
Real-Time Annotation Tool (RAT)

Kyle D. Feuz and Diane J. Cook
School of Electrical Engineering and Computer Science

Washington State University

Abstract

A variety of tools have been developed to bring about the re-
alization of pervasive context-aware systems. However, there
are still many challenges faced by such applications when try-
ing to determine the context of who, what, when, where, why
and how activities are being performed. One such challenge
is obtaining the necessary data to train such context-aware
systems. In this paper we present a real-time annotation tool
which has been developed to streamline the process of col-
lecting and annotating data in an experimental setting. By
decreasing the amount of time needed to collect and annotate
data, we can increase the rate at which applications can be
developed and trained to recognize the current context and re-
act accordingly. These applications can then deliver relevant
information in a timely manner supporting a broad range of
tasks.

Introduction
One of the challenges in building an activity recognition sys-
tem is obtaining labeled data which the system can use for
training the activity recognition algorithms. A typical work-
flow involves first collecting the data and then in a sepa-
rate phase having the collected data labeled by an expert.
The data labeling phase represents a significant bottleneck
in processing the data. It takes our trained annotators ap-
proximately one hour to process a day’s worth of smarthome
sensor data when the data is from an unscripted environment
(Szewcyzk et al. 2009). When the data is from a scripted en-
vironment the annotation task is much more difficult due to
the concentrated nature of the tasks and the increased level
of detailed in the annotation that is often associated with
scripted tasks. Thus annotating pre-scripted data typically
takes a trained annotator 30 minutes to annotate one hour’s
worth of data.

If we can eliminate the additional overhead of annotating
the data in a separate phase, the total time required to collect
and annotate data would be reduced by as much as 33% for
scripted data, based on the above estimates for annotation
time. To this end, we have developed the Real-time Anno-
tation Tool (RAT) which allows data to be annotated as it is
collected. In this paper we provide a detailed description of

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the RAT and provide some preliminary results on its effec-
tiveness as an annotation tool.

The RAT is an cross-platform python/pyGTK GUI appli-
cation which provides the experimenter with a set of buttons
to press as specified activities occur in the smart home. In
our setup, the experimenter is in a room separate from the
experiment but is able to observe the participant through live
video feeds. The experimenter can also communicate with
the participant through an intercom system. As the experi-
menter sees activities occurring they only need to click the
corresponding button and the activity is automatically anno-
tated in the dataset. This significantly reduces the amount
of time and effort required to annotate data by allowing the
data to be annotated at the time of collection.

Background
The RAT is designed to operate with the CASAS archi-
tecture (See Figure 1). We provide a brief introduction to
the architecture here and refer readers to Kusznir’s work
for more details (Kusznir and Cook 2010; Kusznir 2009).
The CASAS architecture is divided into three main layers:
the physical layer, the middleware layer, and the applica-
tion layer. At the physical layer are the hardware compo-
nents such as motion sensors, door sensors, light switches
and other devices. The middleware layer is governed by a
publish/subscribe manager and a set of component bridges.
The manager provides named channels on which component
bridges can publish and receive messages. The middleware
also provides time-stamping of events and assigns UUID to
each event. Communication flows from the individual com-
ponents to the manager and from the manager to the individ-
ual components via customized XMPP bridges. The appli-
cation layer consists of application built on top of the mid-
dleware. This may include activity recognition algorithms,
activity discovery algorithms, prompting systems, and oth-
ers. The RAT operates in the application layer.

The primary function of the RAT is to provide real-time
annotation of the incoming data. In order to accomplish this,
the RAT needs to interact with the raw data in the physi-
cal layer and the archive storage in the middleware layer.
These interactions are done through the middleware and we
will discuss the pertinent components here. Figure 2 shows
the sensor layout in the testbed. Events from the physical
layer are reported on a raw events channel to the middle-

2

Activity Context-Aware System Architectures: Papers from the AAAI 2013 Workshop



Figure 1: CASAS smart home architecture

ware. These events are time-stamped and assigned a UUID
and then uploaded into a storage database. Events can be
annotated in two ways and the RAT does both. First, events
can be annotated as belonging to a particular experiment and
dataset. This allows all relevant events to be associated with
an experiment and dataset for easy retrieval. Second, events
can be tagged with arbitrary activity labels (e.g., cooking,
sleeping, and eating). Real-time event tagging is provided
by the middleware through the tag channel. Events can be
tagged as belonging to multiple experiments/datasets and
can have multiple labels.

