on the heuristic used to map
the relations to the knowledge base. Consequently, there
have been several approaches that aim to improve the qual-
ity of these labels ranging from casting the problem as
multi-instance learning (Riedel, Yao, and McCallum 2010;
Hoffmann et al. 2011) to using patterns that frequently ap-
pear in the text (Takamatsu, Sato, and Nakagawa 2012).

We take a different approach of creating more examples
to the supervised learner based on weak supervision (Craven
and Kumlien 1999). We propose to use commonsense
knowledge to create sets of entities that are “potential” rela-
tions. This commonsense knowledge is written by a domain
expert in a probabilistic logic formalism called as Markov
Logic Networks (MLN) (Domingos and Lowd 2009). The
algorithm then learns the parameters of these MLN clauses
(we call them as world MLN – WMLN – to reflect that they
are non-linguistic models) from a knowledge base such as
Wikipedia. During the information extraction phase, unla-
beled text are then parsed through some entity resolution
parser to identify potential entities. Then these entities are
provided as queries to the world MLN which uses data from
non-NLP sources such as Wikipedia to then predict the pos-
terior probability of relations between these entities. These
predicted relations become the probabilistic (weakly super-
vised) examples for the next step.

Our hypothesis is – which we verify empirically – that
the use of world knowledge will help in learning from nat-
ural language text. This is particularly true when there is a
need to learn a model without any prior structure (a CRF or
a MRF or a MLN) since the number of examples needed
to learn the model can be very large. These weakly su-
pervised examples can then augment the gold standard ex-
amples to improve the quality of the learned models. So
far, the major hurdle to learning structure in information ex-
traction is the number of features which can be very large
leading to increased complexity in the search. We em-
ploy a recently successful probabilistic logic learning al-
gorithm based on Relational Functional Gradient Boost-
ing (RFGB) (Natarajan et al. 2011; 2012; Khot et al. 2011;
Kersting and Driessens 2008) for learning structure of these
models.

Inspired by this success, we adapt the RFGB algorithm to
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learn in the presence of probabilistic examples by explicitly
opitimizing the KL-divergence. We then employ RFGB in
two different tasks, the first task is learning to jointly pre-
dict game winners and losers from NFL news articles1. We
learned from 50 labeled documents and used 400 unlabeled
documents. For the unlabeled documents, we used a com-
mon publicly available knowledge base such as Freebase to
perform inference on the game winners and losers. We also
evaluate our algorithm on a second task, that of classifying
documents as either football or soccer articles. We perform
5-fold cross validation on these tasks and our experiments
conclusively prove that the proposed approach outperforms
simply learning from gold standard data.

To summarize, the key contribution of the paper is that
when we can bias the learner with examples created from
commonsense knowledge, we can distantly learn structure.
Our proposed algorithm has two distinct phases:

1. Weakly supervised example generation phase, where the
goal is to use commonsense knowledge (WMLN). This
WMLN could contain clauses such as “Higher ranked
teams are more likely to win”, ”Home team are more
likely to win”, etc. Given this WMLN, parameters
(weights) are learned from a knowledge base by look-
ing at the previously completed games. Of course, these
weights could also be provided by the domain expert.
Once these weights are learned, predictions are made on
entities extracted from unlabeled text and these predic-
tions serve as weakly supervised examples for our next
phase. Note that this phase is independent of the linguis-
tic information and simply relies on world knowledge.

2. Information extraction phase, where the noisy examples
are combined with some “gold standard” examples and
a RDN is learned using textual features from the gold
standard and the weakly supervised documents. Note that
this phase only uses the text information for learning the
model. The world knowledge is ignored when learning
from linguistic features.
While our proposed approach has been presented in the

context of information extraction, the idea of using outside
world knowledge to create examples is more broadly appli-
cable. For instance, this type advice can be used for label-
ing tasks (Torrey et al. 2010) or to shape rewards in rein-
forcement learning (Devlin, Kudenko, and Grzes 2011) or
to improve the number of examples in a medical task. Such
advice can also be used to provide guidance to a learner in
unforseen situations (Kuhlmann et al. 2004).

