
A Comparison of Playlist Generation Strategies
for Music Recommendation and a New Baseline Scheme

Geoffray Bonnin and Dietmar Jannach
Technische Universität Dortmund

44227 Dortmund, Germany
{firstname.lastname}@tu-dortmund.de

Abstract
The digitalization of music and the instant availability of
millions of tracks on the Internet require new approaches
to support the user in the exploration of these huge music
collections. One possible approach to address this problem,
which can also be found on popular online music platforms,
is the use of user-created or automatically generated playlists
(mixes). The automated generation of such playlists repre-
sents a particular type of the music recommendation problem
with two special characteristics. First, the tracks of the list
are usually consumed immediately at recommendation time;
secondly, songs are listened to mostly in consecutive order so
that the sequence of the recommended tracks can be relevant.
In the past years, a number of different approaches for playlist
generation have been proposed in the literature. In this pa-
per, we review the existing core approaches to playlist gen-
eration, discuss aspects of appropriate offline evaluation de-
signs and report the results of a comparative evaluation based
on different datasets. Based on the insights from these exper-
iments, we propose a comparably simple and computation-
ally tractable new baseline algorithm for future comparisons,
which is based on track popularity and artist information and
is competitive with more sophisticated techniques in our eval-
uation settings.

Introduction
Internet technology and the digitalization of music almost
makes us forget how we used to discover music in the past.
Not so long ago, if we wanted to explore the songs in the
discography of some artist recommended by a friend, we
had to find the corresponding CDs, vinyls or even cassettes
in a shop. Today, we simply browse to our favorite online
shop or music platform, where we can purchase and down-
load the music to our computers and smart phones or listen
to it online through the browser. It also seems that we do not
even need friends to get recommendations. There are, for
example, social web platforms on which people share their
manually created playlists; furthermore, some sites are capa-
ble of automatically creating personalized playlists (mixes)
containing tracks that are likely to correspond to our tastes.

Music recommendation is often considered to be a diffi-
cult task for a variety of reasons. The challenges for exam-
ple include that there are often millions of available tracks,

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

there is a lack of structured or consistent meta-data or other
content information, and that we often only have limited
amounts of customer feedback that can be used to person-
alize the recommendations1.

Playlists, i.e., lists of sequentially ordered tracks, repre-
sent one possible approach to deal with some of these chal-
lenges and help users explore the item space. Sometimes,
playlists are also considered to be a recommendation tech-
nique by themselves (Fields 2011). On popular platforms
such as last.fm, for example, sequences of songs are auto-
matically generated starting from some seed song or artist.
Other sites such as 8tracks.com allow users to share their
playlists with others. In either case, the playlists will usually
contain at least some items which are novel for the user.

The automated creation of such playlists however comes
with additional challenges that go even beyond the above-
mentioned ones for music recommendation in general. In
particular, since the tracks of a playlist are usually played
one after the other, neighboring tracks should perhaps not be
too different from each other, e.g., in terms of mood, tempo
or style. When our goal is to automatically generate such
playlists, one of the key questions is therefore how we can
assess the quality of our playlist. In fact, there might be a
number of different factors that influence the perceived value
of a playlist, including, e.g., the coherence of the list, the va-
riety of songs or the freshness of the songs (Fields 2011).

One typical approach to evaluate computer-generated
playlists that is also independent of the specific algorithm is
to compare them with playlists that are manually crafted by
the user community. The assumption is therefore that these
lists, which are often created by music enthusiasts, are of
high quality and implicitly respect various quality criteria.

In the last few years, a number of approaches for the auto-
mated generation of playlists have been proposed in the lit-
erature, among them techniques that are based, e.g., on track
co-occurrence, sequential patterns, or additional information
about the tracks. In addition, different evaluation protocols
for offline experimental designs have been introduced. The
results reported in the literature are however often hard to
compare as they sometimes focus on a particular family of
techniques and use different baseline algorithms. Further-

1For a further discussion of typical challenges in music recom-
mendation, see, e.g. (Lamere and Celma 2011) or (Celma 2010).

16

Intelligent Techniques for Web Personalization and Recommendation: Papers from the AAAI 2013 Workshop

more, it often remains unclear if the proposed techniques are
actually scalable when it comes to realistic and large item
catalogs.

In this work, we will discuss questions regarding possi-
ble approaches to evaluating the quality of playlist genera-
tion and review existing playlist approaches. We will then
report the results of a comparative evaluation of different al-
gorithms based on different datasets and discuss our insights
related to playlist quality and computational complexity. Fi-
nally, we will propose a comparably simple and computa-
tionally efficient new baseline algorithm for future compar-
isons which relies on track popularity and artist information.
Our algorithm outperforms other approaches on two of the
three datasets on which we performed experiments.

