
A Formal Framework for the Specification,
Verification and Synthesis of Diagnosers

Marco Bozzano and Alessandro Cimatti and Marco Gario and Stefano Tonetta
Fondazione Bruno Kessler

Trento, Italy

Abstract
In this work we present a formal approach to the design of
Fault Detection and Identification (FDI) components. We de-
fine a comprehensive language for the specification of FDI,
and discuss how to check whether a given FDI component
fulfills its specification. Then, we propose an automatic pro-
cedure to synthesize an FDI component that satisfies a given
specification. The approach has been implemented and tested
in realistic case studies from the aerospace domain.

Introduction
The correct operation of complex critical systems (e.g.
trains, satellites, cars, or industrial plants) increasingly relies
on the ability to detect when and which faults occur, since an
effective diagnostic system can provide vital information to
drive the containment of faults and their recovery. This task,
known as Fault Detection and Identification (FDI), is typi-
cally carried out by an FDI component that triggers a set of
predefined alarms based on the sequence of values conveyed
by some predefined observables.

Faults can manifest in different ways and they might inter-
act with each other in complex ways. For these reasons, the
design of FDI components is an extremely hard task. The
state of the practice lacks a structured and effective method-
ology to design FDI components; moreover, the lack of ef-
fective validation tools often results in sub-optimal systems.

In this paper we introduce a tool-supported, formal frame-
work for the design of FDI components. Our work is moti-
vated by the strong interest of the aerospace sector (see for
instance (European Space Agency 2010)). We provide do-
main experts with an expressive framework covering the sit-
uations that they want to monitor. Towards this goal, we
make three main contributions. First, we propose a for-
mal language for the specification of FDI requirements to
define the alarms of interests in terms of the unobservable
state. Second, we discuss how to verify that a given FDI
component satisfies a set of requirements. Finally, we de-
velop an algorithm for the automated synthesis of correct-
by-construction FDI components.

Previous work on online diagnoser synthesis has been fo-
cusing on rather simple conditions for detection (e.g., un-
observable events (Sampath et al. 1995)) and on technical

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

improvements for scalability of the algorithms (Schumann
2004). Instead, we focus on providing an expressive specifi-
cation language for the diagnoser. This makes the synthesis
problem much harder but also provides a more interesting
diagnoser that is able, e.g., to raise multiple alarms simulta-
neously.

We implemented the proposed framework on top of the
NuSMV model checker, with Binary Decision Diagrams
providing an effective basis to represent belief states. The
approach has been experimentally evaluated on industrial
case-studies, and the results show that the synthesis of di-
agnosers is feasible for models of practical interest.

Background
Plants and FDIs are represented with transition systems. A
transition system is a tuple S = 〈V, Vo,W,Wo, I, T 〉, where
V is the set of state variables, Vo ⊆ V is the set of ob-
servable state variables; W is the set of input variables,
Wo ⊆ W is the set of observable input variables; I is the
initial formula over V ; T is the transition formula over V ,
W , V ′ (V ′ being the next’d version of the state variables).
A state s (resp. s′) is an assignment to the state variables
V (V ′). An input i is an assignment to the input variables
W . The observable part obs(s) of a state s is the projec-
tion of s on the subset Vo of observable state variables and,
similarly, obs(i) is the projection of i on the subset Wo

of observable input variables. A trace of S is a sequence
π = s0, i1, . . . , sn, in+1, sn+1 of states and inputs such that
s0 satisfies I and for each k, 0 ≤ k ≤ n, 〈sk, ik+1, sk+1〉
satisfies T . The observable part of a trace π is obs(π) =
obs(s0), obs(i1), . . . , obs(sn), obs(in+1), obs(sn+1).

Given two transition systems S1 = 〈V 1, V 1
o ,W

1,
W 1
o , I

1, T 1〉 and S2 = 〈V 2, V 2
o ,W

2, W 2
o , I

2, T 2〉 with
(V 1\V 1

o)∩(V 2\V 2
o) = ∅ and (W 1\W 1

o)∩(W 2\W 2
o) = ∅,

we define the synchronous product S1 × S2 as the tran-
sition system 〈V 1 ∪ V 2, V 1

o ∪ V 2
o ,W

1 ∪ W 2,W 1
o ∪ W 2

o ,
I1 ∧ I2, T 1 ∧ T 2〉. Only observable variable can be shared
among the two systems and used to perform synchroniza-
tion. This gives raise to the problem of partial observability:
the FDI cannot perfectly track the evolution of the original
system. This makes the FDI synthesis problem hard.