We proceed as follows: after reviewing the related work,
we present the two phases of our approach in greater detail.
We then present the experimental set up and results on the
NFL task before concluding by pointing out future research
directions.

2 Related work
2.1 Distant Supervision
As mentioned above, our approach is very similar to the
distant supervision approaches (Craven and Kumlien 1999;

1LDC catalog number LDC2009E112

Mintz et al. 2009) used to generate more training examples
based on a knowledge base. These approaches use an exter-
nal knowledge base to obtain a set of related entities. Sen-
tences in which any of these related entities are mentioned,
are now considered to be positive training examples. These
examples along with the few annotated examples are pro-
vided to the learning algorithm. These approaches assume
that the sentences that mention the related entities express
the given relation. Riedel et al. (Riedel, Yao, and McCal-
lum 2010) relax this assumption by introducing a latent vari-
able for each mention pair to indicate whether the relation is
mentioned or not. This work was further extended to al-
low overlapping relations between the same pair of entities
(e.g. Founded(Jobs, Apple) and CEO-of(Jobs,
Apple)) by modifying the latent variable to indicate the
type of relation expressed by the sentence (Hoffmann et al.
2011). In our approach, we define a model based on non-
linguistic common sense knowledge to generate the distant
supervision examples. Although we rely on a knowledge
base to obtain the relevant features for our model, one can
imagine tasks where such features are available as inputs or
extracted further up in a pipeline.

2.2 Statistical Relational Learning

Most NLP approaches define a set of features relevant to the
task and use propositional methods such as logistic regres-
sion. To obtain these features, they use structured output
such as parse trees, dependency graphs, etc. obtained from a
NLP toolkit. Recently, there has been a focus of employing
Statistical Relational models that combine the expressive-
ness of first-order logic and the ability of probability theory
to model uncertainty.

Many tasks such as BioNLP (Kim et al. 2009) and Tem-
pEval (Verhagen et al. 2007) involve multiple relations that
need to be extracted jointly. Moreover, there are constraints
on these relations, which are either defined by the task or
by the user. To address these issues, Chambers and Jurafsky
(2008) defined the constraints using integer linear program-
ming to jointly extract a consistent set of temporal relations.
SRL models, on the other hand, can define the constraints
much easily using first-order logic and can learn the model
based on these constraints. As a result, SRL models, namely
Markov Logic Networks (MLNs) (Domingos and Lowd
2009), have been used for these tasks (Riedel et al. 2009;
Poon and Vanderwende 2010; Yoshikawa et al. 2009). But
most of these approaches still relied on generating features
from structured data. In our approach, we represent the
structured data (e.g. parse trees) obtained from the Stan-
ford toolkit using first-order logic and learn the structure
of a SRL model called as Relational Dependency Networks
(RDN) (Neville and Jensen 2007), to discover these features.
Relational Dependency Networks (RDNs) are SRL models
that consider a joint distribution as a product of conditional
distributions. One of the important advantages of RDNs is
that the models are allowed to be cyclic. As shown in the
next section, we use MLNs to specify the weakly supervised
world knowledge.
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3 Structure Learning for Information
Extraction Using Weak Supervision

One of the most important challenges facing many natural
language tasks is the paucity of the “gold standard” exam-
ples. We outline our proposed method in detail in this sec-
tion. Our method consists of two distinct phases: weak su-
pervision phase where we create weakly supervised exam-
ples based on commonsense knowledge and information ex-
traction phase where we learn the structure and parameters
of the models that predict relations using textual features.

3.1 Weak Supervision Phase
We now explain our first phase in detail. As mentioned ear-
lier, the key challenge in information extraction is obtaining
annotated examples. To address this problem, we employ a
method that is commonly taken by humans. For instance,
consider reading a newspaper sports section about a particu-
lar sport (say NFL). Before we even read the article, we have
an inherent inductive bias – we expect a high ranked team
(particularly if it plays at home) to win. In other words, we
rarely expect “upsets”. We aim to formalize this notion by
employing a model that captures this inductive bias to label
examples in addition to the gold standard examples.