Figure 2: Sensor layout in the smart apartment

Implementation Details
The design of the RAT was heavily influenced by the end
users (i.e. the people overseeing the data collection pro-
cess). An initial prototype was developed and put into the
end users’ hands. The requirements for this initial prototype
are listed in Table 1.

Integrate with CASAS middleware architecture
Record start/stop times of activities

Record unexpected events
Deliver recorded prompts

All relevant time-sensitive buttons accessible without scrolling
Operate in Record Mode or Test Mode

Reusable for multiple experiments
Configurable by non-programmers

Datasets can be annotated multiple times

Table 1: Initial requirements for the RAT

In several sessions, the experimenters then provided feed-
back on features they felt were missing or should be
changed. These features were then integrated into the sys-
tem. The additional features and requirements which were
added to the system are listed in Table 2.

Record specific values or measurements
Record specific values from multiple experts
Record arbitrary additional text information

Provide feedback indicating what has been clicked
Correct or re-annotate mistakes

Allow for multiple experimental conditions/treatments
Allow for randomization in conditions/treatments

Table 2: Additional requirements for the RAT from user
feedback

The first requirement, Integration with the CASAS mid-
dleware, involves a few basic steps. First, the RAT must
connect to the middleware using the authentication informa-
tion provided by the user. Second, the RAT subscribes to
incoming events on the raw events channel. Every incom-
ing event is then tagged as belonging to a specific Exper-
iment and Dataset through the tag channel. Additionally,
the RAT publishes events for certain button presses (which
then get tagged and labeled) and also publishes commands
to deliver prompts. In this way, the RAT is able to tag all
incoming events as belonging to a particular experiment and
dataset, annotate the dataset using the user button presses,
and deliver prompts. We have also implemented an option
which eliminates the reliance on the middleware and instead
produces a textfile containing all of the events and tags gen-
erated by the RAT with a timestamp and identifier. This op-
tion naturally does not include the ability to play prompts
remotely or to record data external to the RAT itself.

Activity start and stop times are recorded through but-
ton presses on the RAT by the experimenter. Each time the
button is pressed an event is published on the raw events
channel. This event then gets tagged by the RAT as the start
or stop time for that activity. Smaller steps of the activity
can also be annotated. However, instead of having the user

3



press both a start and a stop button for these sub-steps, they
just press a single button when the event occurs. This helps
relieve the burden on the experimenter by reducing the num-
ber of clicks that must be performed.

The RAT can also record specific values and measure-
ments. A textfield or drop-down box is displayed to the
experimenter which can be used to enter the desired value.
Pressing the submit button causes an event to be published
on the raw events channel and to be tagged with the spec-
ified value through the tag channel. The RAT also allows
for specific values from multiple experts to be recorded.
To accomplish this multiple fields are shown with the same
submit button. Similarly arbitrary text information can
be entered through a text field and a submit button. This is
useful to note unexpected events or other important infor-
mation.

Prompts can be delivered by a button press or a key
press. This publishes a prompt message on the control chan-
nel with the prompt file to be played. A specific prompt
device can be specified or the default prompt device can be
used. The prompt device can be specified by the experi-
menter or the default prompt device can be used.

With so many possible buttons, one issue that must be ad-
dressed is how to allow for all of the time-sensitive buttons
to be clicked without scrolling. This is achieved by hav-
ing a few standard but versatile layouts built-in to the RAT.
For example, a list layout can be used to show activities with
many sub-steps (See Figure 3 ). If not all the activities fit in
the list we can dynamically rearrange the order of activities
so that the currently relevant activity (or activities) is shown
first in the list. Alternatively, a grid layout can be used to
show a larger number of activities with fewer sub-steps (see
Figure 4).

