
On the Completeness of Lifted Variable Elimination∗

Nima Taghipour, Daan Fierens, Guy Van den Broeck,
Jesse Davis, Hendrik Blockeel

Department of Computer Science
KU Leuven, Belgium

Abstract

Lifting aims at improving the efficiency of probabilistic infer-
ence by exploiting symmetries in the model. Various meth-
ods for lifted probabilistic inference have been proposed, but
our understanding of these methods and the relationships be-
tween them is still limited, compared to their propositional
counterparts. The only existing theoretical characterization
of lifting is a completeness result for weighted first-order
model counting. This paper addresses the question whether
the same completeness result holds for other lifted inference
algorithms. We answer this question positively for lifted vari-
able elimination (LVE). Our proof relies on introducing a
novel inference operator for LVE.

Introduction
Probabilistic logical models combine graphical models with
elements of first-order logic to compactly model uncertainty
in structured domains (De Raedt et al. 2008; Getoor and
Taskar 2007). These domains can involve a large number of
objects, making efficient inference a challenge. Lifted prob-
abilistic inference methods address this problem by exploit-
ing symmetries present in the structure of the model (Poole
2011; Kersting 2012). The basic principle is to identify “in-
terchangeable” groups of objects and perform an inference
operation once per group instead of once per individual in
the group. Researchers have proposed “lifted” versions of
many standard propositional inference algorithms, includ-
ing variable elimination (Poole 2003; de Salvo Braz 2007;
Milch et al. 2008), belief propagation (Singla and Domin-
gos 2008; Kersting, Ahmadi, and Natarajan 2009), recur-
sive conditioning (Poole, Bacchus, and Kisynski 2011), and
weighted model counting (Gogate and Domingos 2011;
Van den Broeck et al. 2011).

Despite the progress made, we have far less insight into
lifted inference methods than into their propositional coun-
terparts. Only recently has a definition been proposed for
lifted inference. Domain-lifted inference requires the time-
complexity of inference to be at most polynomial in the do-
main size (number of objects) of the model (Van den Broeck

∗Most of the material in this work was published at the 16th
International Conference on Artificial Intelligence and Statistics
(AISTATS), 2013, Scottsdale, AZ, USA.
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2011). In contrast, standard propositional inference is typ-
ically exponential in the domain size in probabilistic logi-
cal models. Given this definition, it is possible to charac-
terize, in the form of completeness results, which classes
of models always permit lifted inference. Weighted first-
order model counting (WFOMC) is the first lifted algorithm
shown to be complete for a non-trivial model class: Van den
Broeck (2011) showed that WFOMC is domain-lifted com-
plete for 2-logvar models. These models can express many
important regularities that commonly occur in real-world
problems, such as (anti-)homophily and symmetry.

This raises the question whether WFOMC is fundamen-
tally more powerful for lifted inference than other ap-
proaches, such as lifted variable elimination (LVE). In this
paper, we address that question. We show that LVE is com-
plete for the same class of models that WFOMC was shown
to be complete for. This theoretical result advances our un-
derstanding about the relationship between these two ap-
proaches. The completeness theorem is proven by extend-
ing a state-of-the-art algorithm for LVE with a new operator,
called group-inversion, and showing that the new algorithm
has the completeness property (Taghipour et al. 2013b). In
addition, we provide a brief high-level overview of the re-
lation between various lifted operations of LVE and lifted
search-based methods like WFOMC.

Representation
Like earlier work on LVE, we use a representation based
on parametrized random variables and parametric fac-
tors (Poole 2003). This representation combines random
variables and factors (as used in factor graphs) with concepts
from first order logic. The goal is to compactly define com-
plex probability distributions over large sets of variables.

We use the term ‘variable’ in both the logical and proba-
bilistic sense. We use logvar for logical variables and rand-
var for random variables. We write variables in uppercase
and values in lowercase.
Preliminaries. A factor f = φf (Af), where Af =
(A1, . . . , An) are randvars and φf is a potential func-
tion, maps each configuration of Af to a real number. A
factor graph is a set of factors F over randvars A =⋃
f∈F Af and defines a probability distribution PF (A) =

1
Z

∏
f∈F φf (Af), with Z a normalization constant.

74

Statistical Relational Artificial Intelligence: Papers from the AAAI 2013 Workshop

The vocabulary consists of predicates (representing prop-
erties and relations), constants (representing objects) and
logvars. A term is a constant or a logvar. An atom is of the
form P (t1, t2, . . . , tn), where P is a predicate and each ar-
gument ti is a term. An atom is ground if all its arguments
are constants. Each logvar X has a finite domain D(X),
which is a set of constants. A constraint C on a set of logvars
X = {X1, . . . , Xn} is a conjunction of inequalities of the
formXi 6= twhere t is a constant inD(Xi) or a logvar in X.
A substitution θ = {X1 → t1, . . . , Xn → tn} maps logvars
to terms. When all ti’s are constants, θ is called a ground-
ing substitution. Given a constraint C, we use gr(X|C) to
denote the set of grounding substitutions to X that are con-
sistent with C.
Parametrized randvars. The representation associates
atoms with randvars. To this end, every predicate is
assigned a range, i.e., a set of possible values, e.g.,
range(BloodType) = {a, b, ab, o}. A ground atom then
represents a randvar, e.g., BloodType(joe).

