
Lifted Inference via k-Locality

Martin Mladenov and Kristian Kersting
Institute of Geodesy and Geoinformation, University of Bonn

Meckenheimer Allee 172, 53115 Bonn, Germany

Abstract

Lifted inference approaches exploit symmetries of a
graphical model. So far, only the automorphism group
of the graphical model has been proposed to formalize
the symmetries used. We show that this is only the GI-
complete tip of a hierarchy and that the amount of lifting
depends on how local the inference algorithm is: if the
LP relaxation introduces constraints involving features
over at most k variables, then the amount of lifting de-
creases monotonically with k. This induces a hierarchy
of lifted inference algorithms, with lifted BP and MPLP
at the bottom and exact inference methods at the top.
In between, there are relaxations whose liftings are eq-
uitable partitions of intermediate coarseness, which all
can be computed in polynomial time.

Introduction
Graphical models encountered in many AI tasks have sym-
metries and redundancies only implicitly captured in the
graphical structure and, hence, not exploitable by efficient
inference algorithms. A prominent example are relational
probabilistic models that tackle a long standing goal of
AI, namely unifying first-order logic (capturing regularities
and symmetries) and probability (capturing uncertainty). Al-
though they often encode large, complex models using few
rules only and, hence, symmetries and redundancies abound,
in the inference stage, they still operate on a mostly propo-
sitional representation level and do not exploit additional
symmetries. Recently, several inference approaches that ex-
ploit symmetries have been proposed, see (Kersting 2012)
for a recent overview. They essentially group together nodes
indistinguishable in terms of the computations of the in-
ference approach used, and have been proven successful
in many AI tasks and applications such as information re-
trieval, boolean model counting, Kalman filtering, entity res-
olution, and biomolecular event prediction. They are often
faster, more compact and provide more structure for opti-
mization than their symmetry-agnostic counterparts.

While lifted inference approaches often yield dramatic
improvements in runtime, there is still no full understand-
ing of the underlying mathematical principles of symme-
tries exploited by them. Indeed, Niepert (2012) and Bui
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et al. (2012) have established links between the automor-
phism group of graphical models and lifted inference, show-
ing that MAP-LP and MCMC can be lifted by considering
the quotient of the orbit partition of the graphical model
only. Unfortunately, however, computing the orbit partition
is GI-complete (polynomial-time reducible to graph iso-
morphism in both directions). Consequently, it is an open
question whether there is a polynomial-time1 algorithm for
computing these “orbital” liftings. Moreover, lifted vari-
ants of approximative inference approaches such as lifted
BP (Singla and Domingos 2008; Kersting, Ahmadi, and
Natarajan 2009) only employ — as we will show here —
the lowest level of a well-known color-refinement heuris-
tic for graph isomorphism, called the Weisfeiler-Lehman
(WL) algorithm, to compute so-called equitable partitions
in (lower-order) polynomial time. These “equitable” liftings
can be coarser than orbital ones but still preserve the pseudo-
marginals of BP. Understanding this trade-off between the
degree of approximation and the computational effort re-
quired for and coarseness of lifting was the seed that grew
into the present paper.

We show that automorphisms are only the GI-complete
tip of a hierarchy among lifting approaches. Specifically, we
show that the amount of lifting depends on how local the
inference algorithm2 is: if an LP relaxation contains vari-
ables that represent a dependency among at most k differ-
ent vertices of a model, and the role of any variable in any
constraint can be fully inferred by the connectivity among
these k vertices, but not their names, then the amount of lift-
ing — the groups of variables that cannot be distinguished
by the inference algorithm — refines monotonically with k
until it reaches the orbit partition. Intuitively, variables get
grouped together if they are indistinguishable by the graph
features over at most k variables they are involved in. This
extends recent results on local LPs (Atserias and Maneva
2013) to probabilistic inference and contributes to a deeper
understanding of the interaction between symmetries and the

1Indeed, it has been argued that for practical purposes the GI
problem has been solved. The algorithms, however, do not pro-
vide any guarantees, and even polynomial algorithms for restricted
classes of graphs can be prohibitively slow.