The RAT provides feedback on multiple levels to in-
dicate which buttons have been clicked and what data has
been recorded. First, when a button is clicked its color
changes to provide immediate feedback that the button has
been clicked. Second, all of the events published by the RAT
(i.e. every button event) gets recorded and can be viewed
in the history window. This window shows the time of the
event, the dataset name, the event name and the annotation
tag. This history window can be viewed at any time and the
data can be saved to a csv file.

The problem with correcting or re-annotating data in
a real-time system is that once data is published it cannot
be unpublished. One possible solution is to publish addi-
tional events with the corrections or new annotations. This
is the approach taken by the RAT. All of the events and tags
published by the RAT are also saved by the RAT and are
displayed in the history window (see Figure 5). Double-
clicking on any event in the history window opens up a dia-
log display which allows the experimenter to select the type
of correction and enter any additional notes. Currently there
are four types of corrections available: Ignore, Timing, New
Value, or Other. The “ignore” correction is used to mark an
event as invalid. The reason this event is to be ignored can
be specified in the notes section. The “timing” correction
is used to specify a new timestamp for the event. The new
timestamp is entered in the notes section. The “new value”

correction is used to specify a new value to record which is
given priority over the old value. The new value is entered
in the notes section. Last, the “other” correction is used for
any other correction that needs to be noted.

Figure 5: RAT example history screenshot

The RAT is designed to have two different modes of op-
eration: an actual record mode and a test mode. In the
record mode events are tagged as belonging to the specified
experiment and dataset. In the test mode events are tagged
as belonging to the specified experiment and the test dataset.
This allows the functionality of the RAT to be verified with-
out requiring the creation of new datasets. The RAT can be
set to enter test mode explicitly but we also put the RAT in
test mode any time the current dataset is not started. When
the RAT is in this implicit test mode we provide strong visual
feedback (bright red buttons, no running RAT icon, and a big
green start button) to the experimenter to remind him/her to
start the dataset before actual data collection begins. This
allows the experimenter to have a new dataset ready to go
but still verify the functionality of RAT without recording
irrelevant data to the dataset.

The RAT allows a dataset to be annotated multiple
times. This feature is important for at least two different
reasons. First, an experiment could be unexpectedly inter-
rupted. For example, the hardware or software could fail or
something could go wrong with the experimental procedure.
In these cases it is important that the same dataset can be
re-opened for recording and annotation. The second reason
for allowing a dataset to be opened multiple times for an-
notation is to allow the experimenter to add additional time-
insensitive information to a dataset. An experimenter may
want to go back and record additional notes or values from
an experiment. In order to do so, the experimenter must be
able to reopen a dataset for annotation.

Annotating an existing dataset requires a few additional
constraints. A dataset is not simply a locally stored file that
can be created or saved. Instead it is a set of events that
have been tagged in the database with a dataset name. We
need to distinguish between new and existing datasets and
provide reasonable constraints to prevent accidental opening
of existing datasets. First, the RAT should only be used on
a single computer to prevent name clashes resulting from
race conditions (i.e. both RATs check that the name has not
been used, the name is free so both RATs use it. Now two
separate datasets are being recorded as a single dataset. This

4



Figure 3: RAT example list view screenshot

constraint could be resolved through naming conventions).
Second, the RAT tests to ensure that no other instance of
the RAT is running on this computer (again to prevent race
conditions). Third, we separate creating a new dataset from
opening an existing dataset. If an experimenter attempts to
create a new dataset that already exists they are shown an
error message and must enter a new dataset name.

When opening a dataset it is important that the RAT be
configured properly for that dataset. The RAT allows for
multiple experimental conditions (e.g. prompting vs no
prompting). Additionally, the conditions may have a ran-
dom component (e.g. randomize the order of activities per-
formed). The layout and functionality of the RAT is af-
fected by the experimental condition which is applied to
a dataset. For example, one condition might do activities
1,2 and 3, while the other condition only does activity 3.
Only the relevant activities should be shown for that con-
dition. Therefore, when re-opening an existing dataset, the
condition must be identical to the original condition for that
dataset. When conditions are predetermined this is a simple
matter of recording what condition has been applied. How-
ever, when a condition includes a randomized component
a little more effort is required. We solve the randomiza-
tion problem by using two random number generators. The
first generator is seeded using the standard seed (i.e. sys-
tem time). This random number generator then generates a
random number which is used as the seed value for the sec-
ond random number generator. All of the randomization for
a condition is then done using this second random number
generator with a known seed value. We save this seed so that

the same randomized sequence can then be recreated when
needed.