We employ the formalism of Markov Logic Networks
(MLNs) to capture this world knowledge. MLNs (Domin-
gos and Lowd 2009) are relational undirected models where
first-order logic formula correspond to the cliques of a
Markov network and formula weights correspond to the
clique potentials. A MLN can be instantiated as a Markov
network with a node for each ground predicate (atom) and a
clique for each ground formula. All groundings of the same
formula are assigned the same weight, leading to the follow-
ing joint probability distribution over all atoms: P (X =
x) = 1

Z exp (
∑
i wini(x)) , where ni(x) is the number of

times the ith formula is satisfied by possible world x and Z
is a normalization constant (as in Markov networks). Intu-
itively, a possible world where formula fi is true one more
time than a different possible world is ewi times as proba-
ble, all other things being equal. There have been several
weight learning, structure learning and inference algorithms
proposed for MLNs.

One of the reasons for using MLNs to capture common-
sense knowledge is that MLNs provide an easy way for do-
main expert to specify the background knowledge as first-
order logic clauses. Effective algorithms exist for learning
the weights of these clauses given data. In our work, we
use the Tuffy system (Niu et al. 2011) to learn the weights
and perform inference on the MLNs. One of the key attrac-
tions of this Tuffy system is that it can scale to millions of
documents and thus can provide a very efficient tool.

Our proposed approach for weak supervision is presented
in Figure 1. Our first step is to employ a MLN that cap-
tures some commonsense knowledge about the domain of
interest, called as WMLN. For the NFL domain, some of the
rules that we used are shown in Table 1. As can be observed
from the table, our method uses some common knowledge
such as “Home team is more likely to win the game” (first
two clauses) and “High ranked team is more likely to win

Figure 1: Steps involved in creation of weakly supervised exam-
ples.

the game” (last two rules). Another clause that we found
to be particularly useful is to say that “A team that is higher
ranked and is the home team is more likely to win the game”.

We learn the weights of these rules by extracting the pre-
viously played NFL games. Note that the rules are written
without having the knowledge base in mind. These rules are
simply written by the domain expert and they are softened
using a knowledge base such as Wikipedia. The resulting
weights are presented in the left column of the table. We
used the games played in the last 20 years to compute these
weights. Note that one could simply define a higher ranking
using the following MLN clause where t denotes a team, r
its rank, y the year of the ranking and hR the higher rank:
∞ rank(t1, r1, y), rank(t2, r2, y), t1! = t2, r1 < r2 →
hR(t1, t2, y).

0.33 home(g, t)→ winner(g, t)
0.33 away(g, t)→ loser(g, t)
∞ exist t2 winner(g, t1), t1 != t2→ loser(g, t2)
∞ exist t2 loser(g, t1), t1 != t2→ winner(g, t2)

0.27 tInG(g, t1), tInG(g, t2), hR(t1, t2, y)→ winner(g, t1)
0.27 tInG(g, t1), tInG(g, t2), hR(t1, t2, y)→ loser(g, t2)

Table 1: A sample of WMLN clauses used for NFL task. t denotes
a team, g denotes a game, y denotes the year, tInG denotes that
the team t plays in game g, hR(t1, t2, y) denotes that t1 is ranked
higher than t2 in year y.

Once the WMLN weights are learned, we proceed to cre-
ate weakly supervised learning examples. To this effect, we
identify interesting (unannotated) documents – for example,
sport articles from different news web sites. We use a stan-
dard NLP tool such as the Stanford NLP toolkit to perform
entity resolution to identify the potential teams, games and
the year in the document. Once these entities are identified,
we query the WMLN for obtaining the posterior on the re-
lations between these entities – for example, game winner
and loser relations from NFL articles. Recall that to perform
inference, evidence is required. Hence, we use the games
that have been potentially played between the two teams
(again from previously played games that year) to identify
the home, away and ranking of the teams. We used the rank-
ings at the start of the year of the game as a pseudo reflection
of the relative rankings between the teams.

