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Abstract

Protein folding plays an essential role in protein function and
stability. Despite the explosion in our knowledge of structural
and functional data, our understanding of protein folding is
still very limited. In addition, methods such as folding core
identification are gaining importance with the increased de-
sire to engineer proteins with particular functions and effi-
ciencies. However, defining the folding core can be challeng-
ing for both experiment and simulation.
In this work, we use rigidity analysis to effectively sam-
ple and model the protein’s energy landscape and identify
the folding core. Our results show that rigidity analysis im-
proves the accuracy of our approximate landscape models
and produces landscape models that capture the subtle fold-
ing differences between protein G and its mutants, NuG1
and NuG2. We then validate our folding core identification
against known experimental data and compare to other simu-
lation tools. In addition to correlating well with experiment,
our method can suggest other components of structure that
have not been identified as part of the core because they were
not previously measured experimentally.

Introduction
Protein folding is critical to protein function as its fold
largely determines its function and efficiency. Understand-
ing the folding process is paramount to tackling problems
such as misfolded disease-causing proteins (e.g., Mad Cow
and Alzheimer’s) and engineering new proteins to produce
particular functions with particular rates/efficiencies (Wood-
ward 1993).

Since it is difficult to experimentally observe molecu-
lar motions, computational methods for studying such is-
sues are essential. Traditional computational approaches for
generating folding trajectories such as molecular dynamics
(Levitt 1983) and Monte Carlo simulation (Covell 1992) are
so expensive that they can only be applied to relatively small
structures (e.g., proteins with less than 130 amino acids
(Zhou et al. 2008)) even when they employ massive com-
putational resources, such as tens of thousands of PCs in the
Folding@Home project (Larson et al. 2003). Statistical me-
chanical models have been applied to compute energy land-
scape statistics (Muñoz et al. 1998; Alm and Baker 1999;
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Muñoz and Eaton 1999). While computationally more effi-
cient, these methods do not produce individual pathway tra-
jectories and are limited to studying global averages.

Identifying the folding core, the subset of a proteins struc-
ture first to form during folding and last to break during de-
naturation, is important in identifying where to make muta-
tions in proteins to yield predictable structure and functional
properties. However, both experimental and simulation tech-
niques to capture folding core membership have found it
challenging and have often been unsuccessful.

In this paper, we use rigidity analysis (Jacobs 1998) in the
context of a robotics-based molecular modeling framework
(Amato, Dill, and Song 2003; Tapia, Thomas, and Amato
2010) to
• efficiently sample protein conformations in a more physi-

cally realistic way,
• identify protein conformation pairs for connection, and
• simulate hydrogen exchange and identify folding cores.

We show that this method can improve sampling and ob-
serve subtle folding differences between protein G and its
mutants, NuG1 and NuG2 (Thomas et al. 2007), an impor-
tant ‘benchmark’ set developed by the Baker Lab (Nauli,
Kuhlman, and Baker 2001). We also compare our folding
core predictions to those determined experimentally and to
other computational approaches (Hespenheide et al. 2002;
Rader and Bahar 2004). We show good correlation to ex-
periment and also indicate that our technique may be useful
in suggesting other components of rigid structure for further
study that have not yet been experimentally identified.

Related Work
Here we present related work in three areas: robotics-based
molecular motion modeling, rigidity analysis, and folding
core identification.

PRMs for Protein Folding
In previous work (Amato, Dill, and Song 2003), we intro-
duced a technique for modeling protein folding that is based
on the probabilistic roadmap (PRM) approach for motion
planning (Kavraki et al. 1996). We applied our method to
a large number of structures and validated our secondary
structure formation order results against the experimentally
determined order.
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Our method first constructs a model of the folding land-
scape by (1) sampling representative conformations (as
graph nodes) and (2) connecting them together with se-
quences of intermediate conformations (as graph edges).
This combination of samples and connections forms a graph
(or map) that approximates the energy landscape and en-
codes thousands of folding pathways.

Protein Model. We model the protein as an articulated
linkage. Using a standard modeling assumption for pro-
teins that bond angles and bond lengths are fixed (Stern-
berg 1996), the only degrees of freedom in our model are the
backbone’s φ and ψ torsional angles which are represented
as revolute joints in [0, 2π).