In the following we use the word system to indicate the
composition of the plant and the FDI component; we also
use diagnoser and FDI component interchangeably.

11

Late-Breaking Developments in the Field of Artificial Intelligence
Papers Presented at the Twenty-Seventh AAAI Conference on Artificial Intelligence

Diagnoser Specification and Verification
Our approach relies on Linear Temporal Logic with past op-
erators (Lichtenstein, Pnueli, and Zuck 1985). A diagnosis
condition β is a situation of interest described by using LTL
restricted to the past: β ::= p | β ∧ β | ¬β| Oβ | Y β, with
p ∈ V ∪W . We use two abbreviations: Y nφ = Y Y n−1φ
(with Y 0φ = φ) and O≤nφ = φ ∨ Y φ ∨ · · · ∨ Y nφ.

We now define a language to specify how the occurrence
of a diagnosis condition β determines the raising of an alarm
A. Interaction with industrial experts led us to identify
three patterns of alarms, summarized in the following table:

Template Formalization ..B...B....B.....B...

EXACTDEL(A, β, n) G(β ↔ XnA)A...A....A.....A.

BOUNDDEL(A, β, n) G(β → F≤nA∧
A→ O≤nβ)A..AA.AA.A.....A

FINITEDEL(A, β) G(β → FA∧
A→ Oβ)A........A.

EXACTDEL(A, β, n) states that A is triggered exactly n
steps after every occurrence of β. BOUNDDEL(A, β, n)
allows for a delay between the occurrence of β and the oc-
currence of A. Finally, finite-delay is of theoretical interest
since it captures the idea of diagnosability as defined in
previous works (Rintanen and Grastien 2007). The second
column presents the LTL formula that defines the relation
between the diagnosis condition β and the alarm A. The
third column shows an example trace for β (B in the first
row) and an admissible response for EXACTDEL(A, β, 2),
BOUNDDEL(A, β, 4) and FINITEDEL(A, β).

Each alarm specification can be validated against the
given plant in order to understand whether an ideal diag-
noser would be able to satisfy the specification. This step
can be performed by running a diagnosability test (Cimatti,
Pecheur, and Cavada 2003) for each alarm specification. We
call the subset of alarm specifications that are diagnosable
for the plant P the diagnosable specification (ΦP ⊆ Φ).

Given a plant transition system P = 〈V P , V Po ,
WP ,WP

o , I
P , TP 〉 and a specification ΦP , we can de-

fine a diagnoser D for P as a transition system D =
〈V D, V Do ,WD,WD

o , I
D, TD〉 such that: V Po ⊆ V Do and

WP
o ⊆WD

o ; for every trace πP of P , there exists a trace πD
of D such that obs(πP) ⊆ obs(πD); finally, {Aφ}φ∈Φ ⊆
V Do .

Let D be a diagnoser for P . We say that D satisfies a
diagnosable specification ΦP iff for every requirement ϕ ∈
ΦP : D × P |=LTL ϕ. This property can be checked with
classic model-checking techniques (Clarke, Grumberg, and
Peled 2001).

FDI synthesis: Belief Explorer
The idea of the Belief Explorer algorithm is to generate an
automaton that (once synchronized with the plant) keeps
track of the possible states in which the plant could be af-
ter the given observations. This translates into generating
the power-set of the states of the plant, and defining a suit-
able transition relation among the elements of this set. We
call the elements in the above power-set defined in this way
belief states, borrowing from epistemic logic and work on
planning under partial observability (Bertoli et al. 2001).
Each belief state of the automaton can be annotated with

the alarms that are satisfied in all the states of the belief
state. We can then encode the automaton with the annota-
tions symbolically, obtaining the diagnoser.