Lastly, the RAT must be reusable for multiple experi-
ments and should be configurable by non-programmers.
This is achieved through an xml configuration file which can
be understood and edited without extensive programming
experience. The details of the xml specification are given
in the next section.

XML specification
The content displayed in the RAT needs to be configurable
even by non-programmers. To achieve this, almost all of
the functionality of the RAT is configured via an xml file.
Table 3 lists the defined xml elements and attributes. Ta-
ble 4 lists the allowed sub-elements for each element. A
study is composed of Devices, Prompts, Experiments, and
Conditions. Devices are either atomic or composed of other
devices if the root device is a meta-device. Prompts are also
atomic. Experiments are composed of Prompts, Question-
naires, and Tasks. Both Questionnaires and Tasks are com-
posed of Events and Prompts. An event is either atomic or
composed of a prompt. Conditions are composed of Sam-
ples and Experiments. Rather than defining a full experi-
ment in condition, the id of an existing experiment can be
used. Similarly, the tasks and prompts composing that ex-
periment can be specified with an id and ordering. The level
of prompt is also specified in the conditions. Listing 1 shows
a simple xml configuration example. Using this customiz-
able xml configuration file the RAT can be used for multiple
experiments and can be configured by the experiment with-

5



Element Attribute Default Value Description
Study The root tag

name “” Displayed in the title bar, Experiment name in the database.
Prompt Defines a prompt which can be delivered by the RAT

name “” Displayed by the prompt button
id -1 Unique identifier
file “” Filename of the prompt
default device Default device id on which the prompt should be played
level 0 Set the prompt level (Should be set as part of a “Condition”)

Device Defines a device on which a prompt can be played
name “” Displayed in the device menu
id -1 Unique identifier
serial “” Serial number used for the middleware
location “” Location used for the middleware
meta device False Allows a device to represent multiple devices

Condition Defines a condition/treatment to be applied
name “” Displayed in the condition menu
id -1 Unique identifier

Sample Defines a sampling method
id -1 Unique identifier
choice list “” List of possible samples
replace True Specify with or without replacement

Experiment Defines the experiment to be conducted
name “” Displayed in the experiment menu
id -1 Unique identifier
display mode list Specifies the layout of the tasks (list/grid/grouped).
columns 1 the number of columns in the grid
start False Specify display of experiment start/stop button

Task Defines a task to be performed
name “” Displayed as the task label
id -1 Unique identifier
desc “” More detailed description shown as a tooltip
group 1 Specify the task group (Used for grouped display mode)
start True Specify display of task start/stop button
order “” Specify the display order (Should be set as part of a “Condi-

tion”)
level “” Specify the prompt level for this task (Should be set as part of a

“Condition”)
Event Defines a specific event

name “” Displayed as the button label
id -1 Unique identifier
desc “” More detailed description shown as a tooltip
type button Specify the display type (button/field/choice)
choice list “” Specify the possible choices (used with type=choice)
inputs 1 Specify the number of inputs (used with type=choice or field)

Questionnaire Defines a questionnaire (special type of task)
name “” Displayed in the questionnaire title bar
id -1 Unique identifier

Table 3: RAT XML Elements and Attributes

6



Figure 4: RAT example grid view screenshot

out requiring any programming changes to the RAT itself.

Element Sub-elements

Study

Device
Prompt
Experiment
Condition

Device Device
Prompt

Experiments
Prompts
Questionnaire
Task

Questionnaire Prompt
Event

Task Prompt
Event

Condition Experiment
Sample

Event Prompt

Table 4: RAT XML Elements and Attributes

Usability Survey
The RAT has been used to collect and annotate data from
multiple sets of experiments in the smart apartment. De-
scribing the full experimental setup for each situation is out-
side of the scope of this paper, however, we do provide a
brief description of one of the experiments to better illus-
trate the purpose and use of the RAT.