To compactly encode distributions over many randvars,
the concept of a parametrized randvar (PRV) was intro-
duced (Poole 2003). A PRV is of the form P (X)|C, where
P (X) is an atom and C is a constraint on X. A PRV repre-
sents a set of randvars. Concretely, the set of randvars rep-
resented by a PRV V = P (X)|C is denoted RV (V) and is
defined as {P (X)θ|θ ∈ gr(X|C)}.
Example 1. Suppose D(X) = D(Y) = {a, b, c, d}, where
a stands for the person ann , b for bob, etc. The PRV
Friends(X,Y)|X 6= Y represents a set of 12 randvars,
namely {Friends(a, b),Friends(a, c), . . . ,Friends(d, c)}.
Similarly, the (unconstrained) PRVs Smokes(X) and
Drinks(X) each represent a set of 4 randvars. �
Parametric factors (parfactors). Like PRVs compactly en-
code sets of randvars, parfactors compactly encode sets of
factors. A parfactor is of the form ∀L : φ(A)|C, with L a
set of logvars, C a constraint on L,A = (Ai)

n
i=1 a sequence

of atoms parametrized with L, and φ a potential function on
A. The set of logvars occurring in A is denoted logvar(A),
and we have logvar(A) ⊆ L. When logvar(A) = L, we
omit L and write the parfactor as φ(A)|C. A factor φ(A′)
is called a grounding of a parfactor φ(A)|C if A′ can be
obtained by instantiating L according to a grounding substi-
tution θ ∈ gr(L|C). The set of all groundings of a parfactor
g is denoted gr(g).
Example 2. We use the following as our running exam-
ple. Below we abbreviate Drinks to D, Friends to F and
Smokes to S. The parfactor

g1 = φ1(S (X),F (X,Y),D(Y))|X 6= Y (1)
represents a set of 12 factors, namely gr(g1) =
{φ1(S (a),F (a, b),D(b)), . . . , φ1(S (d),F (d, c),D(c))}. If
we choose the entries in the potential φ1 appropriately, we
can use this parfactor to encode, for instance, that if X is a
smoker and is friends with Y , then Y is likely to be a drinker.
The parfactor

g2 = φ2(F (X,Y),F (Y,X))|X 6= Y (2)
also represents 12 factors, and can be used to encode, for
instance, that friendship is likely to be symmetric. �

Parfactor models. When talking about a model below, we
mean a set of parfactors. In essence, a set of parfactors G
is a compact way of defining a set of factors F = {f |f ∈
gr(g) ∧ g ∈ G}. The corresponding probability distribution
is PG(A) = 1

Z

∏
f∈F φf (Af).

(Lifted) Variable Elimination
This section reviews the lifted variable elimination algo-
rithm that we build on, namely C-FOVE (Milch et al. 2008).

Variable elimination calculates a marginal distribution by
eliminating randvars in a specific order from the model until
reaching the desired marginal (Poole and Zhang 2003). To
eliminate a single randvar V , it first multiplies all factors
containing V into a single factor and then sums out V from
that single factor. Lifted variable elimination (LVE) does this
on a lifted level by eliminating parametrized randvars (i.e.,
whole sets of randvars) from parfactors (i.e., sets of factors).
The outer loop of LVE is as follows.

Inputs: G: a model; Q: the query randvar.
while G contains other randvars than Q:

if a PRV V can be eliminated by lifted sum-out
G← eliminate V in G by lifted sum-out

else apply an enabling operator on parfactors in G
end while
return G

As this shows, LVE works by applying a set of lifted op-
erators. We now discuss the most basic operators. Beside
these, LVE has counting operators, which we discuss later.
Lifted sum-out. This operator sums-out a PRV, and hence
all the randvars represented by that PRV, from the model.
Lifted sum-out is applicable only under a precondition (each
randvar represented by the PRV appears in exactly one
grounding of exactly one parfactor in the model). The goal
of all other operators is to manipulate the parfactors into a
form that satisfies this precondition. In this sense, all opera-
tors except lifted sum-out are enabling operators.
Lifted multiplication. This operator performs the equiva-
lent of many factor multiplications in a single lifted opera-
tion. It prepares the model for sum-out by replacing all the
parfactors that share a particular PRV by a single equivalent
product parfactor.
Splitting and shattering. These operators rewrite the model
into a normal form in which, e.g., each pair of PRVs repre-
sent either identical or disjoint randvars.

Completeness of LVE
Lifting can yield significant speedups over standard infer-
ence. This has been demonstrated empirically in large mod-
els where a lifted algorithm can conclude inference with-
out grounding. There, a central feature of lifted inference
is scalability w.r.t. the domain size (the number of objects
in the model). This is formally captured in the definition of
domain-lifted inference (Van den Broeck 2011):

Definition 1 (Domain-lifted algorithm) A probabilistic
inference algorithm is domain-lifted for a model G, query
Q and evidence E iff it runs in polynomial time in |D1|, ...,
|Dk|, with Di the domain of logvar Xi ∈ logvar(G,Q, E).

