
Learning Behavior Hierarchies via High-Dimensional Sensor Projection

Simon D. Levy and Suraj Bajracharya
Computer Science Department
Washington and Lee University
Lexington Virginia 24450, USA

Ross W. Gayler
La Trobe University

Melbourne VIC 3086, Australia

Abstract

We propose a knowledge-representation architecture allow-
ing a robot to learn arbitrarily complex, hierarchical / sym-
bolic relationships between sensors and actuators. These re-
lationships are encoded in high-dimensional, low-precision
vectors that are very robust to noise. Low-dimensional
(single-bit) sensor values are projected onto the high-
dimensional representation space using low-precision ran-
dom weights, and the appropriate actions are then computed
using elementwise vector multiplication in this space. The
high-dimensional action representations are then projected
back down to low-dimensional actuator signals via a sim-
ple vector operation like dot product. As a proof-of-concept
for our architecture, we use it to implement a behavior-based
controller for a simulated robot with three sensors (touch sen-
sor, left/right light sensor) and two actuators (wheels). We
conclude by discussing the prospects for deriving such repre-
sentations automatically.

KEYWORDS: Knowledge representation, Vector Symbolic
Architectures, behavior-based robotics

Sensors and Symbols
How can a robot use its sensory input to reason about the
actions it should take? With the exception of Braiten-
berg’s hard-wired vehicles (Braitenberg 1984), answers to
this question have usually involved some kind of explicitly
symbolic computation. Even the behavior-based robots of
Brooks and his students, presented as a radically minimal-
ist alternative to classical planning architectures (Brooks &
Flynn 1989) employed a traditional finite-state machine to
implement a subsumption hierarchy of sensor/actuator be-
haviors. For anything but the most trivial kinds of sen-
sor/actuator relationships, it would seem that some sort of
discrete language / automata-like behavior is necessary.

In this position paper we will present evidence that non-
trivial sensor/actuator relationships can be mediated by an
architecture involving only the sensor outputs, actuator in-
puts, and fixed-size vectors of neural-like weights. Despite
their extreme computational simplicity, these architectures
can be easily “programmed” to perform subsumption hier-
archies and other rule-like behaviors in the service of inter-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A simple corral-escape testbed for behavior-based
robotics

esting tasks, in the absence of explicit if/then statements or
other traditional symbolic constructs.

The Task
As a testbed for our architecture, we chose a behavior-based
robotics exercise taken from an undergraduate computer sci-
ence textbook (Kumar 2011). Figure 1 shows an implemen-
tation of this exercise in the popular V-REP Simulator from
Coppelia Robotics. Our robot has two powered wheels,
a single front-facing touch sensor, and two upward-facing
light sensors (left and right). Its task is to escape the corral
in which it starts, enter the patch of light represented by the
disk, and remain there. All three sensors are binary (on/off),
as are the wheels (forward or backward rotation).

Classic Behavior-Based Solution
The corral-exiting task in Figure 1 can be solved using a hi-
erarchy of three behaviors: seekLight, avoidObstacles, and
cruise. Each behavior takes precedence over the ones after
it. In pseudocode:

25

Learning Rich Representations from Low-Level Sensors: Papers from the AAAI 2013 Workshop



Figure 2: A localist neural network implementing the
behavior-based robot controller

if senseLightLeft and senseLightRight:

leftMotor, rightMotor = +1,+1 // stay in light

else if senseLightLeft:

leftMotor, rightMotor = -1,+1 // turn left

else if senseLightRight:

leftMotor, rightMotor = +1,-1 // turn right

else if senseObstacle:

leftMotor, rightMotor = -1,+1 // turn left

else:

leftMotor, rightMotor = +1,+1 // cruise

Here, the first three if conditionals support light-seeking,
the third implements obstacle-avoidance, and the fourth im-
plements the default cruising behavior. As in its use for an
introductory computer science lab, this specification is sim-
ple enough to be derivable in a reasonable amount of time,
but nontrivial enough to illustrate an important design prin-
ciple.