Potential Energy Calculation. Our method can use any
potential function. Here, we use a coarse potential function
similar to (Levitt 1983). It has a van der Waals component
where side chains are modeled as spheres, a term favor-
ing known secondary structure through main-chain hydro-
gen bonds and disulphide bonds, and a term encoding the hy-
drophobic effect. Previously, we demonstrated that this func-
tion produces qualitatively similar results as an all-atoms
function for several proteins, including structurally similar
mutants, in a fraction of the time. Details can be found in
(Song et al. 2003).

Sampling Conformations. Sampling is biased to in-
crease the density near the known native state by starting
with the native state and iteratively perturbing it to gener-
ate new conformations. In this iterative sampling process,
small Gaussian perturbations are applied to existing confor-
mations. Samples are kept based on their energy: low energy
samples are kept with a high probability while high energy
samples are kept with a low probability.

Sample Connection. We connect neighboring samples by
identifying a sequence of feasible intermediate conforma-
tions. Typically, connections are attempted to the k-nearest
neighbors as identified by some distance metric.

For a given pair of samples, we compute a sequence
of intermediate conformations by linear interpolation in φ-
ψ space. We assign a weight to the transition (connec-
tion) to reflect its energetic feasibility. We have found that
this scheme works well in practice (Amato, Dill, and Song
2003), and we can use simple graph search algorithms to
extract the most energetically feasible pathways in the map.
See (Amato, Dill, and Song 2003) for details.

Map Size Determination. Our approximate landscape
model’s accuracy depends on the sampling density. To de-
termine the density automatically, we build the map incre-
mentally until the secondary structure formation order along
its pathways stabilizes. This is the same technique success-
fully used in our previous work (Thomas et al. 2007).

Extracting Folding Pathways. We use Map-based
Monte Carlo simulation (MMC) (Tapia et al. 2007) to
stochastically extract pathways from our landscape model.
MMC is similar to traditional Monte Carlo simulation ex-
cept that it is a walk on our approximate landscape model
(i.e., the map) instead of on the complete energy landscape.
Applying MMC to our landscapes follows the techniques in
(Tapia et al. 2007). We ensure that the likelihood of tran-
sitioning between conformations is probabilistically biased

by their Boltzmann transition probabilities. This transition
probability is based on the edge weight from constructing
the map. For this work, we use 500 MMC pathways, each
containing 10,000 path-steps.

Rigidity Analysis
Several computational approaches study protein rigidity and
flexibility. Here, we use a rigidity analysis technique called
the pebble game (Jacobs and Thorpe 1995; Jacobs 1998)
to identify which portions of a particular conformation are
rigid, which are independently flexible (i.e., can move with-
out requiring movement of other residues), and which form
a dependently flexible set (i.e., can only move in a coor-
dinated motion with other residues). It has been success-
fully used by several applications to study protein rigid-
ity and flexibility (Jacobs et al. 2001; Rader et al. 2002;
Hespenheide et al. 2002; Lei et al. 2004).

Folding Core Identification
Various methods have been introduced to determine the fold-
ing core. Hydrogen exchange is the most widely used ex-
perimental technique. It identifies which parts of the protein
structure are most exposed or protected (Wales and Engen
2006). From this, one can infer which portions fold first and
which are last to form, up to the millisecond timescale. How-
ever, such methods are complicated, expensive, and cannot
be applied to all structures.

Simulation methods abound but have resulted in mispre-
dictions due to limiting assumptions made and models used.
Two methods compared against in this work are Floppy In-
clusions and Rigid Substructure Topography (FIRST) (Hes-
penheide et al. 2002) and Gaussian Network Model (GNM)
(Rader and Bahar 2004). FIRST uses a full atomic descrip-
tion to identify rigid clusters of residues for a fixed pro-
tein conformation. They simulate denaturation by iteratively
breaking the weakest hydrogen bond and recomputing the
resulting rigid residue clusters, but the actual structure is
kept static. They identify the folding core as the set of mu-
tually rigid residues belonging to at least two different sec-
ondary structure elements that remain rigid longest. GNM
models residues as beads connected by elastic springs repre-
senting chain connectivity and bonding. GNM simulations
provide slow mode minima and fast mode peaks which are
used to identify folding cores. Their simulations are limited
to the immediate vicinity of the native state.

Constructing Landscape Models using
Rigidity Analysis

We use the same motion framework as described in the re-
lated work. However, we incorporate rigidity analysis in the
sampling technique and the distance metric to yield more
physically-realistic landscape models.