2For the sake of simplicity, we focus on MAP inference and its
linear programming relaxations. However, we note that many of
the results naturally carry over to Bethe and Kikuchi free energies.

25

Statistical Relational Artificial Intelligence: Papers from the AAAI 2013 Workshop



T
ig
h
te
n
in
g
u
si
n
g
k
-S
A

(b
y
cl
u
st
e
r-
b
a
se
d
LP
)

Lifting using k-WL

Figure 1: The hierarchy among lifted inference approaches
induced by k-locality of LPs. At the lowest level, there are
lifted variants of BP and MPLP, which constrain only a sin-
gle variable and one of its neighbors at a time. At the top,
there are e.g. cycle relaxation of MAP, where any number
of variables may participate in a cut constraint, and exact in-
ference approaches. Thus, the variables could potentially be
distinguished only up to the symmetry group of the graph-
ical model, forcing one to revert to orbit partitions. In be-
tween, there are relaxations whose distinguishing powers are
characterized by various equitable partitions of intermediate
coarseness induced by k-locality. In a sense, the length for
the green lines denotes the distinguishing power of the algo-
rithm. (Best viewed in color)

complexity of inference: (1) It establishes the first hierarchy
of lifted inference algorithms as shown in Fig. 1. (2) For
k-local inference approaches, a fixed number of WL levels
suffice to determine a lifted network. The network is com-
putable in polynomial time. (3) Since the WL hierarchy and
the Sherali-Adams (SA) hierachy of LP relaxations inter-
leave, the tightening of MAP relaxations via a fixed number
of SA levels is preserved by lifting.

What follows is motivated by the equivalence of color-
passing for lifting BP and the 1-dimensional WL level. The
equivalence is due to a result by Ramana et al. (1994) that
color-passing solves an LP relaxation of isomorphism (ISO-
LP) called fractional isomorphism.As fractional automor-
phisms (AUT-LP) of graphical models preserve the MAP
solutions over the local polytope, this characterizes the lift-
ing used in lifted BP, since the feasible set of BP is the local
polytope itself. Motivated by this, we then build up the hi-
erarchy by using higher levels of WL (k-WL). Specifically,
we investigate SA-based tightenings of LP relaxations (Son-
tag, Globerson, and Jaakkola 2008), which we call k-MAP-
LP, and employ deep results due to Atserias and Maneva
(2013) on local LPs and on k-WL interleaving with the k-th
level of SA (which we call k-AUT-LP) to prove that k-WL
yields a valid lifting for SA tightenings of MAP. Specifi-
cally, we prove that the family of LPs at the kth level of SA
of MAP-LP, i.e., k-MAP-LP is (k+2)-local. Thus, the k+2

WL levels yields the partition of indistinguishable variables.
Finally, one can establish the tip of our hierarchy by

revisiting 1-MAP-LP that has been extensively studied for
probabilistic inference, see e.g. (Sontag 2010). Although we
will not give details here, using cycle constraints results in
|V |-local LPs. In turn, an upper bound for indistinguisha-
bility appears to the orbit partition, which |V |-WL is guar-
anteed to find. However, using triangle constraints yields 3-
local LPs, hence the orbit partition is too conservative. On
the other hand, the triangle relaxation must store all equiva-
lence classes of triplets produced by WL, in contrast to the
cycle formulation that requires only pairwise marginals. Be-
fore concluding, we will touch upon efficient lifting of k-
local MLN inference approaches and illustrate our results.

We now exemplify the details for the intermediate levels
skipping the bottom and the tip of the hierarchy due to space
limitations. We refer the reader to the full paper.

The Bottom of the Lifting Hierarchy
Let us start with establishing the bottom of our hierarchy.
The necessary background on MAP, (fractional) isomor-
phism and lifted BP is introduced on-the-fly.

