
Slumbot NL: Solving Large Games with Counterfactual
Regret Minimization Using Sampling and Distributed Processing

Eric Jackson
eric.jackson@gmail.com

Abstract

Slumbot NL is a heads-up no-limit hold’em poker bot
built with a distributed disk-based implementation of
counterfactual regret minimization (CFR). Our imple-
mentation enables us to solve a large abstraction on
commodity hardware in a cost-effective fashion. A vari-
ant of the Public Chance Sampling (PCS) version of
CFR is employed which works particularly well with
our architecture.

1 Introduction
Slumbot NL is a poker bot that attempts to play according
to an approximate Nash equilbrium. As such, it employs a
static strategy; it does not adapt to its opponents nor attempt
to exploit opponent errors. No-limit hold’em is much too
large to compute an equilibrium for directly (with blinds of
50 and 100 and stacks of 200 big blinds, it has on the or-
der of 10164 game states (Johanson 2013)). Following stan-
dard practice (dating back at least as far as (Shi and Littman
2000)), we create a simplified form of the game — an ab-
straction — that preserves essential features of the full game.
We find a solution (an approximate equilbrium) to the ab-
stract game and hope that it maps to a strategy that works
well in the full game.

2 Algorithm
The algorithm we employ to compute our strategy is a vari-
ant of counterfactual regret minimization (CFR) (Zinkevich
et al. 2007). CFR is an iterative algorithm which computes a
strategy for each player at each iteration. The final strategy
is the average of the strategies computed at each iteration.
The strategies produced by CFR have been shown to ap-
proach a Nash equilibrium (Zinkevich et al. 2007). On each
iteration, CFR computes a quantity known as “counterfac-
tual value” for each action which is, roughly speaking, the
expected value of that action against the opponent’s current
strategy. The “regret” for each action is determined based
on the counterfactual value, and the probability assigned to
each action is proportional to its positive regret.

The version of CFR initially described in (Zinkevich et
al. 2007) (sometimes described as “Vanilla” CFR) performs

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a complete traversal of the game tree on each iteration. Each
iteration computes the exact counterfactual value for each
bucket and an exact update to the regret for each bucket.
Already in (Zinkevich et al. 2007), and subsequently in sev-
eral succeeding publications, variants of CFR have been pro-
posed which incorporate sampling. In general, these ap-
proaches perform quicker and less accurate iterations that
use sampling to estimate counterfactual values (and there-
fore regrets) instead of computing them exactly. It has been
shown that even in the presence of sampling, convergence to
an equilibrium is still guaranteed (under certain conditions)
((Zinkevich et al. 2007), (Lanctot et al. 2009), (Gibson et al.
2012)).

The sampling approach we adopt is a variant of Public
Chance Sampling (PCS) as described in (Johanson et al.
2012). In PCS (when applied to hold’em) a single five-card
board is sampled on each iteration, but the set of possible
private card holdings for each player is fully evaluated. One
main advantage of this approach is that it allows us to evalu-
ate terminal nodes more efficiently using an O(n) algorithm
rather than the naive O(n2) approach (see (Johanson et al.
2011) and (Johanson et al. 2012)).

A single iteration of CFR implements a single tree traver-
sal. We can view that traversal as a combination of a for-
ward phase and a backward phase. As we traverse down
the tree (the “forward phase”) we pass down the opponent
reach probabilities — how likely the opponent is to play
to this point with any given hand. At terminal nodes we
compute the counterfactual value for each hand of the target
player given the opponent reach probabilities that have been
passed down. As we traverse back up the tree (the “back-
ward phase”) we compute new regrets and a new strategy for
the current iteration, and we update the accumulated strat-
egy. See (Johanson et al. 2012) for a more detailed explana-
tion.

We may describe the forward phase as operating at the
card level. For example, the opponent reach probabilities
are maintained per pair of hole cards. At the terminal nodes,
we compute counterfactual values for each pair of hole cards
the target player could have. In contrast, the backward phase
requires bucket-level values. Counterfactual values and re-
gret updates are computed for each bucket.

Our approach differs somewhat from normal PCS in that
we choose to sample multiple boards on a single iteration.

35

Computer Poker and Imperfect Information: Papers from the AAAI 2013 Workshop



To understand how this works, let us first examine the per-
fect recall case. The refinements needed to handle imperfect
recall will be touched on later.

In order to sample multiple boards, we will perform mul-
tiple first passes, one for each sampled board. These first
passes perform the role of the forward phase of regular CFR.
During a first pass, opponent reach probabilities are main-
tained as we traverse the tree, and we compute counter-
factual values at terminal nodes. The counterfactual val-
ues computed at the terminal nodes are aggregated at the
bucket level and accumulated over the multiple first passes.
We then perform a single second pass that passes back the
accumulated bucket-level counterfactual values and updates
the regrets and the accumulated strategy. This second pass
performs the function of the backward phase of regular CFR.