75

Note that this definition of ‘lifting’ requires time polynomial
in the domain size. This is to contrast with standard propo-
sitional inference, which is often exponential in the domain
size for common probabilistic logical models. This defini-
tion allows us to evaluate lifted algorithms not only by em-
pirical evaluation on specific models, but by theoretically
characterizing their completeness w.r.t. useful model classes
(Van den Broeck 2011):

Definition 2 (Completeness) An algorithm is complete for
a class M of models, if it is domain-lifted for all models
G ∈M and all ground queries Q and evidence E .

Intuitively, this means that we can analyze a model syn-
tactically and know a priori whether lifting is possible.
Among all the lifted inference algorithms, the only exist-
ing completeness results belongs to WFOMC, which was
shown to be complete for 2-logvar models (Van den Broeck
2011). This refers to any model where each parfactor con-
tains at most 2 logvars. While C-FOVE has a lifted solution
for some 2-logvar models, it is not complete w.r.t. this class.
Consider the 2-logvar model from Example 2. C-FOVE can
handle the model consisting only of the first parfactor g1 in
a lifted way (i.e., without grounding). However, including
the second parfactor g2 forces C-FOVE to ground the model
and run inference with exponential complexity in the do-
main size. This raises the question whether this is due to an
inherent limitation of LVE.

In this paper, we answer this question negatively by pre-
senting a lifted inference solution for LVE for all 2-logvar
models. For this, we introduce a novel lifted operator in C-
FOVE, resulting in the C-FOVE+ algorithm. This allows us
to present the first completeness results for LVE, showing
that C-FOVE+ is complete in the same sense as WFOMC
(for the proof, see Taghipour et al., 2013b).

Theorem 1 C-FOVE+ is a complete domain-lifted algo-
rithm for 2-logvar models.

Importance of the result. Our completeness result fur-
thers our understanding of the relation between LVE and
search-based methods. Van den Broeck (2011) showed that
WFOMC is complete for the class of 2-WFOMC models.
Any such model can be represented as a 2-logvar model, and
vice versa. Our completeness result for LVE is thus equally
strong as that of WFOMC.

The class of 2-logvar models includes many use-
ful and often employed models in statistical relational
learning. It can model multiple kinds of relations,
including: homophily between linked entities, e.g.,
φ(Property(X), Related(X,Y), Property(Y)); symme-
try, e.g., φ(Friend(X,Y), Friend(Y,X)); anti-symmetry,
e.g., φ(Smaller(X,Y),Smaller(Y,X)); and reflexivity,
e.g., φ(Knows(X,X)). Theorem 1 guarantees that for these
models, LVE can perform inference in time polynomial in
the domain size.
Secondary result. Beside our main result (Theorem 1), we
also present a second result (Theorem 2), which is in line
with a known result for lifted recursive conditioning (Poole,
Bacchus, and Kisynski 2011). This theorem applies to mod-
els that restrict the number of logvars per atom, whereas

Theorem 1 restricts the number of logvars per parfactor. Let
us call a parfactor model monadic if each atom in the model
contains at most 1 logvar.

Theorem 2 C-FOVE+ is a complete domain-lifted algo-
rithm for monadic models.

Summary. The state of the art in LVE is the result of various
complementary efforts (Poole 2003; de Salvo Braz 2007;
Milch et al. 2008; Apsel and Brafman 2011; Taghipour et al.
2012; Taghipour and Davis 2012; Taghipour et al. 2013b).
Table 1 summarizes the resulting LVE algorithms and shows
their completeness w.r.t. the two classes of monadic and 2-
logvar models. The next sections briefly introduce the ma-
chinery that allows us to establish the completeness results;
for the proofs of theorems and further details, we refer to
Taghipour et al. (2013b).

A New Operator: Group Inversion
We now introduce a new lifted operator called group inver-
sion. This operator is required to make LVE complete for im-
portant classes of models, as argued above. Group inversion
generalizes the existing inversion operator of LVE (de Salvo
Braz, Amir, and Roth 2005; Poole 2003) and is inspired by
the concept of disconnected groundings in lifted recursive
conditioning (Poole, Bacchus, and Kisynski 2011). We first
review inversion, and then define group inversion.

Inversion
Lifted sum-out eliminates a PRV, i.e., a whole set of rand-
vars, in a single operation. An important principle that it
relies on is inversion, which consists of turning a sum of
products into a product of sums (de Salvo Braz, Amir,
and Roth 2005; Poole 2003). Consider the sum of products∑
i

∑
j i · j. If the range of j does not depend on i, it can

be rewritten as (
∑
j j)(

∑
i i), which is a product of sums.

More generally, given n variables x1, . . . , xn, with indepen-
dent ranges, we have

∑

x1

∑

x2

. . .
∑

xn

n∏

i=1

f(xi) =
n∏

i=1

∑

xi

f(xi).