Localist Network Implementation
The behavior in the pseudocode above can also be produced
in a simple neural network using a “localist” principle. The
three binary sensors map to four possible motion patterns
(forward, back, left, right), which determine the values of the
actuators . Figure 2 shows an implementation of the corral-
escape network using such a scheme, with the avoidObsta-
cles behavior used as an example.

Distributed Network Implementation
A localist network like the one in Figure 2 is easily im-
plemented in software or hardware. As proponents of dis-
tributed representations have argued long argued, however,
such networks lack many of the desirable features (content-
addressability, robustness to lesioning and noise, generaliza-
tion) of a network in which representations are distributed
among many computational units (Rumelhart & McClelland
1986). 1 Such arguments lead us to wonder whether we can

1More recent criticism of localist networks (Stewart & Elia-
smith 2009) has described their inability to scale up to realistic-
sized problems because of the combinatorial explosion in connec-
tions that results when each entity must be represented by a sepa-
rate unit.

Figure 3: A distributed neural network implementing the
behavior-based robot controller. The function f constrains
the network output to appropriate sensor values. The ... rep-
resents a potentially very large number of units.

implement our control regime in a network that uses dis-
tributed representations. A schematic of such a network is
shown in Figure 3. In the remainder of this paper we provide
details of one such network that we have constructed for our
behavioral-control task.

Vector Symbolic Architectures
Vector Symbolic Architecture, or VSA (Gayler 2003) de-
scribes a class of connectionist models that use high-
dimensional vectors of low-precision numbers to encode
structured information as distributed representations. VSAs
can represent complex entities such as multiple role/filler re-
lations, trees, and graphs in a way that every entity – no mat-
ter how simple or complex – is represented by a pattern of
activation distributed over all the elements of the vector.

For our purposes in this paper, we make use of two op-
erations on vectors: an elementwise multiplication opera-
tion ⊗ that associates or binds vectors, and an elementwise
vector-addition operation + that superposes vectors or adds
them to a set.2 For example, given the vector representa-
tion of sensor states S1 and S2 and associated actions A1

and A2, we can represent these associations as the vector
S1 ⊗A1 + S2 ⊗A2.

If the vector elements are taken from the set {−1,+1},
then each vector is its own inverse, and binding and un-
binding can both be performed by the same operator:
X ⊗ (X ⊗ Y ) = Y .3 Because these vector operations
are commutative and associative, another interesting prop-
erty holds: the unbinding operation can be applied to a set
of associations just as easily as it can to a single association:

2A third operator, permutation, can be used for quoting or pro-
tecting vectors from the other operations, but is not needed for the
present work.

3After applying the addition operation the elements of the vec-
tors are no longer restricted to the set {−1,+1}. However, the
binding and unbinding results still hold approximately because
each element can be interpreted as a weighted sign (i.e. an ele-
ment of the set {−1,+1}) and the information is mostly carried
by the signs. This degree of approximation is acceptable because
VSAs are massively resistant to noise.

26



Y ⊗ (X ⊗ Y + W ⊗ Z) = X + Y ⊗W ⊗ Z. If the vec-
tor elements are chosen randomly, then we can rewrite this
equation as Y ⊗ (X ⊗ Y + W ⊗ Z) = X + noise,
where noise is a vector orthogonal (completely dissimilar)
to any of our original vectors W , X , Y , and Z. If we like,
the noise can be removed through a “cleanup memory” (e.g.
Hopfield Net) that stores the original vectors; however, the
important point is that a single association (or set of asso-
ciations) can be quickly recovered from a set (or larger set)
of associations using the same simple operator that creates
the associations, in a time that is independent of the num-
ber of associations. By using vectors of several thousand
dimensions, we obtain a tremendous number of mutually or-
thogonal vectors (potential symbols) that are highly robust
to distortion (Kanerva 2009).