Rigidity Model
For rigidity analysis, we model the protein simply as a chain
of rigid bodies, each representing one torsional dof. Bonds

39



are modeled with increasing strength from hydrophobic con-
tacts (weakest), to hydrogen bonds, to peptide and disul-
phide bonds (strongest). Details can be found in (Thomas
et al. 2007).

Sampling with Rigidity Analysis
Previously, sampling iteratively applied small Gaussian per-
turbations to the entire conformation. Instead, we use rigid-
ity analysis to focus perturbations on flexible portions. We
perturb flexible torsional angles with a high probability,
Pflex, and rigid torsional angles with a low probability,
Prigid. Perturbing rigid torsional angles ensures coverage of
the landscape. This sampling technique was originally in-
troduced in (Thomas et al. 2007). We use the same values
(Pflex = 0.8 and Prigid = 0.2) as used in that work.

Rigidity Analysis Distance Metric
We also use rigidity analysis to define a new residue map-
ping and distance metric. A rigidity map, r, is similar to a
contact map. Rigid body pairs (i, j) from the rigidity model
are marked if they have the same rigidity relationship: 2 if
they are in the same rigid set, 1 if they are in the same de-
pendently flexible set, and 0 otherwise. Rigidity maps pro-
vide a convenient way to define a rigidity distance metric,
rdist(q1, q2), between two conformations q1 and q2 where n
is the number of residues:

rdist(q1, q2) =
∑

0≤i<j≤2n

(rq1(i, j) 6= rq2(i, j)). (1)

We use this distance metric when identifying a conforma-
tion’s k nearest neighbors for connection. Details can be
found in (Thomas et al. 2007).

Folding Core Identification from Rigidity
Analysis

We present a new technique based on approximate landscape
models and rigidity analysis to simulate relative hydrogen
exchange rates. Our method can compute relative exchange
rates from any input pathway. We use MMC (described in
the related work) to extract multiple pathways, analyze each
one individually, and then average the results. We then use
these rates to identify folding cores.

Relative Hydrogen Exchange Rates
At a given conformation (or path-step), flexible residues are
more likely to experience hydrogen exchange than rigid re-
sides. Recall that rigidity analysis (Jacobs 1998) labels ev-
ery residue at every path-step c along an input pathway p
as rigid, independently flexible, or dependently flexible. We
assign each residue at every path-step a score based on its
rigidity classification. For a residue i, we define its rigidity
score, RS(p, i), for a particular pathway p, as the average of
its rigidity scores along p.

To compare the rigidity scores to experimental data, we
define the relative exchange rate exRS(p, i) for residue i
along a pathway p, as

exRS(p, i) = 1− RS(p, i)−RSmin(p)

RSmax(p)−RSmin(p)
(2)

where RSmin(p) is the smallest rigidity score obtained over
p for all residues and RSmax(p) is the largest. We normal-
ize the scores because in some cases residues to not become
completely rigid or completely flexible, e.g., some residues
in the native state are still flexible. Note that in most cases
this does not occur. For all the proteins studied, we found
that the minimum/maximum encountered score along indi-
vidual pathways deviated from the minimum/maximum pos-
sible in only 2 cases resulting in an average variance of
0.16%. For an input set of pathways P , we define the aver-
age relative exchange rate, EXRS(i), for residue i as the av-
erage of the relative exchange rates, exRS(p, i), for all path-
ways p ∈ P .

Figure 1(a) shows the rigidity analysis along an example
pathway for Protein G (a 56 residue protein with a central
α-helix flanked by two β-hairpin turns), and Figure 1(b)
shows the corresponding relative exchange rates. The second
β-hairpin is experimentally known to form before the first
β-hairpin (Li and Woodward 1999; McCallister, Alm, and
Baker 2000). This behavior is reflected in both the rigidity
scores and the relative exchange rates: β-hairpin 2 remains
rigid longer than β-hairpin 1 along the pathway in (a), and
its corresponding relative exchange rates (b) are lower.

(a) Rigidity Analysis Results at each Path-Step:
rigid (red), dependently flexible (green), or inde-
pendently flexible (not colored)
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Figure 1: Example unfolding pathway for Protein G. Note that this
pathway was extracted from a shortest path search for demonstra-
tion purposes. Pathways used in the results are extracted stochas-
tically using MMC and contain 10,000 path-steps with both fold-
ing and unfolding events. α-helices (filled triangles) and β-sheets
(empty triangles) are indicated along the bottom for reference.
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Folding Core Identification
We can infer the folding core from the relative exchange
rates. Given the relative exchange rates for a set of residues,
there exists some threshold t that defines the most stable
residues (i.e., the folding core). This definition is frequently
applied to experimental exchange rates in order to identify
the folding core (Li and Woodward 1999).