The result of the inference process are the posterior prob-
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abilities of the relations between the entities extracted in the
documents. The resulting relations are then used as anno-
tations. One simple annotation scheme is using the MAP
estimate (i.e., if the probability of a team being a winner
is greater than the probability of being the loser, the rela-
tion becomes positive example for winner and a negative
example for loser). An alternative method would be to use
a method that directly learns from probabilistic labels which
we focus in this work by modifying the learning algorithm.
Choosing the MAP would make a strong commitment about
several examples on the borderline. Note that since our
world knowledge is independent of the text, it may be the
case that in some examples perfect labeling is not possible.
In such cases, using a softer labeling method would be more
beneficial. Hence, it is necessary to learn from noisy labels
which we do by adapting the existing algorithm. Now the
examples are ready for our next step – learning the model
for information extraction.

3.2 Learning for Information Extraction
Once the weakly supervised examples are created, the next
step is inducing the relations. In order to do so, we em-
ploy the procedure presented in Figure 2. We run both the
gold standard and weakly supervised annotated documents
through Stanford NLP toolkit to create relational linguistic
features – lexical, syntactic and semantic features. Once
these features are created, we run the boosted RDN learner
by Natarajan et al. (2012). This allows us to create a joint
model between the target relations, for example, game win-
ner and losers. We now briefly describe the adaptation of
boosted RDN to this task.

Figure 2: Steps involved in learning using probabilistic examples.

Assume that the training examples are of the form (xi, yi)
for i = 1, ..., N and yi ∈ {1, ...,K}. We use x to denote
the vector of features which in our case are lexical features
and ys correspond to target (game winners and loser) rela-
tions. Relational models tend to consider training instances
as “mega examples” where each example represents all in-
stances of a particular group (example, an university, a re-
search group etc). In our work, we consider each document
to be a mega example and we do not learn across mega ex-
amples i.e., we do not consider cross document learning.

Given the above definitions, the goal is to fit a model
P (y|x) ∝ eψ(y,x) for every target relation y. Functional
gradient ascent starts with an initial potential ψ0 and it-
eratively adds gradients ∆i. After m iterations, the po-
tential is given by ψm = ψ0 + ∆1 + ... + ∆m. Here,
∆m is the functional gradient at episode m and is ∆m =

ηm × Ex,y[∂/∂ψm−1log P (y|x;ψm−1)], where ηm is the
learning rate. Dietterich et al. (2004) suggested evaluat-
ing the gradient at every position in every training exam-
ple and fitting a regression tree to these derived exam-
ples i.e., fit a regression tree hm on the training examples
[(xi, yi),∆m(yi;xi)].

In our formalism, y corresponds to the target relations, for
example gameWinner and gameLoser relation between a
team and game mentioned in a sentence. x corresponds to
all the relational facts associated with these mentions. To
learn the model for a relation, say gameWinner, we start
with an initial model ψ0 which returns a constant regression
value for all examples. Based on this initial model, we calcu-
late the gradients for each example as the difference between
the true label and current predicted probability. We learn a
relational regression tree to fit the regression examples and
add it to the current model. We now compute the gradients
based on the updated model and repeat the process. Hence,
in every subsequent iteration, we fix the errors made by the
model. For further details about relational functional gradi-
ent boosting, we refer the readers to Natarajan et al. (2012).

Since we use a probabilistic model to generate the weakly
supervised examples, our training input examples will have
probabilities associated with them based on the predictions
from WMLN. We extend the relational functional gradi-
ent boosting approach to handle probabilistic examples by
defining the loss function as the KL-divergence between
the observed probabilities (shown using PD) and predicted
probabilities (shown using P ). The functional gradients for
the KL-divergence loss function can be shown to be the dif-
ference between the observed and predicted probabilities.