Given a plant P , the belief automaton is defined as

B(P) = 〈B,B0, Tb〉 with B = 22V P

, B0 ⊆ B and
Tb : B × (2W

P
o , 2V

P
o) → B. B0 is the set of initial states

and it is obtained from partitioning the set of initial states
of the plant. Let S0|u be the operation restricting the set
of states S0 to only those states compatible with the obser-
vation u: S0|u = {s |s ∈ S0 ∧ obs(s) = u}. We define
B0 = {b |∃u ∈ 2Vo .b = S0|u ∧ b 6= ∅}, meaning that
each initial belief state is compatible with one of the possible
observations of the system. We implicitly assume that we
can initialize the diagnoser by observing the state of the sys-
tem. The transition relation is defined as b′ = Tb(b, e, u) =
{s′ | ∃s ∈ b.Tp(s, i, s′) ∧ obs(s′) = u ∧ obs(i) = e}.

Intuitively, the belief state b′ is a successor of b iff all the
states in b′ are compatible with the observations from a state
in b.

To obtain the diagnoser, we need to annotate each state
of the belief automaton with the corresponding alarms. This
can be done by testing each belief state for entailment of
the alarm specification ϕ. To explain this procedure we
first consider the simplest case ϕ = EXACTDEL(Aϕ, p, 0),
where p is a propositional variable. We can explore the be-
lief automaton, and annotate with Aϕ all the belief states
in which all the plant states satisfy ϕ: b |= Aϕ iff b |=
ϕ iff ∀s ∈ b.s |= ϕ. The handling of all other alarms
specifications can be reduced to the previous case by per-
forming a preprocessing step to the belief automaton con-
struction. For each alarm specification ϕ we add a his-
tory variable ϕ in the plant, s.t. the axiom G(ϕ ↔ ϕ)
holds. All the alarm specifications can thus be redefined as:
ϕ′ = EXACTDEL(Aϕ, ϕ, 0).

Implementation and Experiments
We developed full support for the proposed framework on
top of the NuSMV model checker (Cimatti et al. 2002), mak-
ing it possible to specify, synthesize and verify a diagnoser.
The Belief Explorer synthesis procedure has been imple-
mented by using BDD’s (Bryant 1986) to represent belief
states. This enables us to represent each belief state with a
single and unique BDD, making it easy to identify already
visited belief states. Moreover, the symbolic representation
of belief states allows us to check for entailment (b |= ϕ)
with a single operation.

We experimentally evaluated our work in two different
settings: an aerospace case-study, and a set of randomly gen-
erated benchmarks. Due to the space limitation, we can not
enter in detail about the results (nor discuss future work).
Here suffices to say that the synthesis procedure can handle
a synthesis problem specified by industrial partners with a
significant number of requirements within a runtime of the
order of seconds.

References
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in nondeterministic domains under partial observ-

12

ability via symbolic model checking. In Nebel, B., ed., IJ-
CAI, 473–478. Morgan Kaufmann.
Bryant, R. 1986. Graph-based algorithms for boolean
function manipulation. Computers, IEEE Transactions on
100(8):677–691.
Cimatti, A.; Clarke, E. M.; Giunchiglia, E.; Giunchiglia, F.;
Pistore, M.; Roveri, M.; Sebastiani, R.; and Tacchella, A.
2002. NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In CAV, 359–364.
Cimatti, A.; Pecheur, C.; and Cavada, R. 2003. Formal
Verification of Diagnosability via Symbolic Model Check-
ing. International Joint Conference on Artificial Intelligence
363-369.
Clarke, E. M.; Grumberg, O.; and Peled, D. 2001. Model
checking. MIT Press.
European Space Agency. 2010. ITT AO/1-6570/10/NL/LvH
”Dependability Design Approach for Critical Flight Soft-
ware”. Technical report.
Lichtenstein, O.; Pnueli, A.; and Zuck, L. 1985. The glory
of the past. In Parikh, R., ed., Logics of Programs, volume
193 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 196–218.
Rintanen, J., and Grastien, A. 2007. Diagnosability testing
with satisfiability algorithms. In Veloso, M. M., ed., IJCAI,
532–537.
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen,
K.; and Tneketzis, D. 1995. Diagnosibility of Discrete-
Event Systems. IEEE Transactions on automatic control
40(9):1555–1576.
Schumann, A. 2004. Diagnosis of discrete-event systems
using binary decision diagrams. on Principles of Diagnosis
(DX’04) 197–202.

13