Automated Playlist Generation
A playlist is usually defined to be an ordered sequence of
musical tracks. For each track, we might also have some ex-
tra information, e.g., the composer, artist, lyrics, tags, etc.
The playlist generation problem typically consists in creat-
ing such a list given either some seed information or seman-
tic description (Barrington, Oda, and Lanckriet 2009). The
seed information can be another ordered set of tracks cor-
responding to the listening history so far. An example for a
semantic description could be “Joyful songs.”

In this work, we limit ourselves to the first case and as-
sume that the input to the playlist generation problem con-
sists of the listening history so far. Given this history, two
generation strategies are possible. The first is to present rec-
ommendation lists of tracks to the user, and each time a track
is selected the process is repeated (Baur, Boring, and Butz
2010). The second is to generate a whole playlist continu-
ation with no interaction with the user as done on last.fm.
In both cases the problem comes down to the computation
of the score of a candidate track t given a playlist history
h = 〈t1, t2, ..., ti〉.

Evaluation of playlist recommendations
Before we review different playlist generation approaches,
we will briefly discuss how we can compare the quality of
such playlists. In general, the purpose of a recommender
system (RS) is to present resources that correspond to the
needs and tastes of a user. The best related criterion to de-
termine the quality of an automatically generated playlist is
probably the satisfaction of the user. On a real-world music
platform, this could be measured for example based on lis-
tening times, customer return rates, track downloads or with
the help of surveys. In principle, one could also try to use
more objective measures such as the coherence, similarity or
diversity to assess and compare playlists. In this work, how-
ever, we focus on the accuracy of the recommendations. As
usual in RS research, we try to compare the lists generated
through different approaches based on a historical dataset,
in this case a given set of real-world playlists.

In most RS evaluation settings, a user-item rating matrix
is used as the basis for the evaluation, where a fraction of
the data is hidden during the training phase and the hidden
ratings, which should be predicted by the RS and are used

to measure the accuracy. When evaluating playlist recom-
mendations, the setting is slightly different and not based
on rating information. Usually, the idea is however again to
“hide” some information, and let the recommendation algo-
rithm make guesses about the rest.

Measuring hit rates Classical information retrieval mea-
sures can also be applied in standard RS evaluation settings.
In particular, if recommendation lists are automatically gen-
erated, we can then determine measures like precision and
recall. This scheme can be applied for playlists by consider-
ing each playlist as being a user and the playlist elements as
relevant items, from which we hide individual elements in
the training phase2.

An evaluation method of this type is used, e.g., by (Hariri,
Mobasher, and Burke 2012), who hide the last element of
each given playlist, which has then to be recommended by
the algorithm. The corresponding metric is the hit rate. In
general, any subset of playlist elements could be hidden in
such a protocol. Removing the last one however is based on
the assumption that the sequential history of a playlist can
be relevant.

HitRate(Train, Test) =
1

‖Test‖
∑

(h,t)∈Test

δt,RTrain(h)

where RTrain(h) is a recommendation list of a defined
length computed by an algorithm based on Train and the
playlist beginning h and δt,RTrain(h) = 1 if RTrain(h) con-
tains t and 0 otherwise.

The limitation of this evaluation metric is that it cor-
responds to the assumption that the actual next tracks in
the playlist are the only relevant tracks that can be recom-
mended, although some other tracks may be relevant. In
other words, it is possible that hundreds of tracks are rele-
vant, but as the recommender has to select a subset of them,
the actual next tracks of the test playlists might not be rec-
ommended. As it is impossible to know how many tracks are
relevant for each situation, it is reasonable to analyze the ac-
curacy of a system using longer recommendation lists. The
assumption is then that there is a correspondence between
the size of the recommendation lists and the average number
of relevant tracks. Still, the hit rate can only be considered
to be a lower bound for the accuracy.

Measuring the average log-likelihood Another way to
measure accuracy is to use the average log-likelihood. The
average log-likelihood can be used to measure how likely a
system is to recommend the tracks of a given set of playlists
through a weighted random process. More precisely, given
a test set of playlists, the average log-likelihood ALL can
be determined by computing the probability of observing

2Notice that even in cases where information about the playlist
creator is available, it will not be used in such a protocol and the
generated playlists are not personalized. The incorporation of this
type of information could however further help to improve the
playlist quality.