MAP Inference within Ising Models: Let X =
(X1, X2, . . . , Xn) be a set of n discrete-valued random vari-
ables and let xi represent the possible realizations of random
variable Xi. Markov random fields (MRFs) compactly rep-
resent a joint distribution over X as a product of factors, i.e.,
P (X = x) = 1

Z

∏
k fk(xk) . Here, each factor fk is a non-

negative function of a subset of the variables xk, and Z is
a normalization constant. As long as P (X = x) > 0 for
all joint configurations x, the distribution can be represented
as a log-linear model: P (X = x) = 1

Z exp [
∑
i wi · gi(x)],

where the factors gi(x) are arbitrary functions of (a subset
of) the configuration x.

For the sake of simplicity, we will restrict our discussion
to a specific subset of MRFs, namely Ising models with ar-
bitrary topology3. In an Ising model on a graph G = (V,E),
all variables may take only two possible states, say Xi ∈
{−1, 1}, i ∈ V . The factors of the model specified in terms
of the agreement or disagreement of variables whose nodes
are adjacent, i.e. gij(Xi = xi,Xj = xj) = θijxixj , when-
ever i, j ∈ E. Thus, the joint distribution is specified as
P (X = x) ∝ exp

[∑
ij∈E θij · xixj

]
. Now, the Max-

imum a-posteriori (MAP) inference problem for an Ising
model is defined as finding an assignment maximizing the
last equation. This can equivalently be formulated as the fol-
lowing linear program (LP) µ∗ = argmaxµ∈M(G) 〈θ,µ〉 ,
where the setM(G) is the marginal polytope. Even though
this is an LP, the problem of deciding membership inM(G)
is NP-complete, hence one typically considers tractable re-
laxations (outer bounds) ofM(G) and solves the resulting
approximate problem.

A common outer bound on the marginal polytope is the

3The one-to-one correspondence between the parameters of the
Ising model and the graph elements simplifies our arguments to,
sparing us some auxiliary constructions. Note however, that this
restriction does not come with a loss of generality.
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local polytope, see e.g. (Sontag and Jaakkola 2007; Sontag
2010) and references in there, defined for a pairwise model
as follows,ML(G) ={

µ ≥ 0

∣∣∣∣ ∑s∈Xi
µij;st = µj;t, ij ∈ E∑

s∈Xi
µi;s = 1, i ∈ V

}
. (1)

For Ising models, Eq. 1 can be projected onto the marginals
µij;11 and µi;1 resulting in the formulation, which we call
the binary local polytope, see also (Sontag 2010),

M{0,1}L (G) =

{
µ ≥ 0

∣∣∣∣∣ ∀ij ∈ E :
µij ≤ µj , µij ≤ µi
µi + µj − µij ≤ 2

}
. (2)

Note that whenever M(G) and ML(G) do not coincide,
ML(G) (which is a superset ofM(G)) has fractional ver-
tices and the resulting LP may admit solutions which are not
valid assignments. However all integral points in ML(G)
correspond to valid assignments, thus if the solution µ∗ hap-
pens to be integral, then this µ∗ is an exact solution of the
MAP problem.

Capturing Symmetries: Often, we are facing inference
problems with symmetries within the underlying graph
structure. Specifically, a symmetry (or an automorphism) of
a graph G = (V,E) is defined as a permutation π : V → V
such that ij ∈ E ⇔ uπvπ ∈ E. A graph is said to
be symmetric if it has an automorphism which is not the
identity permutation. The set of all automorphisms of a
graph, Aut(G) is a group under composition. The action
of this group on the k-tuples of vertices of a graph parti-
tions them into equivalence classes called k-orbits. We say
that (u1, . . . , ur) is equivalent to (v1, ..., vr) iff there exist
an automorphism π such that (uπ1 , . . . , u

π
k ) = (v1, . . . , vr).

