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Abstract
Recently, there has been great progress in computing
optimal strategies in large extensive games. But there
are still many games where computing an equilibrium
remains intractable, mostly due to the size of the game
tree. In many of them, such as no-limit poker, huge
game tree size is caused by too many actions available
in information sets. We show that it’s possible to limit
number of used actions in Nash equilibirum. We bound
this number by a private information and show how to
compute this Nash equilibirum.

Introduction
We focus on extensive form games with imperfect informa-
tion and publicly observable actions. These games model si-
tations where players recieve some private information, and
players sequently take actions.

This is the case of many card games, where players are
dealt some private cards. If players make bets, there may
be many different bet sizes available, making the game tree
large. Fore example in the no-limit poker played in the An-
nual Computer Poker Competition 2010 (ACPC), there were
up to 20 000 bet sizes available in every information set, and
the game consiquently contains 6.3×10164 game states (Jo-
hanson 2013).

In games with no hidden information, players don’t need
to mix their strategies to play optimaly - in every game node,
they just select the one, best action (best response). This
is not the case in games with imperfect information, where
player may need to mix his actions. But how many actions
does he need to mix?

Consider simple card game, where each players recieves
only one private card from the deck (each player has his own
deck). If there’s one card in the deck (for example, only
A♠), opponents know what the player will be dealt, so this
is game with no hidden information and player may use only
one action in every information set.

But what if there are two, three or four cards in the deck?
Does he need to mix all his actions, only two/three/four ac-
tions or some other number? We show that this number of
used actions is indeed equal to the size of private informa-
tion.
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We show that the number of actions that player needs to
mix is indeed equal to the size of his private information.

Background
Extensive form games - for a complete definition see (Os-
borne and Rubinstein 1994, p. 200). Briefly, extensive form
game G consist of

• A finite set N (the set of players)
• A set H of sequences (possible histories)
• A function p that assigns to each non-terminal history

an acting player (member of N ∪ c, where c stands for
chance)

• A function fc that associates with every history for which
p(h) = c a probability measure on A(h)

• For each player i ∈ N a partition Ii of h ∈ H : p(h) = i.
Ii is the information partition of player i; a set Ii ∈ Ii is
an information set of player i.

• For each player i ∈ N an utility function ui : H → R
We suppose that the game is finite and satisfies perfect

recall (Osborne and Rubinstein 1994, p. 203).

A mixed strategy of player i in extensive form gameG is
a probability measure over the set of player’s pure strategies.

A behavior strategy of player i is a collection (βi(Ii)) of
independent probability measures, where βi(Ii) is the prob-
ability measure over overAi(I). For any history h ∈ Ii ∈ H
a any action a ∈ A(h) we denote by βi(h, a) the probability
assigned by βi(I)to the action a.

If the game satisfies perfect recall, mixed and behavior
strategies are equivalent (Osborne and Rubinstein 1994, p.
203).

We refer to the strategy of player i as σi. A strategy pro-
file σ consists of a strategy for every player σ = (σi)i∈N .
For any history h, let π(h) be the probability that history oc-
curs if all players play according to the profile σ. We denote
π−i(h) product of all players’ contribution to this probabil-
ity (including chance), except of player i. For all I , define
πσ(I) =

∑
h∈I π

σ(h)
Finally, for any profile σ, we define outcome Oi(σ) =∑
h∈H ui(h)π

σ(h)
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Nash equilibrium
A Nash equilibrium in behavior strategies (Osborne and Ru-
binstein 1994, p. 203) is a profile σ∗ with the property that
for every player i ∈ N we have

Oi(σ
∗
−i, σ

∗
i ) ≥ Oi(σ∗−i, σi) (1)

for every strategy σi of player i.

Sequential equilibrium
Inituitively, sequential equilibrium states that player plays
optimally in every infromation set. Because player doesn’t
know in what history the game actually is, his selects his
action according to what he beliefs that the history is.

An assessment in an extensive game is a pair (σ, µ),
where σ is a profile of behavioral strategies and µ is a func-
tion that assigns to every information set a probability mea-
sure on the set of histories in the information set (belief sys-
tem).

Let Oi(σ, µ|I) denote the outcome of (σ, µ) conditional
on I being reached.

