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Abstract

We aim to produce predictive models that are not only
accurate, but are also interpretable to human experts.
We introduce a generative model called the Bayesian
List Machine for fitting decision lists, a type of inter-
pretable classifier, to data. We use the model to predict
stroke in atrial fibrillation patients, and produce predic-
tive models that are simple enough to be understood by
patients yet significantly outperform the medical scor-
ing systems currently in use.

Introduction

In many domains, interpretability is a fundamental desirable
quality in a predictive model (Giraud-Carrier 1998). Domain
experts tend to prefer models that explain which factors were
used to make a particular prediction. A decision list is an
interpretable classifier consisting of a series of if... then...
statements, ending with else.... The if statements define a
partition of a set of features and the then statements corre-
spond to the outcome of interest. Decision lists are a type
of associative classifier, and are similar to models used in
the expert systems literature (Leondes 2002), which were
among the first successful types of artificial intelligence.
The motivation for our work lies in developing in-
terpretable predictive models using massive observational
medical data. Most widely used medical scoring systems are
designed to be interpretable, but are not necessarily opti-
mized for accuracy, and are derived from few factors. For
instance, the CHADS, score is a widely used system for
predicting stroke in patients with atrial fibrillation (Gage et
al. 2001). A patient’s score is computed by assigning one
“point” each for the presence of congestive heart failure (C),
hypertension (H), age 75 years or older (A), and diabetes
mellitus (D) and by assigning 2 points for history of stroke
(S2). An updated version called CHA5DS5-VASc (Lip et al.
2010) includes three additional risk factors: vascular disease
(V), age 65 to 74 years old (A), and female gender (Sc).
Here we use a Bayesian model and Markov chain Monte
Carlo sampling to construct a decision list alternative to the
CHADS;, score from a large database of medical histories.
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The decision list is learned from a large dataset with many
features, which provides better accuracy than the few hand-
selected features used in the CHADSs score, yet the same
level of interpretability.

The Bayesian List Machine

We now present a generative model for decision lists which
we call the Bayesian List Machine (BLM). The setting is
multi-class classification with labels 1,..., L and training
data {(z;,y;)}",, where ; € R? are the features of obser-
vation ¢ and y; € {1,..., L} are the labels. To generate a
class label for the 7th observation z;:

1. Generate a list of rules » = 1, ..., R using a rule-mining
algorithm.

2. Sample a permutation over rules 7 from Prior(p, C').

3. Using this ordering, select the first rule that applies, in that
it matches the observed features x;. Call the rule 7;.

4. Draw alabel y; from a Dirichlet-Multinomial distribution
6(”), with Dirichlet parameters «q,...,ar and counts
N1, .., Ny 1, for rule 7; chosen in the previous step.

We now give a full description of each step.

In applications with binary features, such as ours, a list
of rules can be generated using an algorithm for frequent
itemset mining. We used the FP-Growth algorithm (Borgelt
2005) which finds all itemsets that satisfy constraints on
minimum support and maximum cardinality.

We chose a prior that favors shorter decision lists (small
number of rules before the else statement), and prefers rules
with a small number of conditional statements (small length
of each rule). The parameter C' in the prior trades off be-
tween horizontal and vertical sparseness. A separate param-
eter p controls the overall strength of the prior. The prior is:

1
A \P’
(Rr + C47)
where R, is the number of rules in the list above the rule

corresponding to the else statement (called the default rule),
A is the average length of the rules, and M is the maximum

Prior(7) o



allowed length of the rules (for example, the maximum car-
dinality constraint used in itemset mining).

An outcome y; is then generated as a single draw from
a Multinomial distribution with 8" = 95”), . ,G(L”) the
vector of class probabilities. 6" in turn follows a Dirichlet
distribution with parameters o, . . ., o, which are set to be
weakly informative. Define r € R" as a vector of rule labels
such that element 7; = r if x; is classified by rule r. This is
used to compute multinomial counts n.., for each rule r and
class ¢ as the number of observations x for which r was the
first rule in the list that applied, and which have label y = /.
The likelihood then follows the Dirichlet-Multinomial dis-
tribution:

1, T(nee + o)
L
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In practice, many datasets are extremely imbalanced. For ex-
ample, many fewer medical patients have a stroke than do
not have a stroke. In such circumstances, we might simply
weight the counts in the likelihood, by replacing n,, with
nL/P(y = £).