For k = 1 this is a partition on the vertices which is gener-
ally referred to as the orbit partition (OP).

The problem of finding an automorphism of a graph may
be stated algebraically, that is find a permutation matrix X
(that is, Xij ∈ {0, 1}, X · 1 = XT · 1 = 1) that commutes
with A(G),XA(G) = A(G)X, where A(G) is the (col-
ored) adjacency matrix of G. Due to the linearity of the con-
straints, this could be solved by an integer linear program.
If we now relax the integrality constraint and require only
Xij ≥ 0, the problem becomes one of determining whether
a polytope of doubly stochastic matrices contains nontrivial
points (X 6= In). We specify the polytope by the following
linear equations, AUT-LP(G) ={

X ≥ 0

∣∣∣∣ ∑n
k=1AikXkj =

∑n
k=1XikAkj∑n

k=1Xik =
∑n
k=1Xki = 1

}
. (3)

This relaxation is called fractional automorphism, and since
it is an LP is solvable in polynomial time. Note that if we in-
stead require A(G)X = XA(H), for a different graph H ,
we obtain the polytope ISO-LP(G,H) , a linear relaxation
of the graph isomorphism problem, called fractional isomor-
phism, see (Ramana, Scheinerman, and Ullman 1994). Of
course, it holds AUT-LP(G) = ISO-LP(G,G) .

Hierarchies of Relaxations
Probabilistic inference based on 0-MAP-LP is not exact.
Indeed, there are broad graph families, such as perfect

graphs (Jebara 2009), where the relaxation overML(G) is
exact. Unfortunately, there are also examples (Sontag 2010)
where it fails due to having fractional vertices. In general,
ML(G) is not tight enough in many real-world problems.
A common approach to tighten the approximation is to find
additional constraints, which would cut away parts of the
polytope but not the integer points. The hope is that after
a small number of such constraints, the relevant fractional
vertices would be pruned, so that an integer point can be
recovered. One of these widely used tightenings for binary
polytopes is due to Sherali and Adams (1990). It is applied
in rounds (levels). Each round derives valid constraints on
the polytope produced by the previous round, inducing a hi-
erarchy of polytopes where every level is closer to the inte-
ger hull, where an integer solution can be found using linear
programming.

The Weisfeiler-Lehman (WL) Hierarchy: It turns out
that a generalized version of color-passing (CP), called the
Weisfeiler–Lehman (WL) algorithm, can be used to find
solutions of the different levels of the SA hierarchy of
the LP relaxation of the graph isomorphism (in our case
graph automorphism, AUT-LP) problem. More precisely,
the k-dimensional Weisfeiler-Lehman method (k-WL) be-
gins by partitioning (coloring) all k-tuples of vertices of
a given graph G (of a graphical model). Two tuples u =
(u1, . . . , uk) and v = (v1, . . . , vk) are assigned the same
initial color, W 0(u) = W 0(v), if they have the same iso-
morphism type, i.e., iff it holds that (A) ui = uj ⇔ vi = vj ,
(B) uiuj ∈ E ⇔ vivj ∈ E , and (C) col(ui) = col(vi) .
To compute the color in iteration W r+1(u), we define the
operation for each g ∈ V and u ∈ V k: sift(f,u, g) =
(f(g, u2, . . . , uk), f(u1, g, . . . , uk), . . . , f(u1, u2, . . . , g)) .
Then, W r+1(u) = W r+1(v) holds if for every tuple
of colors t, |{g ∈ V | sift(W r,u, g) = t}| = |{g′ ∈
V | sift(W r,v, g′) = t}| . The WL algorithm terminates if
the coloring is stable, i.e. the partition induced by the colors
does not refine anymore. See (Cai, Fürer, and Immerman
1992) for details.