The smart apartment is equipped with a variety of motion
sensors, door sensors, item sensors, and other sensor. Partic-

ipants are brought into the apartment and asked to perform
three household tasks out of six possible task including, wa-
ter plants, take medication, wash countertop, sweeping and
dusting, cooking, and handwashing. Which three task are
selected and the order of the tasks are selected randomly.
During the task, a prompt may be played to help the par-
ticipant complete the task. This prompt can be an indirect
audio prompt, a direct audio prompt or a direct audio/video
prompt. The type of prompt that is given for each activity
is dependent upon the experimental condition being applied
to that participant. The RAT only displays the three activi-
ties which are to be performed under the given experimental
condition and highlights the prompt button which should be
played for this condition. The experimenter remains in a
separate room from the participant and observes the partic-
ipant via live video feeds. At the same time they use the
RAT to annotate the data and to deliver the prompts. Fig-
ure 6 shows an experiment in progress. The psychologists
are interested in this experiment to analyze how different
clinical conditions affect the performance of everyday activ-
ities while the computer scientists are interested in gather-
ing data for activity recognition, detecting prompt situations,
and predicting clinical conditions from behavioral data.

To quantify the usability of the RAT we asked the ex-
perimenters conducting the above experiment to complete
a short survey about the RAT. Five experimenters completed
the survey. With one exception, experimenters completing
the survey were Psychology graduate and undergraduate stu-
dents with little to no programming experience and no pre-
vious experience using the RAT prior to conducting the ex-

7



Listing 1: Example XML Configuration File
<?xml version="1.0"?>
<Study name="Transition Prompting" >

<Condition name="A" id="0">
<Sample id="1" choice_list="2,3,4,5,6,7,8,9,10,11,12,13"
replace="False" />
<Experiment id="2">

<Prompt id="1" order="1" level="1" />
<Task id="1" order="*1" />
<Task id="5" order="*1" />
<Task id="8" order="*1" />
<Task id="13" order="1" />

</Experiment>
</Condition>
<Condition name="B" id="1">

<Experiment id="2">
<Prompt id="1" order="1" level="1" />
<Task id="1" order="2" />
<Task id="5" order="3" />
<Task id="8" order="4" />
<Task id="13" order="1" />

</Experiment>
</Condition>
<Device name="_DMN" serial="" location="dmn" id="1"/>
<Device name="_Tablet" id="2" meta_device="True">

<Device name="_Default" id="20" />
<Device name="_Kitchen-tablet" serial=""
location="kitchen-tablet" id="22" />
<Device name="_Livingroom-tablet" serial=""
location="livingroom-tablet" id="23" />

</Device>
<Prompt name="Prompt" id="1" file="7" default_device="1"/>
<Experiment name="Transition" id="1" >

<Task name="Magazine" id="1" />
<Task name="T.V." id="2" />
<Task name="Puzzle" id="3" />

</Experiment>
<Experiment name="Prompting" id="2" >

<Task name="Magazine" id="1" >
<Prompt id="1" />

</Task>
<Task name="Copy Recipe" id="5" />
<Task name="Closet Items" id="8" />
<Task name="Memory Notebook" id="13" >

<Event name="Used Voice" id="1" />
<Event name="Used Pen" id="2" />
<Event name="Typed" id="3" />

</Task>
</Experiment>

</Study>

periments in the smart apartment. The one exception is the
lab manager who had experience using the RAT because she
helped write the xml configuration file used in the experi-
ment described above.

The survey consists of several questions requiring a re-
sponse on a ten-point scale. A few of the questions were
more open-ended (e.g., If you were designing this software,
how would you change it so that it worked better for you?).
All of the quantitative questions and the average responses
are shown in Table 5.

Overall the results are positive. The question receiving the
highest response is “How often did system errors occur?”
indicating the low occurrence of system errors. Other ques-
tions receiving high responses include, “Does the arrange-
ment of information ... make sense?” and “How quickly
did you learn to use the system?” This is also reflected in
the responses to the open ended questions. For example,
when asked “What did you like about the software you used?
Were there any features that you found particularly useful?
Why?”, multiple responses indicated the ease-of-use and the
organization with one respondent saying “The interface is
easy to use. Just click a button and go.”