17

each next track according to the corresponding playlist his-
tory and some model learned on the training data as follows:

ALL(Train, Test) =
1

‖Test‖
∑

(h,t)∈Test

logPTrain(t | h)

where PTrain(t | h) corresponds to the probability of ob-
serving t given h according to a model learned based on
Train. Research on music recommendation using playlists
that use this metric includes (McFee and Lanckriet 2011)
and (Chen et al. 2012). Obviously, the application of this
measure requires that the output of a playlist recommender
can be expressed as probability values for each song which
is between 0 and 1.

In contrast to the hit rate, which provides a realistic lower
bound on the accuracy that is directly interpretable, this met-
ric is not interpretable on an absolute scale: the possible val-
ues vary between −∞ (at least one track in the test set has a
corresponding 0 probability in the model) and 0 (all proba-
bilities in the model for all tracks in the test set are 1). This
means that 0 probabilities must be avoided, thus requiring an
additional smoothing step. Thus, this metric only allows us
to compare the results of different smoothed generative ap-
proaches without knowing if the best one is actually good.

Another limitation is that a generative process may not be
suited for music recommendation. Even when weighted ac-
cording to the distribution of the model, a random generation
may present irrelevant tracks too often.

Compared to the hit rate, the only advantage of using the
log-likelihood would be its better accuracy in the compari-
son of the smoothed generative version of the approaches. It
should thus only be used as a second step, after having made
sure that the evaluated predictive version of the approaches
have a satisfying lower bound of accuracy on an absolute
scale. As this paper is aimed at being a first step towards the
analysis of the different approaches for playlist generation,
we limit ourselves to the hit rate in our evaluations.

Computational complexity Another important fact that
should be taken into account in the context of music rec-
ommendation is the computational complexity. Indeed, as
opposed to, for instance, movie recommendation, for which
recommendations can be computed offline and updated reg-
ularly, music recommendation can be highly dynamic and
contextual. Users usually listen to tracks in sequence, where
each track lasts a few minutes. Therefore, a music recom-
mender should be able to provide fast contextual recommen-
dations. Moreover, as the number of tracks that can be rec-
ommended is usually very high, the efficiency of the train-
ing phase can become crucial. In the subsequent analysis of
algorithms, we will thus also briefly discuss aspects of com-
putational complexity.

Playlist Generation Approaches
In the following, we review existing approaches to playlist
generation. The task of each technique is to calculate a score
for each next possible track t given a playlist beginning
h = 〈t1, t2, ..., ti〉. The resulting scores – which in some

cases correspond to probability estimates – can then be used
to filter and rank the remaining tracks.

Markov chains Given that the recommendation scenario
usually is to generate a good continuation of a playlist, at-
tempting to recommend tracks that represent a smooth tran-
sition with the previous track is an obvious approach. This
corresponds to the Markov property and leads to a first-order
Markov model in which states can correspond to track IDs
or any other representation of the tracks. Given a history h
of a playlist and a candidate track t, the probability of t in
such a model thus only depends on ti, the last element of h.

PMarkov(t | h) = P (t | ti) (1)
Examples of playlist modeling approaches based on this

strategy include (McFee and Lanckriet 2011) and (Chen et
al. 2012). (McFee and Lanckriet 2011) compare three sim-
ple approaches to assign transition probabilities to a Markov
model: a uniform distribution, a distribution based on artist
popularity and a set of k-Nearest-Neighbors models (kNN)
that use the similarity between tracks based on tags and the
audio signal with different parameters. They also experi-
ment with a mixture of these models where weights are com-
puted according to a state-of-the-art convex optimization al-
gorithm. Experimental evaluations based on the average log-
likelihood show that the only models to outperform the uni-
form model are the artist popularity model and the mixture
model.

In (Chen et al. 2012), tracks are represented by vectors
in the Euclidean space. The corresponding coordinates are
then learned through a regularized maximum-likelihood em-
bedding of Markov chains where the transition probabili-
ties are a function of the Euclidean distance between the
tracks. Experimental evaluations based on the average log-
likelihood on a radio station track-list dataset show that the
proposed Latent Markov Embedding (LME) model outper-
forms a Markov model whose transition probabilities corre-
spond to the track frequency (which is also called a bigram
model) and the uniform model.

The major limitation of these models is that the assump-
tions on which they are based may be too strong: the choice
of the next track by a user may or may not depend only
on the previous track. Although tracks are usually being
listened one after the other and transitions between tracks
surely have some importance, in practice, the rules users fol-
low to build playlists can be quite different and often con-
tradict this assumption, see (Cunningham, Bainbridge, and
Falconer 2006).