The stable partition of the k-tuples of k-WL implies
a stable partition of (k − 1)-tuples, which is at least as
fine as that of k − 1-WL, since sift(f, (u1, . . . , uk), g) =
sift(f, (v1, . . . , vk), g

′) ⇒ sift(f, (u1, . . . , uk−1), g) =
sift(f, (v1, . . . , vk−1), g

′). Inductively, this turns into a par-
tition4 of all (< k)-tuples of the same length, with W (a) =
W (b) if there exist u,v ∈ V k with W (u) = W (v) and
ai = ui, bi = vi for i ≤ m, m being the length of a and
b. This is important since the LPs we are considering are
inducing dependencies among tuples of different size.

Moreover, one actually has to consider the WL-partitions
of tuples of vertices of colored hypergraphs. For the sake of
simplicity, however, we stay with a simple graph represen-
tation. This is no restriction, since the definition of isomor-
phism type may be easily extended to reflect this additional
structure. Moreover, keep in mind that a colored, oriented

4Note that Atserias and Maneva ((Atserias and Maneva 2013))
partition the (< k)-tuples by introducing a placeholder vertex ?
and requiring that ai = ui, bi = vi for i ≤ m and vi = ui = ? for
m < i ≤ k. These two approaches are equivalent.
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hypergraph can be uniquely converted to a colored simple
graph preserving all topological information by the addition
of linearly many extra vertices. Thus, all our constructions
that use hypergraphs can be cast in terms of ordinary graphs.
Another notational convenience is that we will allow multi-
ple colors per node, i.e. the col(·) function now returns a set.

Transfer between SA and WL: Indeed, k-WL can be
used to compute the OP for many graph families by project-
ing k-WL (for some small k) onto V . In turn, one could use
k-WL for realizing the OP-based lifted inference approaches
in (Bui, Huynh, and Riedel 2012; Niepert 2012). There are,
however, hard cases (Cai, Fürer, and Immerman 1992) for
which O(|V |)-WL is needed, making it an exponential al-
gorithm for computing the OP in general. And, we are ac-
tually not interested in the OP but rather in the sequence
of partitions on the k-tuples of a graph G produced by k-
WL and how they induce a hierarchy among lifted inference
approaches. For this, we employ that the levels of the SA
hierarchy applied to fractional automorphism interleave in
power with the levels of the WL hierarchy.

Recall that the result of projecting a partition of V k to
V is equitable on V , and hence can be used as a solution
to AUT-LP. For k = 1, this is the coarsest equitable par-
tition (Ramana, Scheinerman, and Ullman 1994). A recent
striking result due to Atserias and Maneva (2013) shows that
the k-WL partitions of V k have a polyhedral interpretation,
too. That is, the k-WL partition on V k can be turned into
a feasible point of the k-level polytope of the SA hierarchy
of AUT-LP. Originally, Atserias and Maneva worked out the
explicit form for the k-ISO-LP. Here, we will adopt it for
k-AUT-LP5: k-AUT-LP(G) =X ≥ 0

∣∣∣∣∣∣∣
∑n
k=1AikXq∪(k,j) =

∑n
k=1Xq∪(i,k)Akj∑n

k=1Xq∪(i,k) = Xq∑n
k=1Xq∪(k,j) = Xq

X∅ = 1

 .

Here, q is a set of at most k pairs of vertices of G, i.e. q ⊆
V 2, |q| ≤ k. For our purposes, we can consider the subsets
of V 2 to represent partial mappings between two r-tuples of
vertices of A. That is, if p = {(u1, v1), . . . , (ur, vr)}, then
p(ui) = vi. Note that not all p’s in the formulation of k-
AUT-LP represent partial mappings. In the solution we are
interested in, however, if p is not a partial mapping, then
Xp = 0. Adopting the notation of (Atserias and Maneva
2013), we will represent a partial map p between u and v as
p = u 7→ v. Now, applying Asterias and Maneva’s Transfer
Lemma between SA and WL yields the following solution
to k-AUT-LP(G):

Xp =


1

|W (v)| if p = v 7→ u and
W (v) =W (u),

0 otherwise.
(4)

Note that since q is an unordered set of pairs, if p rep-
resents v 7→ u, then it also represents π ◦ v 7→ π ◦ u
for all permutations π. However, the assignment of Xp is

5Due to space restrictions, we are omitting some details and
refer the reader to (Atserias and Maneva 2013).