There are many ways to define a threshold t. For experi-
mental data, this is at the discretion of the authors and varies
widely. In this work, we determine t automatically using k-
means clustering (Jain and Dubes 1988). To determine an
appropriate value for k, we use a commonly known tech-
nique as the elbow criterion (Lieu and Saito 2007). It selects
a k such that increasing k does not add sufficient informa-
tion. The threshold t is then defined as the minimum value
splitting any two of the k clusters.

Results
Here we show the benefits of rigidity analysis in our pro-
tein motion framework, namely, improved sampling, better
ability to distinguish folding behaviors between structurally
similar proteins, and folding core identification.

Improved Sampling
Rigidity analysis coupled with automatic roadmap construc-
tion greatly improves the efficiency of our PRM framework
by restricting the sample space in a physically realistic way.
We built roadmaps for several previously studied proteins
(Amato, Dill, and Song 2003). For each protein, we compare
rigidity-based sampling with automatic map size determina-
tion to our previous sampling technique with fixed sampling
density. Both give the same secondary structure formation
order distribution and agree with experiment when available.

Figure 2(a,b) shows the relative performance of the two
methods in terms of (a) number of samples needed and (b)
connectivity. Each data point corresponds to a different pro-
tein studied. Rigidity-based sampling both reduces roadmap
size and increases roadmap connectivity. In addition, the
performance gains are not dependent on protein length (c,d).

Case study of proteins G, L NuG1, and NuG2
Proteins G, L, and mutants of protein G, NuG1 and NuG2
(Nauli, Kuhlman, and Baker 2001), present a good test case
for our technique because they are known to fold differently
despite having similar structure. All proteins are composed
of a central α-helix and a 4-stranded β-sheet. Hydrogen ex-
change experiments indicate that β1-2 forms first in pro-
tein L, and β3-4 forms first in protein G (Li and Woodward
1999). In (Nauli, Kuhlman, and Baker 2001), protein G is
mutated in both hairpins to increase the stability of β1-2 and
decrease the stability of β3-4. Φ-value analysis indicates that
the hairpin formation order for both is switched.

Our previous sampling strategy was able to capture the
folding differences between proteins G and L, but not be-
tween protein G and NuG1 or NuG2. Our rigidity-based
sampling and analysis is able to also capture the correct fold-
ing behavior of NuG1 and NuG2, see Table 1.
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Figure 2: Rigidity-based sampling produces smaller roadmaps (a)
with increased connectivity (b) vs. previous work. Performance
gains are not dependent on protein length (c,d).

Folding Core Identification
We studied 21 different proteins of varying size and struc-
ture from 54–155 residues, see (Thomas, Tapia, and Amato
2008) for a complete listing. Because a folding core thresh-
old is not universally agreed upon, we instead calculate an
appropriate threshold using the same method described ear-
lier. If numerical data is not provided, we use the labeling
suggested by the authors.

Figure 3 provides a visual comparison of simulated ex-
change rates to available experimental data on the 3D struc-
ture for some of the proteins (see (Thomas, Tapia, and Am-
ato 2008) for a complete listing). A strength of our simula-
tion is that we can compute relative exchange rates for ev-
ery residue in the structure while experiments are limited to

Experimental Rigidity Results
Protein Formation Order Formation Order %
G [α,β1,β3,β4], β2a α, β3-4, β1-2 99.4

[α,β4], [β1,β2,β3]b

L [α,β1,β2,β4], β3a β1-2, α, β3-4 100.0
[α,β1], [β2,β3,β4]b

NuG1 β1-2, β3-4c α, β1-2, β3-4 97.6
β1-2, α, β3-4 1.6

NuG2 β1-2, β3-4c α, β1-2, β3-4 96.6
β1-2, α, β3-4 1.1
β3-4, β1-2, α 1.1

Table 1: Comparison of secondary structure formation orders for
proteins G, L, NuG1, and NuG2 with known experimental results:
a (Li and Woodward 1999), b (Li and Woodward 1999), and c

(Nauli, Kuhlman, and Baker 2001). Brackets indicate no clear or-
der. Only formation orders greater than 1% are shown.
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which residues they can accurately probe.