Frequent patterns Another possibility to recommend
tracks for playlist generation is to extract frequent patterns
from playlists. The common techniques are association rule
and sequential pattern mining. An association rule (Agrawal,
Imieliński, and Swami 1993) has the form A → C, where
A and C are two itemsets. A is called the antecedent and
C the consequent. The relevance of patterns and association
rules is usually measured in terms of support and confidence.
The support of a pattern corresponds to the probability of ob-
serving all of its elements at the same time. The confidence
of a rule corresponds to the conditional probability of finding

18

the elements of the consequent in presence of the elements
of the antecedent.

The major difficulty of association rules is to extract such
relevant rules efficiently and find appropriate threshold val-
ues. Once the relevant patterns have been extracted, the score
of the next track t can be computed according to the follow-
ing formula:

scorepattern(t, h) =
1

‖Ω‖
∑
ω∈Ω

confidence(ω → t) (2)

with Ω the set of all possible antecedents that can be consid-
ered in h.

The resulting recommenders can be optimized by varying
different parameters, including the maximum size of the pat-
terns, the minimum support and confidence thresholds and
the size of the window in which the patterns are being ex-
tracted and retrieved.

Sequential patterns are a sequential version of associa-
tion rules (Agrawal and Srikant 1995) in which the order
of the elements in the pattern is also taken into account in
the mining process. The additional constraints of sequential
patterns over association rules can in general lead to more
accurate recommendations, but the approach has a higher
computational complexity and requires a larger amount of
training data. Another possible limitation of this approach
might be the comparably small confidence values for the ex-
tracted patterns given the usually high sparsity of musical
datasets.

The overall effectiveness of sequential patterns however
depends on the type of data. If the data is not ruled by
some sort of sequentiality, then association rules provide
the same accuracy and should be preferred. Our hypothe-
sis in this context is that playlists are at least partly governed
by sequential constraints and that sequential patterns should
lead to a higher accuracy. Since we are not aware of pre-
vious works who have evaluated sequential track patterns
for playlist generation, we performed a comparative evalu-
ation of association rules and sequential patterns which is
discussed later in this paper.

Neighborhood recommenders Another way to exploit
co-occurrences of tracks is to use a k-nearest-neighbors
(kNN) recommender which is based on the similarity be-
tween playlists (not between tracks, as in (McFee and
Lanckriet 2011)) and which can be calculated using a binary
cosine similarity measure:

simp(p, q) =
‖p ∩ q‖√
‖p‖‖q‖

Given Nh nearest neighbors for a playlist, the score of a
track t could then be defined as:

scorekNN(t, h) =
∑
n∈Nh

simp(h, n) · δt,n (3)

A similar kNN approach was proposed in (Hariri,
Mobasher, and Burke 2012) and used as a basis for a more
sophisticated recommender which uses sequential patterns
of latent topics based on tags. The authors compare the

topic-aware recommender they propose to the kNN ap-
proach used alone on a small dataset (about 20,000 tracks),
and obtain a relatively slight improvement in terms of the
hit rate. They also compare these approaches to a Bayesian
Personalized Ranking (BPR) recommender (Rendle et al.
2009) (a recent learning-to-rank technique), and a content-
based recommender. The content-based recommender rep-
resents tracks as vectors whose dimensions correspond to
artist names, genre, era and album title and uses the kNN
approach to compute recommendations. The BPR algorithm
slightly outperforms the content-based recommender when
many tracks are recommended and is slightly outperformed
by the two other approaches.

Similar to association rules, such a kNN approach not
only exploits information about the collocation of items in
playlists but also takes the number of shared items in each
playlist into account when estimating the probability. How-
ever, association rule mining is based on counting the fre-
quency of patterns for all users in an offline process. The de-
scribed kNN approach, in contrast, dynamically computes
a “local probability” using the k most similar playlists. In
other words, the above-mentioned limitation with respect
to low confidence values is reduced. The computation of
neighborhoods and playlist similarities is however compu-
tationally complex both in terms of time and space, making
the approach intractable when recommendations have to be
made in real time.

Playlists as users In principle, if we interpret the playlist
generation problem to be similar to the item prediction prob-
lem in typical RS settings by considering playlists to be
users, existing RS algorithms for item recommendations
based on implicit feedback can be applied including re-
cent learning-to-rank techniques. In particular, the BPR-
approach from (Rendle et al. 2009) has been included in pre-
vious comparative evaluations for playlist or music recom-
mendation, see e.g. (Hariri, Mobasher, and Burke 2012) and
(McFee et al. 2012). The experiments in the last two papers
however show that the plain BPR method can be easily out-
performed by other methods in particular problem settings.