Figure 2: Illustration of locality: (1) Each entry in the con-
straint matrix is indexed by tuples of nodes. (2) For each
entry independently, its row and column indices are con-
catenated. (3) Then, we consider the subgraph induced by
the unique sets of nodes appearing in the concatenation and
(4) anonymize it and the concatenation. (5) If we can de-
cide on the entry (in our case that it is 1) only based on the
anonymized information, this constraint is basic and local.
Intuitively, variables get grouped together if they are indis-
tinguishable by the graph features over at most k variables
they are involved in. (Best viewed in color)

still well-defined. Since sift(f,u, g) = sift(f,v, g′) ⇒
sift(f, π ◦ u, g) = sift(f, π ◦ v, g′), we may be certain that
W (u) = W (v) ⇒ W (π ◦ u) = W (π ◦ v), even though
W (u) may not be equal to W (π ◦ u). The reason why this
result is important for us, is that, as Asterias and Maneva
show, the solutions of k-local linear programs are preserved
by the solutions of k-AUT-LP. In the following we review
what k-locality means.

Let G be a graph. We say that the size |u| of the k-tuple
of vertices u is the number of distinct vertices contained in
it. We define the map γu : {u1, . . . , uk} → {1, . . . , |u|} to
be the unique bijection such that γu(ui) ≤ |(u1, . . . , ui)|.
In other words, γu arranges the unique elements of u by or-
der of their first appearance. By [G,g] we denote the pair
of the “generic” colored graph, which is isomorphic to the
subgraph of G induced by elements of u, together with its
order-tuple. More specifically, [G,u] contains: (i) vertices
{1, ..., |u|}, (ii) edges {(γu(ui), γu(uj)) : (ui, uj) ∈ G},
(iii) colors col[G,u](γu(ui)) = col(ui), and (iv) order-tuple
(γu(u1), γu(u2), ..., γu(uk)). An LP L(G) derived from a
graphG having one variable xu for every (≤ k)-tuple of ver-
tices u and one constraint for every (≤ k)-tuple v, is called
a basic k-local LP, if it can be written as:∑k

r=1

∑
u∈V r ,
|uv|≤k

M [G,uv]
r xu ≤ d[G,v] . (5)

That is, every constraint must be constructed using only the
information found in the generic induced subgraph ofG hav-
ing at most k vertices, as illustrated in Fig. 2. Now, an LP
is k-local if it is the union of basic k-local LPs. Finally, to
prove our results, we need the following Theorem from (At-
serias and Maneva 2013), which essentially says that k-local
LPs cannot distinguish k-SA isomorphic:
Theorem 1 Let G = (V,E) and H = (U,F ) be graphs
such that G ≡kSA H and let X be a solution to k-ISO-
LP(G,H) witnessing that fact. Then, L(G) is feasible iff
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Algorithm 1: Lifted Clustered MAP LP
1 Construct k-MAP-LP(G)= (A,b, c) of an Ising model
G;

2 Determine its indistinguishable tuples using
(k + 2)-WL(G);

3 Read off the block matrix B;
4 Obtain the solution r of the LP (AB,b,BT c) using any

standard LP solver;
5 return MAP beliefs x∗ = Br;

L(H) is feasible. If the vector x∗ = (xv)v∈V r,r≤k is a
solution to L(G), then y∗ = (yu)u∈Ur,r≤k with yu =∑

v∈V r Xv 7→uxv is a solution to L(H).

Since this also holds for fractional automorphisms, the dis-
tinguishing power at level k < |V | induce a hierarchy
among lifted inference approaches, with moving up the hi-
erarchy generally resulting in better approximations.