Furthermore, if all xi have the same range, this equals
(
∑
x1
f(x1))n. That is, the summation can be performed for

only one representative x1 and the result used for all xi.
Exactly the same principle can be applied in

lifted inference for summing out randvars. Suppose
we need to sum out F (X,Y) from the parfactor
g1 = φ1(S(X), F (X,Y), D(Y)) from Example 2.
For each instantiation (x, y) of (X,Y), F (x, y) has the
same range, hence applying inversion yields
∑

F (a,a)

∑

F (a,b)

. . .
∑

F (d,d)

∏

θ∈Θ

g1θ =
∏

θ∈Θ

(∑

F (X,Y)θ

g1θ
)

(3)

with Θ = gr(X,Y). This shows that we can perform
the sum-out operations independently for each F (X,Y)θ =
F (x, y), and multiply the results. Furthermore, since all the
factors g1θ are groundings of the same parfactor and have

76

Algorithm Description Completeness w.r.t.
Monadic 2-logvar

FOVE Operators: MULTIPLY , SUM-OUT (Poole 2003; de Salvo Braz 2007) × ×

C-FOVE + counting formulas + COUNT-CONVERT (Milch et al. 2008) × ×

GC-FOVE + extensionally complete constraint languages + ABSORPTION (Taghipour et al. 2013a) × ×

C-FOVE# + generalized counting (Taghipour and Davis 2012)
X

×
≈ + joint formulas (Apsel and Brafman 2011)

C-FOVE+ C-FOVE# + group inversion (Taghipour et al. 2013b) X X

Table 1: Summary of completeness results for the family of LVE algorithms (X: Complete, ×: Not complete).

the same potential φ1, the result of summing out their sec-
ond argument F (X,Y)θ is also the same potential, denoted
φ′1. It thus suffices to only perform one instance of these
sum-out operations and rewrite Expression 3 as

∏

(x,y)

(∑

F (x,y)

φ1(S(x), F (x, y), D(y))
)

=
∏

(x,y)

(
φ′1(S(x), D(y))

)
= gr(g′1)

where g′1 = φ′1(S(X), D(Y)). This is what lifted sum-out
by inversion does: it directly computes the parfactor g′1 from
g1 = φ1(S(X), F (X,Y), D(Y)) by summing out F (X,Y)
from g1 in a single operation. This single lifted operation
replaces |Θ| sum-out operations on the ground level.

Group Inversion: Principle
Inversion only works when the summations are independent.
Our first contribution is based on the following observa-
tion. When we cannot apply inversion because of dependen-
cies between factors, we can still partition the factors (and
the summations) into groups such that dependencies exist
only among factors within a group, but not between groups.
Furthermore, we can do this at the lifted level: we can com-
pute the result for one group and use it for all groups, pro-
vided that these groups are isomorphic, i.e., that there exists
a one-to-one-mapping of one group’s randvars to the others’.

Consider the problematic parfactor from Example 2,
g2 = φ2(F (X,Y), F (Y,X))|X 6= Y . Figure 1 depicts this
model graphically. Consider summing out F (X,Y) from
this model. The sum related to one particular instantiation
(a, b) looks as follows.

. . .
∑

F (a,b)

∑

F (b,a)

φ2(F (a, b), F (b, a)) · φ2(F (b, a), F (a, b))

The product contains two factors over the considered pair
of randvars F (a, b) and F (b, a). Inversion is not applicable
here, since the product of these two cannot be moved out
of the summation over either randvar. Still, the two summa-
tions are independent of all other factors, and can be isolated
from the rest of the computation. The same can be done for
each pair of instantiations {(x, y), (y, x)} of (X,Y), corre-
sponding to each pair of factors grouped in the same box in

F (a, b) F (b, a)φ

φ

F (z, w)F (w, z) φ

φ

F (a, c) F (c, a)φ

φ

. . .

Figure 1: Group inversion on pairs of randvars. Circles rep-
resent randvars, squares represent factors. Dashed boxes in-
dicate the partitioning into groups.

Figure 1. This means that summing out F (X,Y) from g2

can be done using group inversion:
∑

F (a,b)

∑

F (a,c)

. . .
∑

F (d,c)

(∏

θxy∈Θ

g2 θxy

)

=
∏

{θxy,θyx}∈Θ

(∑

F (X,Y)θxy

∑

F (X,Y)θyx

g2 θxy · g2 θyx

)

where θxy is a grounding substitution {X → x, Y → y}
in Θ = gr(X,Y |X 6= Y). Lifting is now possible again
since the groups are isomorphic (see Figure 1): for all dis-
tinct pairs of substitutions (θxy, θyx) in Θ, the pairs of fac-
tors (g2θxy, g2θyx) share the same potential φ2. Thus, the
multiplicands of each pair also have the same potential φ′2,
and summing out their arguments results in the same poten-
tial φ′′2 . Hence, it suffices to perform only one (lifted) in-
stance of these operations as follows

∏

{(x,y),(y,x)}

(∑

F (x,y)

∑

F (y,x)

φ′2(F (x, y), F (y, x))
)

=
∏

{(x,y),(y,x)}
φ′′2() =

∏

(x,y)

φ′′2()1/2 = gr(g′2),

where g′2 is the parfactor ∀X,Y : φ′′2()| X 6= Y with φ′′2
a potential function with no arguments, i.e., a constant, be-
cause both arguments have been summed-out.