Cont. EXa EXRS

(a) OMTKY3

Cont. EXb Pulse EXb EXRS

(b) Protein A

Pulse EXc EXRS

(c) CTXIII

Cont. EXd Cont. EXe EXRS

(d) Tendamistat

Figure 3: Comparison of simulated exchange rates to experi-
ment. For experimental data, red residues are inside the core, blue
residues are outside the core, and grey residues were not mea-
sured. For simulated exchange rate data, residues are shaded from
fastest/blue to slowest/red. a(Arrington, Teesch, and Robertson
1999). b(Bai et al. 1997). c(Sivaraman et al. 1998). d(Qiwen, Kline,
and Wuthrich 1987). e(Schonbrunner et al. 1996).

We compare our method to 4 other computational tech-
niques for folding core identification: slow mode minimas
(GNM-G), fast mode peaks (GNM-H) (Rader and Bahar
2004), and FIRST (Hespenheide et al. 2002) with two dif-
ferent hydrophobic tether definitions: H3 (the default and
most restrictive) and H1 (the least restrictive). We compare
the sensitivity and specificity of the different identification
techniques. Sensitivity is the ratio of the number of residues
accurately labeled as in the folding core by simulation to the
number of residues labeled as in the folding core by experi-
mental data. Specificity is the ratio of the number of residues
accurately labeled as out of the folding core by simulation
to the number of residues labeled as out of the folding core
by experimental data. We only examine residues that were
measured by experimental data which could be as little as
14% of the protein.

Table 2 summarizes the overall statistics for each method.
The error is calculated as the normalized distance from per-
fect sensitivity and specificity. The best performing method
in each category is indicated in boldface. Due in part to the
large noise present in the experimental data, missing mea-
surements, and labeling convention inconsistencies between
data sets, all computational methods exhibit large variances
in sensitivity and specificity, ranging from 0.025 to 0.345.

Our method performs better than FIRST and GNM-based
methods in sensitivity, between GNM and FIRST in speci-
ficity, and better than FIRST and similar to GNM-G in error.
While GNM-H has the best specificity, it also has the worst
sensitivity. This tradeoff is a common property of learning
methods. Table 2 also shows how the labeled folding core
size correlates to sensitivity and specificity. Methods that
“under-guess” tend to have lower sensitivities and higher
specificities, and methods that “over-guess” tend to have the
opposite. GNM-H predicts the smallest folding cores and
also has the lowest (highest) sensitivity (specificity). GNM-

Method Sensitivity Specificity Error % in Core
Over All Data Sets

EXRS 0.545 0.671 0.482 29.8
GNM-G 0.432 0.715 0.474 28.5
GNM-H 0.302 0.846 0.525 15.4
FIRST-H3 0.501 0.543 0.551 38.6
FIRST-H1 0.518 0.573 0.521 40.7

Over the 5 Most Complete Data Sets
EXRS 0.631 0.627 0.420 43.5
GNM-G 0.189 0.815 0.591 21.1
GNM-H 0.223 0.927 0.554 15.3
FIRST-H3 0.628 0.612 0.384 30.0
FIRST-H1 0.572 0.709 0.373 39.0

Table 2: Summary of folding core identification performance. Er-
ror is the normalized distance to perfect sensitivity and specificity.
The best performance in each category is in boldface.

H is overly conservative and thus greatly sacrifices sensitiv-
ity by labeling large portions of the protein as outside the
core. FIRST, with the largest folding cores, has moderate
sensitivity and the lowest specificity.

We believe the low sensitivities and specificities for all
methods are caused largely by varying experimental condi-
tions and missing experimental data. On average, less than
half of the protein was measured experimentally with many
below 25%. This imposes a bias to the labeling. We found
that by considering only experiments with greater than 80%
measured (the five most complete) significantly reduced the
variance for all methods across all metrics (see Table 2).

Conclusion
We describe how to use rigidity analysis to enhance an ex-
isting robotics-based protein motion framework and to iden-
tify protein folding cores from simulated exchange rates.
Rigidity analysis greatly reduces the size of the approxi-
mate landscape model needed and improves the connectiv-
ity of this model over previous work. These improvements
are not dependent on protein length, enabling the study of
larger structures in the future. The folding core predictions
from our approximate landscape models and rigidity analy-
sis are more accurate than other existing computational ap-
proaches. We believe the real use of this technique will be to
aid researchers by providing an indication of fast and slowly
exchanging residues to target for protein design.
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