Lifting Hierarchy
More formally, for k-AUT-LP(G) = k-ISO-LP(G,G), Theo-
rem 1 tells us that the subspace spanned by the columns of
X contains a solution. Recall now thatX can be constructed
out of the k-WL partition by means of Eq. 4. In fact, let us
think about the linear function xu 7→

∑
v∈V r Xv 7→uxv in

terms of matrix/vector multiplication in the vector space RV ,
with V =

⋃k
r=0 V

r. The matrix corresponding to this oper-
ation has rows and columns indexed by the (≤ k)-tuples
of V, i.e. X = (Xuv)u,v∈V . Moreover, by the construc-
tion of Eq. 4, Xuv = Xu7→v = 1

|W (u)| if W (u) = W (v)

and 0 otherwise. Note that condition (i) on W 0 implies that
the equivalence classes of WL consist only of those tuples
among which a partial mapping is possible. One can now
verify that X = BBT for

Bun =

{
1

|Pn|
1
2

if tuple u belongs to some part Pn

0 otherwise.

Hence, similarly to the 1-dimensional case, the bottom of
our hierarchy, we solve L(G) over the space defined by
the equivalence classes, i.e., supervariables resulting from
running k-WL. This establishes higher levels of a hierarchy
among lifted inference algorithms as summarized in Alg. 1
and proves the following theorem:

Theorem 2 For any k-local LP, a partition of indistin-
guishable variables is computed by k-WL. Furthermore, the
coarseness of the partitions decreases monotonically with k
until it reaches the OP.

To illustrate this, we show that MAP overM{0,1}L (G) is 2-
local. Let v = (i, j); for constraints of the type µij ≤ µi,
we have M [G,uv] = 1 if the order tuple of uv is (1, 2, 1, 2)
(meaning u = v) and there is an edge between γuv(i) and
γuv(j) in the induced generic subgraph of uv in G. Cor-
respondingly, M [G,uv] = −1 if the order tuple of uv is
(1, 1, 2) (meaning u = (i)) and (1, 2) is an edge in [G,uv].

We can similarly define the constraint µi + µj − µij ≤ 1

as M [G,uv] = 1 for order tuples (1, 1, 2), corresponding to
uv = (i, i, j) and (1, 2, 1), corresponding to uv = (j, i, j),
M [G,uv] = −1 for order tuple (1, 2, 1, 2) and d[G,v] = 1
if {γv(i), γv(j)} ∈ [G,v]. Finally, the objective, which can
be expressed as a constraint

∑
ij∈E θijµij ≤ W has a local

representation as M [G,uv] = θcol(uv) (parameters are en-
coded as edge colors) if v is the empty tuple and the generic
graph of u has an edge, d[G,v] is then −W .

In general, Atserias and Maneva have shown that the clas-
sical LP relaxations of combinatorial problems such as bi-
partite matchings and maximum flows are 2-local. Further-
more, they examined the SA-hierarchy of the max-cut re-
laxation over the metric polytope and found the k-th level
to be (2k + 1)-local. It immediately follows that we have a
(2k + 1)-local tightening ofM{0,1}L (G), sinceM{0,1}L (G)
is affinely equivalent to the Metric Polytope restricted to
particular edges (also called rooted metric polytope) (Son-
tag 2010). However, please note that there is a slight dif-
ference between what we obtain by applying SA as de-
fined above to M{0,1}L (G) and what is commonly referred
to as the SA-hierarchy of the local polytope in the graph-
ical models literature, see e.g. (Sontag 2010). Namely, the
k-SA ofML(G) is typically obtained by adding constraints
of the type

∑
xc\i,j

τc(xc) = µij(xi, xj) for all c ⊆ V, c ⊇
{i, j}, |c| ≤ k + 2. The difference lies in the fact that the
size of the constraining set of variables increases by 1 for
every subsequent k, whereas by applying our definition of
SA, we have to increase the index set by 2 as we are mul-
tiplying constraints with edge marginals. The former would
be obtained only adding the constraints µi(aTµ−b) and not
µij(a

Tµ − b). An induction argument shows that the tight-
ening ofM{0,1}L (G) obtained in this way is (k + 2)-local.