Content-based approaches So far, kNN approaches with
binary cosine similarities between playlists seem the most
likely to provide sufficient accuracy but can be computa-
tionally complex. Pattern-based approaches can overcome
this drawback when using appropriate parameters but may
not be very accurate given the sparsity of musical datasets.
Using additional information, one can try to avoid the com-
plexity of the kNN approach or enhance the confidence of
pattern-based approaches. Such additional information can
be the content of the tracks (lyrics, spectrum, etc.), the sim-
ilarity of musical features (Flexer et al. 2008), user tags, or
more simple elements such as artist names.

Some of the aforementioned approaches use some forms
of content and meta-data. For instance, the topic-aware, hy-
brid recommender of (Hariri, Mobasher, and Burke 2012)
uses tags to determine topics, but does not solve the scal-
ability problem of the underlying kNN approach. As well,
(McFee and Lanckriet 2011) experiment with some Markov
models that use tags, the audio signal and artist names. How-

19

ever, their approach does not solve the problem of the too
strong assumption of the Markov property.

Regarding the incorporation of additional information
into the recommendation process, we hypothesize that the
use of artist names is particularly promising as this type of
data is objective, easy to obtain and to process (as opposed
to, for instance, information about the playlist topic, genre
or style). Moreover, as will be shown, users often put sev-
eral tracks from one artist in their playlists.

Popularity-based approaches In many application do-
mains for RS and in particular in the music domain (Celma
2010), we can observe a so called “long tail” distribution
of items, meaning that a small subset of the items accounts
for the majority of transactions or interactions. This pop-
ularity bias results in the fact that simple popularity-based
approaches, which present the same set of popular items to
everyone, can represent a comparably hard baseline (Cre-
monesi, Koren, and Turrin 2010).

Given these observations we have included two ap-
proaches which are based on popularity combined with artist
information in our experiments.

“Same artists - greatest hits” (SAGH): In (McFee et al.
2012), the authors propose a baseline algorithm for music
recommendation – not in the context of playlists – called
“Same artists - greatest hits”, which simply recommends the
most popular songs of the artists appearing in the user’s
listening history. Their experiments on the Million Song
dataset shows that higher prediction accuracy can be ob-
tained with such an approach than when using, e.g., the
above-mentioned BPR method. In our classification scheme,
this method would be a hybrid that uses both additional in-
formation as well as popularity information.

“Collocated artists - greatest hits” (CAGH): In this
paper, we do not only apply the previous scheme for the
playlist generation problem, but propose an extension to it.
Our assumption is that the different artists that are included
in playlists by the users are not too different from each other.
We thus propose to recommend tracks based on the fre-
quency of the collocation of artists.

More precisely, we compute the similarity between two
artists a and b according to the following formula:

sima(a, b) =

∑
p (δa,p · δb,p)√∑
p δa,p ·

∑
p δb,p

with δa,p = 1 if playlist p contains a and 0 otherwise. The
similarity thus depends on the collocations of artists within
playlists, which can be computed offline.

Our proposed formula for the computation of the score of
a next track t with artist a given a playlist beginning h is as
follows:

scoreCAGH(t, h) =
∑
b∈Ah

sima(a, b) · counts(t) (4)

where Ah is the set of artist names of the tracks in h and
counts(t) is the number of occurrences of t in the dataset.

Evaluation Design and Experiments
In the following, we will describe our evaluation design for
the playlist generation problem, describe the experimental
design and present the results of the experiments.

Data Sets
We used three datasets in our experiments. The first one is
the one provided by Artofthemix, the most commonly used
dataset for related research (McFee and Lanckriet 2011;
Hariri, Mobasher, and Burke 2012). The second was re-
trieved using the web service of last.fm3. The third was pro-
vided to us by 8tracks4. In order to reduce the sparsity of the
data, we used the high-quality web service of Musicbrainz5

to correct artist and track misspellings in the datasets. We
also removed playlists of size 1. For the last.fm data, in or-
der to reduce the long-tail we decided to select playlists such
that long-tail tracks are used at least twice. The different
properties of the resulting datasets are shown in Table 1.

last.fm Aotm 8tracks

Playlists 50,000 28,636 99,542
Users 47,603 – 51,743
Tracks 69,022 214,769 179,779
Avg. tracks/playlist 7.6 20.1 9.7
Avg. track usage count 5.5 2.7 5.3
Head 4.8% 1.6% 4.5%
Middle 35.0% 18.5% 25.7%
Tail 60.1% 79.9% 69.8%
Artists 11,788 47,473 29,352
Avg. artists/playlist 4.5 17.3 8.9
Avg. artist usage count 32.2 12.1 32.7

Table 1: Properties of the datasets.

