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Abstract

Label ranking aims to map instances to an order over a
predefined set of labels. It is ideal that the label ranking
model is trained by directly maximizing performance
measures on training data. However, existing studies on
label ranking models mainly based on the minimiza-
tion of classification errors or rank losses. To fill in this
gap in label ranking, in this paper a novel label ranking
model is learned by minimizing a loss function directly
defined on the performance measures. The proposed al-
gorithm, referred to as BoostLR, employs a boosting
framework and utilizes the rank aggregation technique
to construct weak label rankers. Experimental results re-
veal the initial success of BoostLR.

Introduction
Different from learning to rank(Wu, Hu, and Gao 2011), the
goal of label ranking is to assign an order over a set of pre-
defined labels according to the nature of the input (Dekel
Manning and Singer 2003). Take document categorization
as an example, assuming that there are several categorical
labels such as ‘sports’, ‘education’ and ‘entertainment’. The
relationship ‘i � j’ represents label i ranks higher than la-
bel j. Label ranking will map a document to an ordered
list of labels, e.g., ‘sports’ � ‘entertainment’ � ‘education’.
Label ranking has been applied to social emotions predic-
tions(Wang et al. 2011), and other applications.

Previous algorithms focus on minimizing classical rank
losses to learn a label ranking model. While in many sce-
narios, the results of label ranking are evaluated by perfor-
mance measures such as normalized discounted cumulative
gain (NDCG) and mean average precision (MAP). Com-
pared with classical rank losses, the performance measures
can reflect the practical values of ranking results with respect
to the application domains better. For example, in some ap-
plications only the labels ordered in top-k are concerned.
NDCG is just a measure that can focus more on top-k re-
sults, while rank losses can not. Indeed, classical rank losses
are also proven to be loosely related to some performance
measures. Ideally, the label ranking model is learned so that
the accuracy in terms of one of the performance measures
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is maximum. However, to our knowledge, there has been no
study on label ranking by directly optimizing performance
measures. In this paper, a novel algorithm, named BoostLR,
is proposed by directly optimize performance measures.

Methodologies
Framework of the Algorithm
Label ranking aims to learn a mapping function f : X → Y ,
where f is chosen from a hypothesis class F such that a loss
function l :F × X × Y→R on training data is minimized,
X is the instance space, and Y is the output space of all
possible full ranking over a set of labels Γ={1, 2, · · · ,K}.
Under the boosting framework, f is a strong label ranker de-
fined as a linear combination of weak label rankers: f(xi) =∑T

t=1 αtht(xi), where T is the sum of weak label rankers,
ht is the optimal weak label ranker in t-th round, and αt is its
associated weight. In ranking, the learned function f assigns
a score to each label in Γ for a given instance, and then the
labels are ordered according to their corresponding scores.

The constructing process of f in BoostLR is similar with
that in AdaBoost. As for the weak label rankers, it is gener-
ated by directly optimizing performance measures. The de-
tails is stated as following subsection.

Creation of Weak Label Rankers
We adopt the idea that each weak label ranker only deals
with one feature dimension. In the t-th round a weak ranker
can be written as

ht (x(d)) = x (d) · wt (1)
wherewt=((wt(1), · · · ,wt(K))T∈ RK) is a K-dimensional
vector over Γ and d ∈ D is the corresponding feature di-
mension. For a particular dimension d, wt can be obtained
by optimizing:

wt = arg min
wt∈RK

R(ht(x(d)))

= arg min
wt∈RK

N∑
i=1

Pt(i)[1− Ev(π(xi(d) · wt), yi)]
(2)

where Pt(i) is the weight of xi in the t-th round, yi is the
ground truth label ranking for xi, and Ev(π(v), yi) ∈ [0, 1]
is a performance measure function used to measure the con-
sistency between yi and π(v) defined a ranking derived from
the entries of a vector v from large to small. The higher the
value of Ev(π(v), yi), the lower the loss R. In practice, Eq.
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Table 1: The NDCG values of the competing algorithms on UCI data sets.
NDCG-1 NDCG-2 NDCG-3

Data set BoostLR IB-PL IB-Mal Lin-LL BoostLR IB-PL IB-Mal Lin-LL BoostLR IB-PL IB-Mal Lin-LL
authorship .8044 .7009 .3671 .5068 .7879 .8661 .4708 .6130 0.8743 .8867 .6174 .7343
bodyfat .3577 .3129 .3117 .2323 .4825 .4466 .4268 .3848 .5887 .5697 .5424 .5192
calhousing .5583 .4702 0.4201 .4814 .6279 .5806 0.5409 .5831 0.7223 .6982 0.6574 .6996
cpu-small .4698 .4198 .3657 .4246 .5789 .5217 .4522 .5246 .6691 .6182 .5422 .6202
elevators .4739 .3641 .2161 .2833 .5457 .4864 .3230 .3623 .6718 .5942 .4258 .4600
fried .5100 .4987 .3640 .3659 .6189 .5778 .4576 .4598 .7021 .6513 .5500 .5515
housing .3840 .3203 .3326 .3351 .5316 .4453 .4783 .4687 .6774 .6007 .6263 .6379
stock .5722 .5841 .3571 .3167 .6096 .6545 .4563 .5148 .7005 .7076 .5448 .5708
vowel .3478 .2519 .1901 .1936 .4938 .3441 .2725 .2888 .5735 .4130 .3628 .3474
wine .9045 .7520 .4695 .7472 .8367 .7645 .5685 .7655 .9372 .8898 .7897 .8890
Avg. Rank 1.375 2.438 3.189 3 1.5 2.375 3.188 2.938 1.5 2.375 3.25 2.875

(2) is intractable to directly optimized as the search space
of wt is RK and the performance measures (e.g., NDCG)
are usually non-continuous. We instead introduce a near-
optimal search procedure as follows.