Theorem 3 A lifted network, i.e., a partition of indistin-
guishable variables of k-SA-MAP(G) can be found in poly-
nomial time for a fixed k. Moreover, this partition is at least
as coarse as the OP of G.

This can be seen as follows. From our discussion above,
it follows that the equivalence classes of k-WL yield indis-
tinguishable variables in k-SA-MAP(G). The running time
of k-WL is O(k2nk+1 log(n)), see e.g. (Cai, Fürer, and Im-
merman 1992), which agrees with the running time of color-
passing (see above) since the latter one coincides with 1-
WL. Since the k-WL method does not solve isomorphism
for a constant k, it will also yield partitions which are al-
ways as coarse than the k-orbits of the graph, often coarser.

Illustration
To illustrate Alg. 1, we used the so-called Frucht (among 12
people) and McKay (among 8 people) graphs, see Fig. 3, to
encode the social network in a binary version of the Smok-
ers MLN. They induced ground 0-MAP-LPs with 456 vari-
able and 1848 constraints resp. 208 variables and 826 con-
straints. Fig. 4(a) summarizes the sizes of the corresponding
lifted LPs. The size of the lifted Frucht graph LP using 0-
WL is significantly smaller than the ground LP, which for
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Figure 3: (Left) The Frucht graph with 12 nodes, and (right)
the McKay graph with 8 nodes. The colors indicate the re-
sulting node partitions (of these graphs but not for the corre-
sponding MAP-LPs) for 1-WL and 2-WL, which coincide
with the EP resp. OP. As one can see, 1-WL cannot dis-
tinguish any nodes in the Frucht graph, but 2-WL distin-
guishes all. For McKay, even 2-WL does not distinguish all
the nodes due to symmetries. Thus, moving up the hierar-
chy, i.e., getting more and more exact solutions may produce
smaller liftings. (Best viewed in color)

Figure 4: Empirical illustration. From left to right: (a) Sizes
of ground and lifted LPs. (b) Achieved objectives. (Best
viewed in color)

the Frucht graph coincides with the OP 6. We also moved up
the hierarchy, computing 1-MAP-LP. This induced ground
LPs with up to 85400 variables and 670036 contraints. We
computed 1-MAP-LP using 3-WL on the grounded LP. Fi-
nally, for all experiments so far we recorded the achieved
objective values for the ground and lifted LPs. Additionally,
we computed 1-MAP-LP (ground and lifted) for the Smok-
ers MLN with no evidence for different clause weights. The
performances are summarized in Fig. 4(b); the achieved ob-
jectives always coincided.

Conclusions
We have established a hierarchy of lifted inference ap-
proaches. It explores the space between lifted BP and lifted
exact inference. The central underlying ideas are that of lo-
cal linear programs, a concept so far not used to characterize
probabilistic inference, and a recent deep link between the
Weisfeiler-Lehman and the Sherali-Adams (SA) hierarchies
provided for local LPs. The hierarchy shows that tractable
lifting approaches exist for any finite LP tightening via SA
and even for exact inference problems with small treewidth.
Since, our results do not depend on a relational specifica-
tion of the model, more broadly, we establish a connection
between locality and probabilistic inference in general. Ex-
ploring this connection further, e.g., for characterizing the
complexity of probabilistic inference in terms of locality is

6Generally, there are graphs, where we need to run |V |-WL to
produce the OP (Cai, Fürer, and Immerman 1992).

the most attractive avenue for future work. Our results also
suggest an affirmative answer to the open question whether
all MAP message-passing algorithms are liftable: by solving
the lifted LPs using coordinate descent in the dual, one could
turn the hierarchy of LP relaxations into lifted message-
passing algorithms.
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