Notice that the Artofthemix data does not contain user
IDs. As implicitly done also by (Hariri, Mobasher, and
Burke 2012), we consider users as being equivalent to
playlists, as they usually do not create large numbers of
playlists. This assumption is validated by the proportion of
playlist per user on both other datasets (1.05 playlists per
user on last.fm data and 1.9 on 8tracks data). Regarding
track occurrences, the last.fm and 8tracks datasets have a
similar average track usage count (5.5 and 5.3)6. This us-
age count is significantly smaller for Artofthemix (2.7). An-
other related characteristic is the long tail distribution of
track usages. Table 1 divides the corresponding distribution
into three parts: head, middle and tail. The “head” contains
tracks which appeared more than 20 times in playlists, tracks
in the “middle” were included in playlist between 2 and
20 times, and songs from the “tail” were only used once

3http://www.lastfm.de/api
4http://8track.com
5http://musicbrainz.org/ws/2/
6The track/artist usage count means how often a track/artist was

used in all playlists

20

or twice. These values are admittedly somewhat arbitrary
but allow us to roughly compare the respective distributions.
The resulting proportions reveal another difference between
the last.fm and 8tracks datasets: although they have a similar
average track usage count, the size of the long tail of 8tracks
is much larger.

Regarding artist-based recommendation approaches, Ta-
ble 1 shows that playlists usually contain fewer artists than
tracks. A further analysis revealed that the artist of the last
track of a playlist already appeared in the same playlist be-
fore in 31.1% of the cases for the last.fm dataset, in 21.8%
of the cases for the Artofthemix dataset and 13.8% of the
cases for the 8tracks dataset. This represents another differ-
ence between the last.fm and 8tracks datasets: although they
have a similar average artist usage count, the artists seem to
be better distributed across the playlists in the 8tracks data.
Overall, these values represent a strong argument to empha-
size on artist names as an additional information when rec-
ommending tracks.

Using three datasets with quite different characteristics
should allow us to analyze how the different algorithms
perform in different situations. In general, generating rec-
ommendations based on the Artofthemix dataset should
be much more difficult than with the last.fm and 8tracks
datasets, as it is smaller and the individual tracks are less
often used. Other factors may however play a major role as
well, in particular the size of the long tail.

Experiments
In our evaluation, we followed the evaluation design of
(Hariri, Mobasher, and Burke 2012) and measured the accu-
racy of recommending the last track of each playlist in terms
of hit rate. A 10-fold cross-validation procedure was applied
on the three datasets. Recall that the total number of tracks
of the dataset highly influences the hit rate values. (Hariri,
Mobasher, and Burke 2012) provide the results for predic-
tion lists of size varying between 1 and 300 given 21, 783
tracks. This corresponds to the selection of about 1.5% of
the tracks. We used a similar proportion in our experiments
and set the maximum size of the prediction lists to 1, 000 for
last.fm, 3, 000 for Artofthemix and 2, 500 for 8tracks.

In the following sections, we will first present an evalua-
tion of the frequent-pattern based approaches previously de-
scribed using different configurations. The “winner” of this
comparison is later used in a comparative evaluation of fur-
ther techniques, including our new baseline scheme CAGH
which is based on popularity and artist information.

Evaluation of Frequent Patterns Figure 1 shows the hit
rates of association rules and sequential patterns on last.fm,
Artofthemix and 8tracks data. The support and confidence
threshold values correspond to the ones that led to the high-
est accuracy7.

As expected, only modest accuracy values can be
achieved for short recommendation lists. Recall however
that the hit rate only provides a lower bound on the accu-
racy. It is in general not possible to determine how many

7AR = Association Rules, SP = Sequential Patterns, n = max.
size of patterns, w = window size for SP.

tracks are actually relevant, and as the datasets contain tens
of thousands of tracks, it is possible that, for instance, the
first 100 tracks presented are all relevant but do not contain
the one the user actually chooses.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000

h
it
 r

a
te

Size of the recommendation list

last.fm

SP with n = 2 and w = 10

SP with n = 3 and w = 10

SP with n = 2 and w = 5

SP with n = 3 and w = 5

AR with n = 2 and w = 10

AR with n = 3 and w = 10

AR with n = 2 and w = 5

AR with n = 3 and w = 5

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

h
it
 r

a
te

Size of the recommendation list

Artofthemix

SP with n = 3 and w = 100

AR with n = 3 and w = 100

SP with n = 2 and w = 100

AR with n = 2 and w = 100

SP with n = 3 and w = 10

AR with n = 3 and w = 10

SP with n = 2 and w = 10

AR with n = 2 and w = 10

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500

h
it
 r

a
te

Size of the recommendation list

8tracks

SP with n = 3 and w = 100

SP with n = 2 and w = 100

AR with n = 3 and w = 100

AR with n = 2 and w = 100

SP with n = 3 and w = 10

SP with n = 2 and w = 10

AR with n = 3 and w = 10

AR with n = 2 and w = 10

Figure 1: Hit rates of the frequent patterns.