The above algorithm suffices for systems with perfect re-
call, but not for systems with imperfect recall. (See, e.g.,
(Waugh et al. 2009) for discussion of imperfect recall and
CFR.) With perfect recall, we can return counterfactual val-
ues at the bucket level from leaf to root. Street transitions
are not a problem; the counterfactual value for a turn bucket
is the sum of the counterfactual values of the corresponding
river buckets. However, in the context of imperfect recall, a
river bucket will not have a unique predecessor on the turn
so we cannot simply pass counterfactual value back in the
straightforward way.

With imperfect recall, we need to aggregate bucket-level
counterfactual values not just at terminal nodes, but also at
all street transitions. To accomplish this we need to pass
back counterfactual values during the N first passes. These
values are at the card level (e.g., the counterfactual value for
AhKd on a board of As9h7s3d2c); we aggregate them at
the bucket-level at each street transition (as well as at ter-
minal nodes). With these aggregated bucket-level values we
can perform the second pass.

3 Distributed Architecture
To produce competitive poker bots, most researchers have
attempted to solve as large an abstraction as possible. For
systems that maintain their data in memory, the limiting fac-
tor for the size of the abstraction is typically the amount of
RAM available. The cost of the RAM and the cost of a ma-
chine that can handle large quantities of RAM are often the
main drivers of the total expense of the system.

In (Jackson 2012) we described a distributed approach
that allows large games to be solved in a cost-effective fash-
ion using commodity hardware. The key ideas are to main-
tain the regrets and accumulated strategy on disk, rather than
in memory, and to distribute processing across multiple ma-
chines. Low-cost machines with limited RAM can be used
with this approach.

This distributed approach works because CFR parallelizes
well. For Slumbot NL we partition the game tree along two
dimensions. First, by the preflop betting sequence (i.e., the
sequence of actions leading to the flop) and second by the
public cards. There are 835 preflop betting sequences in our
abstraction. For the river we divide the game tree eight ways
based on the public cards. So we have 6680 river “tasks” that

can be performed largely independently. In our implemen-
tation, these 6680 tasks were divided across nine machines.
There is also a single preflop task that is handled on a central
machine.

Each task has a fixed assignment to a particular machine;
i.e., that assignment never changes over the course of train-
ing. This allows the data for that task to be written to lo-
cal disk, rather than to some central location, which reduces
network overhead. The only information that needs to be
passed over the network are opponent reach probabilities
(output by the preflop task and sent to all the workers) and
counterfactual values at flop-initial nodes (sent back from
workers to the central machine).

4 Sampling
As alluded to previously, there are a number of variants of
CFR with different types of sampling. It may be helpful to
view the range of sampling algorithms as points on a spec-
trum. At one end of the spectrum are sampling variants that
perform slower and more accurate iterations. Vanilla CFR
(i.e., no sampling) would be the extreme example of this. At
the other end of the spectrum are sampling variants which
perform faster and less accurate iterations. Outcome sam-
pling ((Lanctot et al. 2009)), in which only a single path
through the game tree is evaluated on each iteration, repre-
sents perhaps the opposite end of the spectrum from vanilla.

PCS as described in (Johanson et al. 2012) samples one
one board per iteration. While it does not sample as aggres-
sively as, say, outcome sampling, it nonetheless traverses
only a small fraction of the game tree (note that there are
over 2.5 million five-card boards possible in hold’em even
after accounting for suit isomorphism). Our variant of PCS
in which we sample multiple boards per iteration allows us
to adapt PCS in the direction of slower and more accurate
iterations. The sampling rate — i.e., the number of boards
sampled per iteration — is effectively a parameter that can
be used to tune the speed versus accuracy trade-off for iter-
ations.

The disk I/O in our system that is not present in a purely
memory-based system adds a fixed cost to regret (and accu-
mulated strategy) updates. For that reason, in our system it is
advantageous to have slower, more accurate iterations. With
slower and more accurate iterations we will perform fewer
updates of the regrets and the accumulated strategy before
convergence. Specifically, for Slumbot NL, we elected to
sample 1/50000 of the five-card boards on each iteration,
which amounts to about 50 boards per iteration.

In general, optimizing the sampling rate is difficult be-
cause it is dependent on game-specific factors and results
from smaller games may not extrapolate to larger games.
We adopt the rule of thumb that the sampling rate should be
large enough so that almost all buckets get a regret update
on any given iteration.

With random sampling, a certain amount of variance is
inevitable in the short run. For example, some boards will
be sampled multiple times before other boards are sampled
even in a single time. This can lead to inaccurate estimates
of counterfactual value in the short run. For example, sup-
pose by chance we sample a larger number of boards con-

36



taining a 5 than the long-run expected quantity. This will
lead to preflop hole card pairs with a 5 having their counter-
factual values overestimated.

We attempt to address this by employing a form of quasi-
monte-carlo sampling. We generate a random permutation
of the 2.5 million possible five-card boards (which we call a
“cycle”) and, rather than randomly sampling a new board on
each iteration, we iterate through this sequence. This guar-
antees that over the first 2.5 million sampled boards every
board will be sampled exactly once. If more iterations are
required, then we perform a second cycle with a new per-
mutation. (In practice, for Slumbot NL we will not make it
through the first cycle before training is completed.)