Sequential rationality The assessment (σ, µ) is sequen-
tially rational, if for every player i ∈ N and every informa-
tion set I ∈ Ii we have

Oi(σ, µ|I) ≥ Oi((σ−i, σ′i), µ|I) (2)
for every strategy σ′i of player i.

Consistency Basically, consistency means that belief sys-
tem is derived from strategy profile using Bayes’ rule (so
it’s consistent with the strategy). For information sets where
π(I) = 0, one can’t straigtforwadly use Bayes’ - for details
and formal definition see (Osborne and Rubinstein 1994, p.
224)

An assessment is a sequential equilibrium of a finite ex-
tensive game with perfect recall if it is sequentially rational
and consistent. We know that every finite extensive game
with perfect recall has a sequential equilibrium (Osborne
and Rubinstein 1994, p. 225)

Public State Tree
We call a partition of the histories, P , a public partition and
P ∈ P a public state if (Johanson et al. 2011)

• No two histories in the same information set are in differ-
ent public states

• Two histories in different public states have no descen-
dants in the same public state

• No public state contains both terminal and non-terminal
historie

For this public state tree, we also define:

• A set of actions available in every P ∈ P

A(P ) := ∪I∈PA(I)
• Acting player in P

p(P ) := p(I) for any I ∈ P
• λ(P ) - information sets of player p(P ) grouped in this

public node

• ν(P, I) - Probability of being in information set I ∈ P ,
conditional on P ∈ P being reached (consistent with σ)

• Probability measure over A(PI)

γ(P, a) =
∑
I∈P

ν(P, I)β(I, a)

• Pa ∈ P , public state that follows P ∈ P if action a ∈
A(P ) is taken.

(h, a) ∈ Pa ∈ P ⇐⇒ (h) ∈ P ∈ P
• Counterfactual information set CIa corresponding to
I ∈ λ(P ). We refer to these information sets as coun-
terfactual, because they would be information sets if the
player p(P ) was to play again (and not an opponent).

(h) ∈ I ⇐⇒ (h, a) ∈ CIa

For counterfactual information sets, we also analogicaly
define λc(Pa), νc(Pa, CIa), and µc.

Main theorem
Theorem 0.1. There’s an sequential equilibrium with prop-
erty that for any P ∈ P:

|{a | γ(P, a) > 0}| ≤ |λ(P )| (3)

In other words, there’s an sequential equilibrium using no
more than |λ(P )| actions in any P . Thus we bound number
of actions needed in every information set grouped in this P .

No-limit poker corrolary There’s a sequential equilib-
rium using no more than

(
52
2

)
bet sizes in every information

set.
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Outline of approach
Let’s suppose there’s an sequential equilibrium (σ, µ) us-
ing more than |λ(P )| actions in any I ∈ P (if there’s no
such equilibrium, we are done). We create new assessment
(σ′, µ), that differs only in information sets in P , so that
this assesment satisfies:

1. sequential rationality
2. consistency
3. |actions used by new strategy in P | ≤ |λ(P )|

So we get a new sequential equilibrium, using no more
than |λ(P )| actions in every I ∈ P . Iteratively, we take this
new equilibrium and if there’s another I ′ ∈ P ′ that uses too
many actions, we just repeat steps above.

Finally, since the game is finite, we get Nash equilibrium
using no more than |λ(P )| actions in every information set
in P.

Proof
We denote β, µ, ν, π, γ of the new strategy σ′ as
β′, µ′, ν′, π′, γ′.

Given an assetment (σ, µ), we find P that violates action
bound. Now we want to compute new strategy profile σ′, but
since we don’t change beliefs, (σ′, µ) must be consistent.
First step is to show that.
Lemma. If for all Pa, for all CIa ∈ λc(Pa):
νc = ν′c, then (σ′, µ) is consistent (∗)

With this result in mind, we write down some simple
equations, where each variable xi correspond to γ′(P, ai)
so that νc = ν′c.



∑
i

νc(Pai , CI
ai
1 ∈ λc(Pai))xi∑

i

νc(Pai , CI
ai
2 ∈ λc(Pai))xi

...∑
i

νc(Pai , CI
ai
|λ(P )| ∈ λc(Pai))xi


=



ν(P, I1)

ν(P, I2)

...