∆m(x) =
∂

∂ψm−1

∑
ŷ

PD(y = ŷ) log

(
PD(y = ŷ)

P (y = ŷ|ψm−1)

)
= PD(y = 1)− P (y = 1|ψm−1)

Hence the key idea in our work is to use probabilistic ex-
amples that we obtain from the weakly supervised phase as
input to our structure learning phase along with gold stan-
dard examples (with p = 1 for positive examples), and their
associated documents. Then a RDN is induced by learn-
ing to predict the different target relations jointly, using lin-
guistic features created by the Stanford NLP toolkit. Since
we are learning a RDN, we do not have to explicitly check
for acyclicity. We chose to employ RDNs as they have
been demonstrated to have the state-of-the-art performance
in many tasks(Natarajan et al. 2012). We used the modified
ordered gibbs sampler for inference.

4 Experimental results
In this section, we present the results of empirically vali-
dating our proposed approach on a natural language domain
of predicting winners and losers. We compared the use of
augmenting with weakly supervised examples against sim-
ply using the gold standard examples. Since we are also
learning the structure of the model, we do not compare to
other distant supervision methods directly but instead point
out the state-of-the-art results in the problem.
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Figure 3: Results of predicting winners and losers: (a) AUC ROC. (b) AUC PR. Document classification: (c) AUC ROC. (d) AUC PR.

4.1 Relation Extraction
The first data set that we evaluate our method is the National
Football League (NFL) data set from LDC corpora2. This
data set consists of articles of NFL games over the past two
decades. This is essentially a natural language processing
(NLP) task. The idea is to read the texts and identify con-
cepts such as winner, and loser in the text. As an easy exam-
ple, consider the text, “Packers defeated Cowboys 28−14 in
Saturday’s Superbowl game”. Then, the goal is to identify
Greenbay Packers and Dallas Cowboys as the winner and
loser respectively.

The corpus consists of articles, some of which are anno-
tated with the target concepts. We consider only articles that
have annotations of positive examples. There were 66 an-
notations of the relations. We used 16 of these annotations
as the test set and performed training on (a subset) rest of
the documents. In addition to the gold standard examples,
we used articles from the NFL website3 for weak supervi-
sion. In our experiment, we wanted to evaluate the impact
of the weakly supervised examples. We used 400 weakly su-
pervised examples. We varied the number of gold standard
examples while keeping the number of weakly supervised
examples constant. In another setting, we used no weakly
supervised examples and simply varied the number of gold
standard examples. The results were averaged over 5 runs of
random selection of gold standard examples.

We measured the area under curves for both ROC and
PR curves. Simply measuring the accuracy on the test set
will not suffice in most structured problems, since predict-
ing a majority class can lead in high performance. Hence we
present AUC. The results are presented in Figure 3 where the
performance measure is presented by varying the number of
gold standard examples. As can be seen, in both metrics, the
weakly supervised examples improve upon the usage of gold
standard examples. The use of weakly supervised examples
allows a jump start, a steeper learning curve and in the case
of PR, a better convergence. It should be mentioned that
while plotting every point, the set of the gold standard ex-
amples is kept constant for every run and the only difference
is whether there are any weakly supervised examples added.
For example, when plotting the results of 10 examples, for
every run, the set of gold standard examples is the same. For
the blue dashed curve, we add 400 more weakly supervised
examples and this is repeated for 5 runs in which the 10 gold
examples are drawn randomly. We also performed t-tests on

2http://www.ldc.upenn.edu
3http://www.nfl.com

all the points of the PR and ROC curves. For the PR curves,
the use of weakly supervised learning yields statistically su-
perior performance over the gold standard examples for all
the points on the curves (with p-value < 0.05). For the ROC
curves, significance occurs when using 10, and 30 examples.
Since PR curves are more conservative than ROC curves, it
is clear that the use of these weakly supervised examples im-
proves the performance of the structure learner significantly.
To understand whether weak supervision clearly helps, we
performed another experiment using a baseline where we
randomly assigned labels to the 400 examples. When com-
bined with 50 gold standard examples, the performance de-
creased dramatically with AUC values of 0.58 for both ROC
and PR curves which clearly shows that the weakly super-
vised labels help when learning the structure.