Quantitatively, users generally indicated that the RAT is

Figure 6: Experimenter using the RAT

easier to use than other methods of data collection they had
used in the past. When asked “How does the RAT compare
to previous methods of data collection and annotation that
you have used?” the average rating is an 8.6. More detail
about the RAT’s ease-of-use as compared to other data col-
lection methods is seen in the open-ended responses to the
following question: “In what ways (if any) is using the RAT
easier than previous data collection and annotation methods
you have used?” Users indicate such features as “No tran-
scribing involved” and the elimination of repetitive data en-
try, “Saves time because we don’t have to re-enter this infor-
mation into the database.”

Of course, the survey also helped bring to light some is-
sues encountered by the experimenters while using the RAT.
The question receiving the lowest response is “How easy
was it to explore features of the application by trial and er-
ror?” This may indicate that the test mode is not properly
understood or is not being adequately utilized. Alternatively,
it may be due to the nature of working with real-time data
and the inability to easily correct mistakes.

The inability to easily correct mistakes also stood out in
the qualitative responses. When asked “What did you not
like about the software you used? Were there any features
that gave you particular grief? Why?” Several respondents
indicated difficulty fixing errors. As one respondent stated,
“It’s difficult to fix errors or change incorrect items, espe-
cially when time-stamped.” Similarly, when asked, “In what
ways (if any) is using the RAT harder than previous data col-
lection and annotation methods you have used?” one respon-
dent said, “Writing things down is a bit more difficult, but
it allows you to fix errors, change time-stamps, and specify
unusual events with more ease.” Before issuing this survey
we were unaware that correcting errors with timestamps was
so problematic for the experimenters. We have since started
looking at possible solutions to decrease the burden required
to correct an error.

8



Question Response
(Average)

On a scale of 1-10 (1 terrible, 10 wonderful)
what was your overall impression of the appli-
cation?

8.4

On a scale of 1-10 (1 difficult, 10 easy) how
easy was it to successfully use the application?

9.2

On a scale of 1-10 (1 frustrating, 10 satisfying)
how enjoyable was it to use the application?

8.8

On a scale of 1-10 (1 never, 10 always) how
helpful were the screen layouts?

8.6

On a scale of 1-10 (1 harder, 10 easier) how
does the RAT compare to previous methods of
data collection and annotation that you have
used?

8.6

On a scale of 1-10 (1 inadequate, 10 adequate)
was there a sufficient amount of information on
each screen?

9.2

On a scale of 1-10 (1 illogical, 10 logical) Does
the arrangement of information on each screen
make sense?

9.4

On a scale of 1-10 (1 difficult, 10 easy) how
easy was it to learn how to use the system?

8.8

On a scale of 1-10 (1 slow, 10 fast) how quickly
did you learn how to use the system?

9.4

On a scale of 1-10 (1 discouraging, 10 encour-
aging) how easy was it to explore features of the
application by trial and error?

7.4

On a scale of 1-10 (1 undependable, 10 depend-
able) how did you feel about the reliability of
the system?

8.5

On a scale of 1-10 (1 frequently, 10 seldom)
how often did system errors occur?

9.6

On a scale of 1-10 (1 with difficulty, 10 eas-
ily) how well do you think you can accomplish
tasks?

9.4

Table 5: Quantitative survey questions and results

Discussion
We measure the effectiveness of the RAT strictly in terms
of the amount of time saved during the data collection and
annotation process. In the future we will also measure the
effectiveness of the RAT in terms of the inter-rater reliability
(Armstrong et al. 1997) and the accuracy of the online an-
notations obtained via the RAT vs. offline annotations made
via the video recordings.

Ideally, the RAT would completely eliminate the annota-
tion processing time required after the data has been col-
lected leading to a 33% reduction in the total amount of
time required to collect and annotate the data. In practice,
the RAT does not achieve this goal due to operator errors
which occur during the collection phase. These errors are
noted by the experimenter using the RAT, but cannot typ-
ically be corrected automatically. Instead, the annotations
must be scanned for errors and unexpected events before the
final annotations are generated. Anecdotally, the number of
errors has been low, usually less than four per hour of data
collection. Processing these errors is a matter of a simple
string search to find the error and then editing the file with
the manual correction. On average, the total post-processing

time is less than five minutes per hour of collected data. This
represents a significant reduction in post-processing time as
compared to the previous post-processing time of 30 min-
utes per hour of collected data.