Group inversion partitions the set of factors (and rand-
vars) into independent and isomorphic groups. An impor-
tant question is what such a partitioning looks like. Fig-
ure 1 shows this for the above example. In general, let us
call two factors directly linked if they share a randvar, and
let linked be the transitive closure of this relation. Factors
that are linked end up in the same group. Sometimes this
yields useful partitionings, sometimes not. As a ‘negative’

77

example, consider a parfactor φ(P (X), P (Y)). Any two
factors φ(P (a), P (b)) and φ(P (c), P (d)) are linked, since
both are directly linked to φ(P (b), P (c)). Hence the only
option is the trivial partition in which all factors are in a
single, large group, which is not practically useful. As a
‘positive’ example, consider the case where each atom uses
all the logvars in the parfactor, as in the earlier example
φ(F (X,Y), F (Y,X))|X 6= Y . In such cases, we can al-
ways partition the randvars into groups whose size is inde-
pendent of the domain size. The reason is that in such cases,
the arguments of the atoms in a linked group are necessarily
permutations of each other. Hence the size of a linked group
can be no larger than the number of possible permutations,
which is independent of the domain size. We use this prop-
erty in our group inversion operator; for a formal operator
definition, please see Taghipour et al. (2013b).

Counting
A central concept in LVE (and in our completeness proofs)
that we have not discussed yet is counting, which is essen-
tially a tool for allowing more lifting to take place. This
requires an extension of the parfactor representation with
counting formulas (Milch et al. 2008). In this section, we
review counting formulas and the operators for handling
them in LVE (Milch et al. 2008; Apsel and Brafman 2011;
Taghipour and Davis 2012).
Representation. A counting formula is of the form
#X:C [P (X)], with X ∈ X and C a constraint on X . We
call X the counted logvar. A ground counting formula is a
counting formula in which all arguments except the counted
logvar are constants. Such a formula represents a count-
ing randvar (CRV). The value of a CRV is a histogram
of the form {(vi, ni)}|range(P)|

i=1 , showing for each value
vi ∈ range(P) the number ni of covered randvars whose
state is vi.

Example 3. #Y :Y 6=X [F (X,Y)] is a counting formula. As-
sume D(X) = D(Y) = {a, b, c, d}, then #Y :Y 6=a[F (a, Y)]
is a ground counting formula. It represents a CRV that
counts how many people are (and are not) friends with
a. The value of this CRV depends on the value of the
three randvars {F (a, b), F (a, c), F (a, d)}. For instance, if
F (a, b) = true, F (a, c) = false and F (a, d) = true, the
value of the CRV is the histogram {(true, 2), (false, 1)},
meaning that a has two friends and one ‘non-friend’. Note
that while there are 2|D(X)|−1 different joint values for
the covered randvars, there are only |D(X)| different his-
tograms for the CRV. �

Counting formulas can be introduced in the model by the
following two operators.
(Just-different) counting conversion. This operator re-
places an atom (in a particular factor) by a counting formula,
e.g., replace F (X,Y) by #Y [F (X,Y)]. This is applicable
on a set of logvars that only appear in a single atom or in
just-different atoms (Apsel and Brafman 2011), i.e., pairs of
atoms P (X1,X), P (X2,X) with a constraint X1 6= X2.
Joint conversion. This auxiliary operator works on a pair of
atoms A(X), B(X) and replaces any occurrence of A(.) or

B(.) with a joint atom JAB (.), whose range is the Cartesian
product of the range of A and B. This is useful because it
can enable counting conversion, namely when the result of
the joint conversion is a model with just-different atoms.

Example 4. Consider the parfactor
φ(S (X),D(X),S (Y),D(Y)) |X 6= Y . Joint conver-
sion on atoms S (.) and D(.) rewrites this parfactor as
φ′(JSD(X), JSD(X), JSD(Y), JSD(Y))|X 6= Y , which
can be simplified to φ′′(JSD(X), JSD(Y))|X 6= Y . Note
that JSD(X) and JSD(Y) are now just-different atoms.
Next, just-different counting conversion rewrites this par-
factor as φ

′′′
(#X [JSD(X)]). This parfactor is now ready

for application of lifted sum-out. �

Group inversion for counting formulas. Counting formu-
las, like atoms, can be eliminated by lifted sum-out. This can
be done by group inversion with a small modification of the
operator (Taghipour et al. 2013b): evaluate the target par-
factor for each possible histogram, and compute a weighted
sum of the resulting terms. The coefficient of each term is
the multiplicity of its associated histograms, i.e., the num-
ber of possible assignments to the randvars that yield that
histogram (Milch et al. 2008).

Relation to Lifted Search-Based Inference
Theorem 1 shows that LVE is complete for the same known
class of models as WFOMC. We now show that this is not a
coincidence by discussing the connection between the lifted
operations of LVE and WFOMC (we use WFOMC as a rep-
resentative of lifted search-based methods).

Lifted inference methods use two main tools for achiev-
ing efficiency, i.e., for lifting: (1) Decompose the problem
into isomorphic and independent subproblems and solve one
representative instance; (2) Count the number of isomorphic
configurations for a group of interchangeable objects instead
of enumerating all possible configurations. Below we show
how LVE and WFOMC benefit from these tools.
WFOMC. Given a model as a weighted Boolean formula,
WFOMC performs inference by compiling the model into a
FO d-DNNF circuit, and evaluating this circuit. See Figure 2
for an example of a FO d-DNNF circuit. WFOMC can also
be used for inference on parfactor models, after converting
the parfactor model to a weighted formula (Van den Broeck
et al. 2011). The algorithm consists of several compilation
rules. Below we relate them to the operations of LVE.

Independent partial grounding (IPG) is an instance of
the first lifting tool, i.e., isomorphic decomposition. IPG
is the direct counterpart of inversion (not group-inversion).
Like inversion performs the computations for a representa-
tive constant (individual) in the domain of logvars, IPG re-
places a logvar with one representative constant in its child
circuit. Like inversion, it is applicable when the underlying
problems are independent for each individual.