21

Moving to larger recommendation lists, we can identify
four groups that lead to similar results for the last.fm and
Artofthemix datasets. This phenomenon can also be ob-
served on the 8tracks dataset, but the difference between the
results are very small. The results for the last.fm dataset sug-
gest that using longer patterns does not help to improve the
accuracy as the results are the same for patterns of size 2 and
3, independent of the other parameters. Other aspects, how-
ever, have some influence: taking into account sequentiality
information (SP) leads to better results, as well as using a
sliding window of size 10 instead of 5. A size of 100 how-
ever leads to lower accuracy values.

The results for the Artofthemix dataset however suggest a
different conclusion. Taking into account sequentiality infor-
mation or not does not make much difference. Using longer
patterns and larger window sizes, however, helps to improve
the accuracy on this dataset. Thus, only the influence of the
size of the sliding window is consistent on the two datasets.
This influence is also corroborated on the 8tracks dataset,
although the difference is small. Our assumption however is
that the size of the long tails of the Artofthemix and 8tracks
datasets prevented us from successfully extracting represen-
tative sequential patterns which in turn led to the observed
results. Under this assumption, sequentiality may in gen-
eral have some importance and should be taken into account
when recommending tracks for playlist generation.

In the next set of experiments we therefore used the fol-
lowing configurations: SP with n = 2 and w = 10 for
last.fm, AR with n = 3 and w = 100 for Artofthemix and
SP with n = 3 and w = 100 for 8tracks.

Comparing kNN, frequent patterns and other baselines
Figure 2 shows the results of comparing six different recom-
mendation approaches on the three datasets. The approaches
include the three above-mentioned frequent-pattern ap-
proaches, a kNN recommender using 50, 100 and 200
neighbors, the SAGH recommender (“Greatest hits of artists
in playlist”) and our new baseline recommender CAGH
(“Greatest hits of collocated artists”)8.

As in the previous experiments, all approaches lead to
comparably low accuracy values for short recommenda-
tion lists. For longer recommendation lists, our new CAGH
recommender clearly outperforms the other approaches on
last.fm and Artofthemix data, except for the frequent-
patterns approach for recommendation lists longer than
2, 800 and the kNN approach for recommendation lists
longer than 2, 000 on the Artofthemix data. On the data from
8tracks, the frequent pattern approach outperforms all other
approaches, followed by the kNN approach with 200 and
100 neighbors, and the CAGH recommender. One reason for
the lower performance of the CAGH recommender could be
that artists are more distributed across playlists on this par-
ticular dataset.

Overall, using more neighbors enhances the accuracy of
the kNN approach on the three datasets. The kNN ap-
proach may even outperform all the other approaches using

8The method of (Hariri, Mobasher, and Burke 2012) is not in-
cluded here but is comparable to the kNN method according to
their measurements.

more than 200 neighbors. However, the three neighborhood
sizes used in these experiments are already high and make
the recommendation algorithm not only intractable in terms
of space requirements, but also in terms of running time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000

h
it
 r

a
te

Size of the recommendation list

last.fm

CAGH

SAGH

SP with n = 2 and w = 10

kNN with k = 50

kNN with k = 100

kNN with k = 200

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

h
it
 r

a
te

Size of the recommendation list

Artofthemix

CAGH

SAGH

AR with n = 3 and w = 100

kNN with k = 50

kNN with k = 100

kNN with k = 200

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500

h
it
 r

a
te

Size of the recommendation list

8tracks

CAGH

SAGH

SP with n = 3 and w = 100

kNN with k = 50

kNN with k = 100

kNN with k = 200

Figure 2: Hit rates of the different approaches.

22

Still, kNN approaches lead to lower accuracy values than
both our new baseline approach and the frequent patterns
method. More precisely, on the three data sets the accuracy
of the kNN approach seems to be limited by the size of the
recommendation lists it is able to build. This is probably the
reason why the frequent patterns outperform this approach
on the 8tracks dataset, as it is close to a kNN approach that
uses all the neighbors.

Other observations depend on the used dataset. In par-
ticular, for the last.fm dataset, the SAGH recommender
leads to results that are similar to those of the kNN recom-
mender with 100 neighbors. For the Artofthemix dataset, the
SAGH recommender is clearly outperformed by all other ap-
proaches. For the 8tracks dataset, it leads to results that are
similar to those of the kNN recommender with 50 neighbors
for recommendation lists longer than 750.