ν(P, I|λ(P )|)


xi ≥ 0 ∀i (4)

See that for any solution,
∑
i

xi = 1. (∗)

New strategy
Because xi correspond to new γ′(PI, ai), we set β′(I, a)
to:

β′(I, ai) =
νc(Pai , CI

ai)xi
ν(P, I)

(5)

Strategy properties
1. β′ is valid distribution: (∗)∑

ai∈A(I)

β′(I, ai) = 1

2. Beliefs remain consistent: (∗)

∀a ∈ A(P ),∀I ∈ λ(P ) : ν′c(Pa, CIai) = νc(Pa, CI
ai)

So any solution to (4) gives us new strategy σ′, so that
assessment ((σ′i, σ−i), µ) remains consistent. Since beliefs
remain unchanged, we know that all players except of i are
sequentially rational.

Sequential rationality
To satisfy sequential rationality for player p(P ), we simply
maximize his expected value:

f(x) =
∑

ai∈A(P )

xaiOp(P )(σ
′, µ (Pai)) (6)

Action elimination
Maximizing function (6) over conditions (4) gives us new
sequential equilibrium. But both, the conditions and func-
tion are linear! Thus there must be some optimal basic
solution, using no more than rank(A) non-zero variables
(Dantzig and Thapa 1997). Finally, because there are only
|λ(P )| rows in (4), this concludes our proof.

Conclusion
We showed that there’s an sequential equilibrium using no
more than limited number of actions. We also showed a sim-
ple way how to compute this equilibrium from any equilib-
rium that uses too many actions. Unfortunately, we are not
aware of any usage for better equilibrium-finding algorithms
(except for straight-forward upper bound for some support
finding techniques). But once we find some equilibrium, it’s
easy to compute more compact one.

We also believe that this idea could be used to enhance
game abstraction techniques. However, these abstractions
tend to be very game-specific, so this needs to be further
evaluated.

∗for proof see appendix
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Appendix
Lemma.

Proof. The key idea is to notice that no matter how we
change strategy in P , setting µ′c to

µ′c(CI
a, (h, a)) = µc(CI

a, (h, a)) ∀CI ∈ Pa

Is consistent with the new strategy σ′. Now we compute
the probability of game being in the state (h, a) given that
Pa is reached:

π′((h, a)|Pa) = µ′c(CI
a, (h, a))ν′c(Pa, CI

a)

= µc(CI
a, (h, a))νc(Pa, CI

a) = π((h, a)|Pa)

So all these probability remains the same. And finally,
beliefs:

µ(I, (h, a)) =
π′((h, a)|Pa)∑

(h′,a)∈I π
′((h′, a)|Pa)

=
π((h, a)|Pa)∑

(h′,a)∈I π((h
′, a)|Pa)

= µ(I, (h, a))

And we see that if ν = ν′, beliefs remain consistent.

0)
∑
i

xi = 1.

Proof. Sum all rows in (4):

∑
I∈λ(P )

∑
i

νc(Pai , CI
ai
1 ∈ λc(Pai))xi =

∑
I∈λ(P )

ν(P, I)

∑
i

∑
I∈λ(P )

νc(Pai , CI
ai
1 ∈ λc(Pai))xi = 1

∑
i

xi = 1

1)β′ sums to 1

Proof.∑
ai∈A(I)

β′(I, ai) =
∑

ai∈A(I)

νc(Pai , CI
ai)xi

ν(P, I)

=
1

ν(P, I)

∑
ai∈A(I)

νc(Pai , CI
ai)xi

=
1

ν(P, I)
ν(P, I) = 1

2) ν′(Pa, CIa) = ν(Pa, CI
a) ∀a,CI

Proof.

ν′(Pai , CI
a) =

ν′(P, I)β′(I, a)∑
I′∈λ(P )

ν′(P, I ′)β′(I ′, a)

=
ν(P, I)νc(Pa,CI)xa

ν(P,I)∑
I′∈λ(P )

ν(P, I ′)
νc(PIa, CI

′)xa
ν(P, I ′)

=
νc(Pa, CI)xa∑

I′∈λ(P )

νc(Pa, CI
′)xa

= νc(Pa, CI
a)
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