Domain recursion (DR) is a generalization of IPG. It
works with a group of logvars, instead of one, and does
the following: (i) separate an individual xi from the domain
D, (ii) partition the problem PD into independent subprob-
lems: Pxi

(involving xi), and PD\{xi} (not involving xi),
(iii) repeat the same for PD\{xi}. Since the problems are

78

nima.taghipour@cs.kuleuven.be

FOVE and WFOMC

3.2 First-Order d-DNNFs
Deterministic decomposable negation normal form (d-
DNNF) circuits [Darwiche and Marquis, 2002] are directed
acyclic graphs whose leaves represent literals and whose in-
ner nodes represent formulae in propositional logic. The in-
ner node operators in propositional d-DNNFs are:
• Decomposable conjunction l ∧� r, representing the formula

l ∧ r with the constraint that the operand formulas l and r
are independent (l ⊥⊥ r).

• Deterministic disjunction l ∨� r, representing the formula
l ∨ r with the constraint that the operands cannot be true at
the same time (l ∧ r is unsatisfiable).
We generalize propositional d-DNNFs to first-order d-

DNNF (FO d-DNNF) circuits, where leaves represent first-
order literals and inner nodes represent first-order formu-
lae. FO d-DNNFs are more compact than their propositional
counterparts. In addition to the propositional operators in in-
ner nodes, we define the following novel operators:
• Inclusion-exclusion IE(x, y, z), representing the formula

x ∨ y with the extra operand z ≡ x ∧ y, which is required
to perform (weighted) model counting in the circuit.

• Decomposable set-conjunction ∧� c over isomorphic
operands, represented by a single child circuit c.

• Deterministic set-disjunction ∨� c over isomorphic
operands, represented by a single child circuit c.

These last two operators differ from their propositional coun-
terparts in that they have only one child node c, which repre-
sents a potentially large set of isomorphic operands.

unit clause leaf

set-disjunction

set-conjunction

decomposable
conjunction

deterministic
disjunction

�

x ∈ Smokers

∧

∨

�

y /∈ Smokers

∧

�

Smokers
⊆ People

∧

∧

f(x, y)

∧

smokes(X), X ∈ Smokers

f(X, Y), Y ∈ Smokers

¬ smokes(Y), Y /∈ Smokers

f(X, Y), X /∈ Smokers, Y /∈ Smokers

friends(x, y) ¬ f(x, y)

∧
¬ friends(x, y)

Figure 1: FO d-DNNF circuit of Example 2.

Example 3. Figure 1 shows the FO d-DNNF circuit for the
CNF of Example 2. Variables are in the domain People.
Example 4. Figure 2b represents a set-conjunction of
|People| operands. Since all operands are isomorphic (iden-
tical up to the value of Skolem constant x), they are repre-
sented by a single child, parametrized in x. We will later see
that these operands have identical weighted model counts.

Similarly, Figure 2c shows a set-disjunction of theories that
are identical up to the value of FunPeople. Again, the circuit
only contains a single child of the set-disjunction, which is
parametrized in FunPeople.

3.3 Auxiliary Operations
Next, we introduce the auxiliary operations for splitting and
shattering, which are needed in the compilation process.
Whenever the pre-condition holds before applying the opera-
tion, the post-condition holds after applying it.

Splitting
Some compilation rules require that all c-clauses c in the the-
ory be split w.r.t. a certain c-atom a.
Operator SPLIT(c, a) =

if ∀ ac ∈ atomc(c) : ac ⊥⊥ a∨gr(ac)\gr(a) = ∅ then {c}
else {SPLIT(cmgu, a)} ∪�

cr∈Cr
SPLIT(cr, a)

for some ac ∈ atomc(c) such that gr(ac) \ gr(a) �= ∅,
θ = mgu(a, ac),
cmgu = (lit(c), cs(c) ∧ θ ∧ cs(a)),
and Cr = {(lit(c), cs(c) ∧ ¬e)|e ∈ (θ ∧ cs(a))} \ {c}

Postconditions
1. ∀ as ∈ atomc(SPLIT(c, a)) : as ⊥⊥ a ∨ gr(as) ⊆ gr(a)
2. gr(c) =

�
cs∈SPLIT(c,a) gr(cs)

The purpose of splitting is to divide a clause into an equiv-
alent set of clauses (Postcondition 2) such that for each atom
as in each clause, either as is independent from a or is sub-
sumed by it, because it covers a subset of the ground atoms
of a (Postcondition 1).
Example 5. Splitting
c = (flies(X) ∨ ¬ haswings(X), X �= kiwi ∧ X ∈ Animal)
a = (flies(X), X �= penguin ∧ X ∈ Bird),

where domain Bird ⊂ Animal , results in cmgu =
(flies(X) ∨ ¬ haswings(X), X �= kiwi ∧ X �= penguin ∧
X ∈ Bird), c1

r = (flies(penguin) ∨ ¬ haswings(penguin))
and c2

r = (flies(X) ∨ ¬ haswings(X), X �= kiwi ∧ X ∈
Animal \ Bird).