Beside the results shown in Figure 2, we also experi-
mented with models based on the Markov property, among
them the simple bigram model and the recent Latent Markov
Embedding (LME) model of (Chen et al. 2012). Despite the
long time that can be required to train these models – e.g.,
several weeks for the LME model – these methods led to par-
ticularly low accuracy values which were consistently below
10% for recommendation lists of size 1, 000 for the last.fm
dataset and 5% for recommendation lists of size 3, 000 for
the Artofthemix dataset. We therefore omit these results in
this paper. In general, given these comparably strong differ-
ences, assuming the Markov property might be too strong for
this problem setting. Furthermore, our results indicate that
emphasizing on artist names can be particularly promising
for accurate track recommendation in the context of playlist
generation.

Conclusion
This paper proposes a classification of existing approaches
for playlist generation and discusses limitations of typi-
cal experimental designs, which for example do not take
scalability aspects into account or are based on compara-
bly strong assumptions such as the Markov property. Based
on this discussion, we propose a new computationally ef-
ficient recommendation scheme based on popularity and
artist information. An experimental comparative evaluation
showed that our algorithm outperforms the other approaches
in terms of accuracy on two of three different datasets. On
the remaining dataset, our recommender is on a par with
neighborhood-based approaches and was outperformed by a
frequent pattern technique. Our hypothesis is that this differ-
ence is caused by the high dispersion of artists on this par-
ticular dataset. However, this difference in accuracy might
be caused by other factors, which we are investigating in our
current work.

Another set of experiments in this paper suggests that
playlists seem to be at least partially governed by sequen-
tial constraints. In our future research we plan to investi-
gate techniques that are able to identify criteria which can
be used as indicators of the relevance of sequentiality in-
formation. Another perspective is the incorporation of other
usually available additional information such as the playlist

creator or the creation time. Some music platforms also pro-
vide detailed information about their users, independently of
playlists. This information could be used to efficiently per-
sonalize the generation of playlists even for users who never
created any before, which might be a very frequent situation.

Acknowledgments
We thank 8tracks for providing us their valuable data.

References
Agrawal, R., and Srikant, R. 1995. Mining Sequential Pat-
terns. In Proc. ICDE 1995, 3–14.
Agrawal, R.; Imieliński, T.; and Swami, A. 1993. Min-
ing Association Rules between Sets of Items in Large
Databases. In Proc. SIGMOD 1993, 207–216.
Barrington, L.; Oda, R.; and Lanckriet, G. 2009. Smarter
than Genius? Human Evaluation of Music Recommender
Systems. In Proc. ISMIR 2009, 357–362.
Baur, D.; Boring, S.; and Butz, A. 2010. Rush: Repeated
Recommendations on Mobile Devices. In Proc. IUI 2010,
91–100.
Celma, Ò. 2010. Music Recommendation and Discovery
- The Long Tail, Long Fail, and Long Play in the Digital
Music Space. Springer.
Chen, S.; Moore, J.; Turnbull, D.; and Joachims, T. 2012.
Playlist Prediction via Metric Embedding. In Proc.
KDD 2012, 714–722.
Cremonesi, P.; Koren, Y.; and Turrin, R. 2010. Performance
of recommender algorithms on top-n recommendation tasks.
In Proc. ACM RecSys 2010, 39–46.
Cunningham, S.; Bainbridge, D.; and Falconer, A. 2006.
‘More of an Art than a Science’: Supporting the Creation of
Playlists and Mixes. In Proc. ISMIR 2006, 240–245.
Fields, B. 2011. ”Contextualize Your Listening: The Playlist
as Recommendation Engine”. PhD thesis, Goldsmiths, Uni-
versity of London, London, UK.
Flexer, A.; Schnitzer, D.; Gasser, M.; and Widmer, G. 2008.
Playlist Generation Using Start and End Songs. In Proc.
ISMIR 2008, 173–178.
Hariri, N.; Mobasher, B.; and Burke, R. 2012. Context-
Aware Music Recommendation Based on Latent Topic Se-
quential Patterns. In Proc. ACM RecSys 2012, 131–138.
Lamere, P., and Celma, Ò. 2011. Music Recommendation
and Discovery Remastered, Tutorial at ACM RecSys 2011.
Online at http://www.slideshare.net/slideshow/embed code/
9860137.
McFee, B., and Lanckriet, G. 2011. The Natural Language
of Playlists. In Proc. ISMIR 2011.
McFee, B.; Bertin-Mahieux, T.; Ellis, D.; and Lanckriet, G.
2012. The million song dataset challenge. In Proc. Ad-
MIRe’12.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. BPR: Bayesian Personalized Ranking
from Implicit Feedback. In Proc. UAI, 452–461.

23