For any two parameter vectors w
′

t and w
′′

t , if π(w
′

t) =
π(w

′′

t ), their corresponding weak learners’ performances are
equal. Hence, the search space of Eq. (2) is reduced to
K! as Ev is only sensitive to π(wt). Note that if xi(d)≥
0, π(xi(d) · wt) = π(wt) and if xi(d) < 0, π(xi(d) · wt) =
Inver(π(wt)), where Inver(π) is the ranking by reversing
π. Then the Eq.(2) is equivalent to

wt = arg max
wt∈RK

{
∑

i,xi(d)≥0
Pt(i)Ev[π(wt), yi]

+
∑

j,xj(d)<0

Pt(j)Ev[Inver(π(wt)), yj ]} (3)

When K is small, wt can be achieved by a simple strategy
that calculates all theK! possible rankings in RK . However,
whenK is large, this simple strategy is inapplicable. IfEv is
taken as a measure of the consistency between two rankings,
Eq. (3) can be approximately transformed into:

wt = arg max
wt∈RK

∑
i,xi(d)≥0

Pt(i)Ev[π(wt), yi]

+
∑

j,xi(d)<0

P (j)Ev[π(wt), Inver(yj)]
(4)

Let
y(i) =

{
yi if xi(d) ≥ 0

Inver(yi) if xi(d) < 0
(5)

Then Eq.(4) equals to

wt = arg max
wt∈RK

N∑
i=1

Pt(i)Ev(π(wt), yi) (6)

Eq.(6) aims to find an optimal ranking (π(wt)) that is con-
sistent with all theN rankings (yi) as much as possible. This
is a typical rank aggregation problem. The weighted linear
combination method (Lee 1997) is considered here.

Algorithm 1 shows the process of creating weak label
ranker. It is noteworthy that more than one weak ranker
would likely be generated in the algorithm. In this case, the
ht that makes the performance of current ft maximize will
be chosen as the optimal weak ranker.

Experiments
Sixteen UCI data sets compiled by (Cheng, Dembczyn-
ski and Hüllermeier 2010) are used in our experiments.
Three existing state-of-the-art algorithms used in the ex-
periments are: IB-PL proposed by (Cheng, Dembczynski
and Hüllermeier 2010), IB-Mal proposed by (Cheng and

Algorithm 1 Creating ht in the t-th round
Input: Samples S = {(x1, y1), · · · , (xN , yN )}, Pt;
Output: Weak label ranker ht.
1: Initialize w(d) = 0, d = 1, · · · , D;
2: for (int d = 1; i ≤ D; d++) do
3: for (int i = 1; i ≤ N ; i++) do
4: Calculate yi using Eq. (5)
5: w(d) = w(d) + Pt (i) [1K×1 − yi]
6: end for
7: Normalizing w(1), · · · ,w(D) to [0, 1];

8: Calculate E(d)
t =

N∑
i=1

Pt(i)Ev(π[xi(d)w(d)], yi)

9: end for
10: Find d such that E(d)

t is the maximum and return d and wt.

Hüllermeier 2009), and Lin-LL proposed by (Dekel Man-
ning and Singer 2003). As the initial experiments, NDCG is
used to construct Ev and measure the performances of the
competing algorithms. In the calculation of NDCG for a par-
ticular data set, if the number of labels is smaller than six,
NDCG@1, NDCG@2, and NDCG@3 are calculated; other-
wise, NDCG@1, NDCG@3, and NDCG@5 are calculated.
For convenience, the three NDCG values are called NDCG-
1, NDCG-2, and NDCG-3. Each algorithm is performed 5-
fold cross validation and the average results are reported.

As the limited space, only the results on partial UCI data
sets are shown in Table 1. A two-step procedure recom-
mended in (Demsar 2006) is used to compare the perfor-
mance between each pair of algorithms. The comparison is
based on the average ranks. At a level of 5%, BoostLR out-
performs all the other competing algorithms.

Conclusions
This paper has proposed a novel algorithm called BoostLR
for label ranking. BoostLR can directly optimize the perfor-
mance measures instead of optimizing either the pairwise
ranking errors or rank losses that existing studies focus on.
Initial experiments show that BoostLR outperforms several
state-of-the-art label ranking algorithms.
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Cheng, W., and Hüllermeier, E. 2009. A New Instance-
Based Label Ranking Approach Using the Mallows Model.
International Symposium on Neural Networks (1): 707 -716.
Demsar, J. 2006. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning Research
(JMLR), 7:1-30.
Wang, Q. S.; Wu, O.; Hu, W. M.; Li, W. Q.; and Yang, J. F.
2011. Ranking Social Emotions by Learning Listwise Pref-
erence. Asian Conference on Pattern Recognition, 164-168.
Lee, J. H. 1997. Analyses of multiple evidence combination.
In Proc. ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval Conference, 267-276.

133