4.2 Document Classification
To understand the general applicability of the proposed
framework, we created another data set for evaluation. In
this data set, the goal is to classify documents either as be-
ing football(American) or soccer articles. Hence the relation
in this case is on the article (i.e.,gametype(article,type)). In
order to do this, we extracted 30 football articles from the
NFL website4 and 30 soccer articles from the English Pre-
mier League (EPL) website5 and annotated them manually
as being football and soccer respectively. We used only the
first paragraph of the articles for learning the models since it
appeared that enough information is present in the first para-
graph for learning an useful model. In addition, we used
45 articles for weak supervision. We used rules such as,
“NFL teams play football”, “EPL teams play soccer”, “If
the scores of both teams are greater than 10, then it is a foot-
ball game”, “If the scores of both teams are 0, then it is a
soccer game”.

All the rules mentioned above are essentially considered
as “soft” rules. The weights of these rules were simply set
to 100, 10, 1 to reflect the log-odds. Note that we could
learn these weights as in the NFL cases, but the rules in
this task are relatively simple and hence we simply set the
weights manually. During the weak supervision phase, we
used the entities mentioned in the documents as queries to
the world MLN to predict the type of game that the entities
correspond to. These predictions (probabilities) become the
weak supervision for the learning phase. We labeled the 45
articles accordingly and combined them with the manually
annotated articles.

4http://www.nfl.com
5http://www.premierleague.com
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As with the NFL data, we measured the AUC ROC and
PR values by varying the number of gold standard exam-
ples. Again, in each run, to maintain consistency, we held
the gold standard examples to be constant and simply added
the weakly supervised examples. The results are presented
in Figure 3. The resulting figures show that as with the ear-
lier case, weak supervision helps in improving the perfor-
mance of the learning algorithm. We get a jump start and a
steeper learning curve in this case as well. Again, the results
are statistically significant for small number of gold stan-
dard examples. Both experiments conclusively prove that
adding probabilistic examples as weak supervision enables
our learning algorithm to improve upon its performance in
the presence of small number of gold standard data thus
validating the hypothesis that world knowledge helps when
manual annotations are expensive.

5 Conclusion
One of the key challenges for applying learning methods in
many real-world problems is the paucity of good quality la-
beled examples. While semi-supervised learning methods
have been developed, we explore another alternative method
of weak supervision – where the goal is to create examples
of reasonable quality that can be relied upon. We considered
the NLP tasks of relation extraction and document extrac-
tion to demonstrate the usefulness of the weak supervision.
Our key insight is that weak supervision can be provided
by a “domain” expert instead of a “NLP” expert and thus
the knowledge is independent of the underlying problem but
is close to the average human thought process – for exam-
ple, sports fans. We used the weighted logic representation
of Markov Logic networks to model the expert knowledge,
learn the weights based on history and make predictions on
the unannotated articles. We adapted the functional gradient
boosting algorithm to learn relational dependency networks
for prediciting the target relations. Our results demonstrate
that our method significantly improves the performance thus
reducing the need for gold standard examples.

Our proposed method is closely related to distant super-
vision methods. So it will be a very interesting future di-
rection to combine the distant and weak supervision exam-
ples for structure learning. Combining weak supervision
with other advice taking methods is another interesting di-
rection. This method can be seen as giving advice about the
examples, but AI has a long history of using advice on the
model, the search space and examples. Hence, combining
them might lead to a strong knowledge based system where
the knowledge can be provided by a domain expert and not
a AI/NLP expert. Finally, it is important to evaluate the pro-
posed model in other similar tasks.
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