A VSA Robot Controller
With this understanding of Vector Symbolic Architecture,
we can now see how to use VSA to build a behavior-based
controller for our three-sensor, two-motor robot: from the
N -dimensional vector space {−1,+1}N (where typically
N > 1000) we randomly choose weight vectors SOC ,
SLC , SRC to represent the weights from the sensors to
the control layer, and weight vectors ACL and ACR to
represent the weights from the control layer to the actuators.
The control layer can then be constructed as the following
N -dimensional vector sum (in which we have grouped
terms according to the behavior they implement):

//Seek Light
(SLC + SRC)⊗ (ACL +ACR) +
(SOC + SLC + SRC)⊗ (ACL +ACR) +
SLC ⊗ACR +
(SOC + SLC)⊗ACR +
SRC ⊗ACL +
(SOC + SRC)⊗ACL +

SOC ⊗ACR + //Avoidobstacles

(ACL +ACR)//Cruise

Each term in this sum corresponds to an if/then
rule in the pseudocode. For example, the term
(SLC + SRC) ⊗ (ACL + ACR) associates a
reading of (1,1) on light sensors with forward motion
of both wheels. To see how this vector implements our
behavior-based controller, consider what happens when
the input to the sensors is (0, 1, 1); i.e., no obstacle, left
light sensing, right light sensing. This input results in the
weight vector SLC + SRC being multiplied elementwise
by the control vector. This multiplication yields the vector
ACL + ACR + noise, where noise is a random vector
orthogonal to the actuator weights ACL and ACR. If the
function f in Figure 3 computes the dot product of this
result vector with these actuator weights, the resulting
actuator values are (+1,+1), driving the robot forward in
the presence of light. Similar reasoning holds for other
combinations of sensor inputs.

We have successfully tested our VSA robot controller

against the original (if/then/else) controller using the V-REP
simulation shown in Figure 1. C++ code for our simula-
tion, along with the V-REP scene file and instructions, can
be downloaded from tinyurl.com/vsarobot.

Conclusion and Future Work
We have presented a novel knowledge-representation archi-
tecture allowing a robot to encode arbitrary hierarchical /
symbolic relationships between sensors and actuators. This
architecture uses a neural network with distributed represen-
tations that exhibit robustness to noise, generalizability, and
symbol substitution, which opens the door to rule-like be-
havior. Because our network weights are hand-coded rather
than learned, we have chosen to present them in a position
paper for the purposes of this workshop. In the future we
hope to be able to obtain the weights through an evolution-
ary algorithm or similar learning approach.

References
Braitenberg, V. 1984. Vehicles: Experiments in Synthetic
Psychology. MIT Press.
Brooks, R., and Flynn, A. 1989. Fast, cheap, and out of
control: A robot invasion of the solar system. Journal of the
British Interplanetary Society 42:478–485.
Gayler, R. 2003. Vector symbolic architectures answer Jack-
endoff’s challenges for cognitive neuroscience. In Slezak,
P., ed., ICCS/ASCS International Conference on Cognitive
Science, CogPrints, 133–138. Sydney, Australia: University
of New South Wales.
Kanerva, P. 2009. Hyperdimensional computing: An in-
troduction to computing in distributed representation with
high-dimensional random vectors. Cognitive Computation
1:139–159.
Kumar, D. 2011. Learning Computing With Robots: Python
+ Scribbler or Scribbler2. Institute for Personal Robots in
Education.
Rumelhart, D., and McClelland, J. 1986. Parallel Dis-
tributed Processing: Explorations in the Microstructure of
Cognition. MIT Press.
Stewart, T., and Eliasmith, C. 2009. Compositionality and
biologically plausible models. In Werning, M.; Hinzen, W.;
and Machery, E., eds., Oxford Handbook of Compositional-
ity. Oxford, UK: Oxford University Press.

27