5 Abstraction
The abstraction we adopt for Slumbot NL can be viewed as
the combination of a betting abstraction and a card abstrac-
tion. Following standard practice, we treat card abstraction
as a clustering problem. Combinations of cards that are sim-
ilar are clustered into “buckets”.

The betting abstraction is a bit different. For example, in
a certain game state our abstraction might allow bet sizes of
ten chips or twenty chips but not any intermediate amount.
These allowed bet sizes are exact amounts (and not, e.g.,
clusters of multiple possible bet amounts). At runtime we
typically map the actual observed bet size to one or more
nearby bet sizes handled in the abstraction.

5.1 Betting Abstraction
Our betting abstraction permits a variety of distinct bet sizes.
We allow more sizes for the initial bet (on a given street)
than for raises on the theory that initial bets are more com-
mon than raises. Along the same lines, we also allow more
bet sizes for raises than for reraises (“three-bets”) and more
sizes for three-bets than for four-bets. For initial bets we al-
low the following eleven bet sizes expressed as fractions of
the money that is in the pot:

0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 4.0, 8.0, 15.0, 25.0, 50.0
For raises we allow the following eight bet sizes:

0.5, 1.0, 2.0, 4.0, 8.0, 15.0, 25.0, 50.0
For three-bets, the following three bet sizes:

0.5, 1.0, 2.0
For four-bets (and any subsequent raises), we only allow a
pot size bet.

In addition to all the bet sizes listed above, an all-in bet is
always permitted.

At runtime we use the translation scheme described in
(Ganzfried 2013) to map the actual bet size of the opponent
to bet sizes that are in our abstraction.

Our betting abstraction is symmetric meaning we do not
allow a different set of bet sizes for the opponent than we do
for ourselves.

5.2 Card Abstraction
Our card abstraction is hierarchical: we have a set of buckets
for the public cards and a set of buckets for the combination
of public and private cards. For example, for the river the
public buckets are a clustering of all the possible five-card

river boards. The private buckets represent a clustering of all
the seven-card board-plus-hole-card pair combinations. To
produce the card abstraction we first cluster the public cards
to form the public buckets, and then we subdivide these pub-
lic buckets to form the private buckets. This ensures that the
abstraction is hierarchical.

For the public buckets, we characterize boards using fea-
tures that correspond to how well those boards connect with
a strong range of hands. For the most part these features
measure whether the boards are rich in high cards or not.

For the private buckets, we characterize hands with fea-
tures getting at hand strength and hand potential.

Given a feature representation of hands or boards, buckets
can be produced by a clustering algorithm such as k-means.

5.3 Size of Abstraction
Slumbot NL’s abstraction has 5.7 billion information sets
and 14.5 billion information-set/action pairs. There are
about six million betting sequences. We use between 2,000
and 4,000 imperfect recall buckets for each postflop street
(3,904 on the flop, 3,602 on the turn, and 2,173 on the river).
For preflop, we handle each of the 169 strategically distinct
hands as a separate bucket.

Note that we devote most of our capacity to the betting
abstraction as opposed to the card abstraction. This largely
is a reflection of the fact that we are using imperfect recall
buckets for the card abstraction, but not for the betting ab-
straction. It also reflects our judgment that a reasonably high
quality card abstraction can be achieved with relatively few
buckets, but that the ability to understand the difference be-
tween various bet sizes is vital.

References
Ganzfried, S. 2013. Action translation in extensive-form
games with large action spaces: Axioms, paradoxes, and the
pseudo-harmonic mapping. Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI-13).
Gibson, R.; Lanctot, M.; Burch, N.; Szafron, D.; and Bowl-
ing, M. 2012. Generalized sampling and variance in counter-
factual regret minimization. Proceedings of the Twenty-Sixth
Conference on Artificial Intelligence (AAAI-12).
Jackson, E. 2012. Slumbot: An implementation of counter-
factual regret minimization on commodity hardware. Pro-
ceedings of the 2012 Computer Poker Symposium.
Johanson, M.; Waugh, K.; Bowling, M.; and Zinkevich, M.
2011. Accelerating best response calculation in large exten-
sive games. Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI-11).
Johanson, M.; Bard, N.; Lanctot, M.; Gibson, R.; and Bowl-
ing, M. 2012. Efficient nash equilibrium approximation
through monte carlo counterfactual regret minimization. Au-
tonomous Agents and Multiagent Systems 2012 (AAMAS-
12).
Johanson, M. 2013. Measuring the size of large no-limit
poker games. University of Alberta Technical Report.
Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte carlo sampling for regret minimization in ex-

37



tensive games. Advances in Neural Information Processing
Systems 22 (NIPS).
Shi, J., and Littman, M. 2000. Abstraction methods for
game theoretic poker. Computers and Games 2000.
Waugh, K.; Schnizlein, D.; Bowling, M.; and Szafron, D.
2009. A practical use of imperfect recall. Proceedings of
the Eighth Symposium on Abstraction, Reformulation and
Approximation (SARA).
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2007. Regret minimization in games with incomplete
information. Advances in Neural Information Processing
Systems 20 (NIPS).

38