After splitting, clauses c1
r and c2

r are independent from a,
while the c-atom (flies(X), X �= kiwi ∧X �= penguin∧X ∈
Bird) in cmgu is implied by a.

Finally, splitting an entire theory C with respect to c-atom
ac is defined as SPLIT(C, ac) =

�
c∈C SPLIT(c, ac). Split-

ting was introduced by Poole [2003] for parfactors. We apply
it to clauses and extend it with set membership constraints.

Shattering
Some compilation rules require the theory C to be shattered.
Operator SHATTER(C) =

if ∃ a ∈ atomc(C) such that SPLIT(C, a) �= C
then SHATTER(SPLIT(C, a)) else C

Postcondition ∀ a1, a2 ∈ atomc(SHATTER(C)) :
a1 ⊥⊥ a2 ∨ gr(a1) = gr(a2)

Shattering performs splitting until convergence. The post-
condition states that after shattering, all c-atom groundings
are either disjoint or identical. The specific assignments to the
logical variables cannot be distinguished any further. A vari-
ant of shattering on parfactors was proposed for FOVE [de
Salvo Braz et al., 2005].

1. Eliminate F(X,Y) by inversion

2. Count convert S(X), S(Y)

3.Eliminate #X[S(X)] by counting
elimination

WFOMC FOVE

φ(S(X), F (X,Y), S(Y))

P
F (X,Y)−−−−−−→ φ(S(X), S(Y))

φ(S(X), S(Y)) −→ φ(#X [S(X)],#Y [S(Y)])

−→ φ�(#X [S(X)])

Tuesday 27 March 2012

y /∈ Smokers

Atom Counting

Unit Clauses (for the counted atom)

IPG

Shannon Decomposition
and Unit Propagation

W1

W2

W3

W4

Figure 2: An example FO d-DNNF (taken from Van den
Broeck, 2011).

isomorphic up to the domain size, it solves one instance of
the problems for each size. DR tackles the same problem as
group inversion, but with a different approach: group inver-
sion solves an instance of the problem for a representative
group of individuals, independent of the domain size; DR it-
erates over the possible domain sizes. This difference is not
due to an intrinsic distinction between LVE and WFOMC.
An operator similar to group inversion is conceivable for
WFOMC (see Van den Broeck, 2013), and so is DR for LVE.

Atom counting (AC) is an example of the second lift-
ing tool, counting, which exploits interchangeability among
randvars. Instead of branching on all possible joint values
for the randvars, AC parametrizes the circuit w.r.t. the num-
ber of randvars with each value: it assumes a (sub-)domain
for the true atoms, adds a unit clause for them, and iterates
over the domain size. It is the direct counterpart of counting
conversion in LVE. AC is followed by a unit propagation
(of the produced unit clause), just as counting conversion is
followed by a sum-out (of the produced counting formula).

Shannon decomposition introduces a branch in the cir-
cuit for each value of a ground atom, with a unit clause
corresponding to that value. It is useful when followed by
unit propagation. The combination of these two rules corre-
sponds to the sum-out operation of LVE.

Example 5. Consider the Friends and Smokers theory con-
sisting of the weighted clause S(X)∧Fr(X,Y)⇒ S(Y) (a
parfactor model consisting of φ(S(X), F r(X,Y), S(Y))).
The task is to compute the partition function. WFOMC
solves this by evaluating the FO d-DNNF circuit shown in
Figure 2. Reading the circuit top-down we see the following
operations: (W1) Atom counting on S(X), (W2) Eliminate
S(X) with unit propagation, (W3) IPG on the logvars X,Y
of Fr(X,Y), (W4) Eliminate Fr(X,Y) with Shannon de-
composition and unit propagation. LVE solves the problem
as follows: (V1,V2) Eliminate Fr(X,Y) using lifted sum-
out by inversion, (V3) Counting conversion on S(X), (V4)

Eliminate S(X) by summing-out #X [S(X)]. Note the cor-
respondence between the operations performed by the two
methods. First, they both eliminate Fr(X,Y) by the first
lifting tool, WFOMC with IPG and LVE with inversion.
Second, they both eliminate S(X) from the model by the
second tool, namely counting. As such, both methods use
the same tools for the corresponding inference subproblems.
They thus achieve the same efficiency gains compared to
their ground counterparts, respectively. �

Order of operations. The order in which the operations are
performed in LVE is the reverse order of the corresponding
operations (in a top-down traversal) of the circuit compiled
by WFOMC. This relation between the two lifted meth-
ods resonates with a similar relation between their propo-
sitional counter-parts, namely search-based and VE-based
methods (Darwiche 2001; Dechter and Mateescu 2007).
Connection to theorem proving. Gogate and Domin-
gos (2011) established a connection between lifted WMC
and theorem proving. They show that lifted WMC can be
seen as a probabilistic generalization of the DPLL algorithm
for theorem proving in logic. We point out that LVE, in
turn, corresponds to a probabilistic generalization of theo-
rem proving with a resolution-based theorem prover. This
corresponds to the propositional case (Dechter 1999).

We finally note that although LVE and lifted search-based
methods use the same tools for lifting, they are not necessar-
ily equally efficient due to the characteristic differences be-
tween their propositional counterparts. For instance, search-
based methods exploit the local structure of the model, such
as determinism, while VE is oblivious to this structure. In
the presence of such structure, search-based methods can be
more efficient than LVE (for such a comparison, see Gogate
and Domingos, 2011).