Although the initial goal of the RAT was to provide an-
notated behavioral data in real-time, the RAT can also be
used to created coded data. For example, most of the data
we collect from experiments run in the smart apartment is
used both by computer scientists for activity recognition and
discovery, and also by clinical psychologists for studying
certain clinical conditions such as Alzheimer’s dementia or
Parkinson’s disease. In the past, the coding of the data for
the psychologists was done separately from the annotating
of data for the computer scientists. The RAT can actually
be used to unify these two tasks. The RAT allows for all
the necessary information for coding the data to be collected
while simultaneously annotating the data for the computer
scientists. Note that this eliminates the need of having an
additional experimenter present just to run the RAT.

Collecting data, annotating data and simultaneously cod-
ing data leads to additional time-savings. In the past, coding
scripted data took an estimated 5-10 min per hour of col-
lected data. Each segment of the experiment had to be as-
signed to an expert trained in coding that specific data as it
is too much to expect a single expert to learn all of the cod-
ing rules for the entire experiment. With the RAT all of this
coding can be done automatically.

Coding data automatically is a multi-step process. First,
the storage database is queried to extract the relevant events
and tags. Then this data is processed by a script which ex-
tracts the desired features and outputs them in a csv file
which can then be imported into excel or a standard sta-
tistical package such as SPSS. Examples of features which
are extracted include counts of events, the order of event se-
quences, time between events, and ratings entered by the ex-
perimenter. All of these features are easily calculated from
the timestamped and annotated data provided by the RAT.
We are currently designing methods to automate this extrac-
tion and conversion process.

Conclusion
Knowing the who, what why, where, when and how of a sit-
uation is vital to providing relevant context-based applica-
tions. Unfortunately, developing such systems is a resource
intensive process both in terms of time and money. Collect-
ing and annotating data which can later be used when train-
ing context-aware applications is one area that consumes
these resources. We have developed a real-time annotation
tool which facilitates the data collection and annotation pro-
cess by allowing data to be collected and simultaneously an-
notated by an expert.

The RAT meets many key requirements which make it an
ideal tool for use in the data collection process. It is versatile
and can be used for a variety of experimental setups and can
be configured without extensive programming experience.
The interface has been designed and influenced by user feed-
back and is well-tailored to the experimenter’s needs. Sur-
vey results indicate that the RAT is user-friendly, intuitive to

9



learn and use and represents a significant improvement over
previous data collection and annotation methods.

Using the RAT has resulted in a significant decrease in
the amount of time required to collect and annotate scripted
data. Previously, for every hour of spent collecting scripted
data approximately thirty minutes of additional time was
necessary to annotate the data. The RAT reduces that time
significantly by allowing most of the annotation process to
occur during data collection and then only a small amount of
time (usually five minutes or less per hour of scripted data)
is required to clean up any errors which have been noted by
the experimenter.

We plan to continue to improve the RAT to better meet
experimenters needs and plan to release an open source ver-
sion in the near future. This will allow the wider com-
munity to enjoy the benefits of the RAT as well as con-
tribute additional improvements. The RAT will be hosted
at casas.wsu.edu and will be available for non-commercial
use. Building reliable, pervasive context-aware applications
requires a broad range of support tools and system architec-
tures. The RAT contributes to this larger goal and will as-
sist in making context-aware applications an everyday con-
venience to users everywhere.

References
Armstrong, D.; Gosling, A.; Weinman, J.; and Marteau, T.
1997. The place of inter-rater reliability in qualitative re-
search: an empirical study. Sociology 31(3):597–606.
Kusznir, J., and Cook, D. J. 2010. Designing lightweight
software architectures for smart environments. In Intelligent
Environments (IE), 2010 Sixth International Conference on,
220–224. IEEE.
Kusznir, J. 2009. Clm as a smart home middleware. Master’s
thesis, Washington State University.
Szewcyzk, S.; Dwan, K.; Minor, B.; Swedlove, B.; and
Cook, D. 2009. Annotating smart environment sensor
data for activity learning. Technology and Health Care
17(3):161–169.

10