We obtain a posterior over decision lists using Metropolis
sampling, with three step types to propose a new list 7* from
the current list 7r4: 1) Swap two rules on the decision list. 2)
Add a rule to the decision list (a rule ordered below the else
default rule). 3) Remove a rule from the decision list (move
it below the default rule). The step types and which rules to
move are chosen independently and uniformly at random.
Steps are accepted or rejected according to the Metropolis
sampling rules, and sampling proceeds until chain conver-
gence. This sampling algorithm is related to those used for
Bayesian Decision Tree models (Chipman, George, and Mc-
Culloch 1998). We make predictions in our experiments us-
ing the decision list with highest posterior probability.

Stroke prediction compared to CHADS,

We applied BLM to the MarketScan Medicaid Multi-State
Database (MDCD), which contains administrative claims
data for 11.1 million Medicaid enrollees from multiple
states. This database forms part of the suite of databases that
the Observational Medical Outcomes Partnership (OMOP,
http://omop.fnih.org) has mapped to a common data model
(Stang et al. 2010). We extracted every patient in the MDCD
database with a diagnosis of atrial fibrillation, one year of
atrial fibrillation-free observation time prior to the diagno-
sis, and one year of observation time following the diagno-
sis (n=12,586). Of these, 1,786 (14%) had a stroke within a
year of the atrial fibrillation diagnosis. This is a much larger
dataset than the one originally used to develop the CHADS,
score (n=1,733 with 94 strokes). We used as features all
medications and conditions in the pre-diagnosis medical his-
tory (a total of 4,146), together with age and gender. We
chose prior hyperparameters to obtain a list of similar com-
plexity to the CHADS; score, and evaluated the fit using
5-fold cross validation.

In Figure 1 we show the decision list recovered from one
of the folds. For each rule we give the stroke risk estimated

66

if hemiplegia then stroke risk 58.0% (14.5%)

else if cerebrovascular disorder then stroke risk 46.6% (12.5%)

else if transient ischaemic attack and essential hypertension
then stroke risk 23.2% (8.3%)

else if occlusion and stenosis of carotid artery
then stroke risk 16.4% (7.8%)

else if age <60 then stroke risk 3.7% (7.4%)

else stroke risk 8.5%

Figure 1: Decision list for determining 1-year stroke risk fol-
lowing diagnosis of atrial fibrillation from patient medical
history. For each rule we give in parentheses the base risk
for all patients that make it to that depth on the list.
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Figure 2: ROC curves for stroke prediction on the MDCD
database for each of 5 folds of cross-validation, for BLM
(solid), CHADS5 (dashed), and CHA5DS,-VASc (dotted).

from the training data as the number of patients satisfying
that rule (and no preceding rule) that had a stroke. We give
in parentheses the stroke risk across all patients that did not
satisfy any of the preceding rules in the list. For example,
the second line in the list indicates that among patients with-
out hemiplegia the stroke risk was 12.5%, which increased
to 46.6% when patients had a cerebrovascular disorder. The
first half of the decision list focuses on a history of stroke
and stroke symptoms, in order of severity. The second half
of the decision list includes age factors and vascular dis-
ease, which are known risk factors and are included in the
CHA5DS5-VASc score.

Figure 2 shows ROC curves for all 5 folds for BLM,
CHADSs, and CHA5DS»-VASc. In Table 1 we report mean
AUC (in parentheses, standard deviation) across the folds.
These results show that with complexity and interpretability
similar to CHADS,, the BLM decision lists performed sig-
nificantly better at stroke prediction than both CHADS, and
CHA,;DS5-VASc (p < 0.01, t-test). Interestingly, we also
found that CHADS,, outperformed CHA>DS»-VASc despite
CHA3DS5-VASc being an extension to CHADS,. This is
likely because the model for the CHA;DS5-VASc score, in
which risk factors are added linearly, is a poor model of ac-
tual stroke risk, and highlights the difficulty in constructing



\ BLM CHADS» CHA>DS»-VASc
AUC | 0.750 (0.007)  0.721 (0.014) 0.677 (0.007)

Table 1: Mean AUC for stroke prediction with standard de-
viation in parentheses, across 5 folds of cross-validation.

these interpretable models manually.
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