Conclusion
We showed how introducing a new inference operator, called
group inversion, makes lifted variable elimination a com-
plete domain-lifted algorithm for 2-logvar models. A corol-
lary of the completeness result is that lifted variable elimina-
tion and WFOMC are currently known to be domain-lifted
complete for the same subclass of models.

An interesting direction for future work is derivation
of (positive or negative) completeness results for useful
models that fall outside of the 2-logvar class. An exam-
ple are 3-logvar models containing a transitive relation,
e.g. φ(Like(X,Y), Like(Y,Z), Like(X,Z)), for which no
domain-lifted inference procedure is known. We further be-
lieve that future research on the relationships between the
various lifted inference algorithms will yield valuable theo-
retical insights, similar to those about the propositional in-
ference methods (Darwiche 2001; Dechter 1999; Dechter
and Mateescu 2007).

Acknowledgements NT is supported by the research
fund KU Leuven (GOA/08/008 and CREA/11/015). JD
is partially supported by the research fund KU Leuven
(CREA/11/015 and OT/11/051), and EU FP7 Marie Curie
Career Integration Grant (#294068). DF and GVB are sup-
ported by FWO-Vlaanderen.

79

References
Apsel, U., and Brafman, R. I. 2011. Extended lifted infer-
ence with joint formulas. In Proceedings of the 27th Confer-
ence on Uncertainty in Artificial Intelligence (UAI), 11–18.
Darwiche, A. 2001. Recursive conditioning. Artif. Intell.
126(1-2):5–41.
De Raedt, L.; Frasconi, P.; Kersting, K.; and Muggleton, S.,
eds. 2008. Probabilistic Inductive Logic Programming: The-
ory and Applications. Berlin, Heidelberg: Springer-Verlag.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted
first-order probabilistic inference. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1319–1325.
de Salvo Braz, R. 2007. Lifted First-order Probabilistic
Inference. Ph.D. Dissertation, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign.
Dechter, R., and Mateescu, R. 2007. And/or search spaces
for graphical models. Artif. Intell. 171(2-3):73–106.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artif. Intell. 113(1-2):41–85.
Getoor, L., and Taskar, B., eds. 2007. An Introduction to
Statistical Relational Learning. MIT Press.
Gogate, V., and Domingos, P. 2011. Probabilistic theorem
proving. In Proceedings of the 27th Conference on Uncer-
tainty in Artificial Intelligence (UAI), 256–265.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting
belief propagation. In Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence (UAI), 277–284.
Kersting, K. 2012. Lifted probabilistic inference. In Pro-
ceedings of the 20th European Conference on Artificial In-
telligence (ECAI), 27–31.
Milch, B.; Zettlemoyer, L. S.; Kersting, K.; Haimes, M.; and
Kaelbling, L. P. 2008. Lifted probabilistic inference with
counting formulas. In Proceedings of the 23rd AAAI Con-
ference on Artificial Intelligence (AAAI), 1062–1608.
Poole, D., and Zhang, N. L. 2003. Exploiting contextual
independence in probabilistic inference. J. Artif. Intell. Res.
(JAIR) 18:263–313.
Poole, D.; Bacchus, F.; and Kisynski, J. 2011. Towards com-
pletely lifted search-based probabilistic inference. CoRR
abs/1107.4035.
Poole, D. 2003. First-order probabilistic inference. In Pro-
ceedings of the 18th International Joint Conference on Arti-
ficial Intelligence (IJCAI), 985–991.
Poole, D. 2011. Logic, probability and computation: Foun-
dations and issues of statistical relational AI. In Proceedings
of the 11th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), 1–9.
Singla, P., and Domingos, P. 2008. Lifted first-order belief
propagation. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (AAAI), 1094–1099.
Taghipour, N., and Davis, J. 2012. Generalized counting for
lifted variable elimination. In Proceedings of the 2nd Inter-
national Workshop on Statistical Relational AI (StaRAI).

Taghipour, N.; Fierens, D.; Davis, J.; and Blockeel, H. 2012.
Lifted variable elimination with arbitrary constraints. In
Proceedings of the 15th International Conference on Arti-
ficial Intelligence and Statistics (AISTATS), 1194–1202.
Taghipour, N.; Fierens, D.; Davis, J.; and Blockeel, H.
2013a. Lifted variable elimination: Decoupling the opera-
tors from the constraint language. Journal of Artificial Intel-
ligence Research 47.
Taghipour, N.; Fierens, D.; Van den Broeck, G.; Davis, J.;
and Blockeel, H. 2013b. Completeness results for lifted
variable elimination. In Proceedings of the 16th Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS).
Van den Broeck, G.; Taghipour, N.; Meert, W.; Davis, J.; and
De Raedt, L. 2011. Lifted probabilistic inference by first-
order knowledge compilation. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI), 2178–2185.
Van den Broeck, G. 2011. On the completeness of first-order
knowledge compilation for lifted probabilistic inference. In
Proceedings of the 24th Annual Conference on Advances in
Neural Information Processing Systems (NIPS), 1386–1394.
Van den Broeck, G. 2013. Lifted Inference and Learning in
Statistical Relational Models. Ph.D. Dissertation, Depart-
ment of Computer Science, KU Leuven.

80

