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Abstract

Online Social Networks (OSN) have enriched the social lives
of millions of users. Discovering new friends in the social
network is valuable both for the user and for the health of
OSN since users with more friends engage longer and more
often with the site. The simplest way to formalize friend-
ship recommendation is to cast the problem as a link predic-
tion problem in the social graph. In this work we introduce a
game-theoretical approach based on the Graph Transduction
Game. It scales with ease beyond 13 million of users and was
tested on a real world data from Tuenti OSN. We utilize the
social graph and several other graphs that naturally arise in
Tuenti such as the wall-to-wall post graph. We compare our
approach to standard local measures and demonstrate a sig-
nificant performance benefit in terms of mean average preci-
sion and reciprocal rank.

Introduction
Online Social Networks (OSN) have become an indispens-
able part of our lives facilitating communication and con-
necting people on a massive scale. Popular social networks
such as Twitter, LinkedIn and Tuenti have attracted millions
of users while still growing in a staggering pace. In these net-
works friendships are often started on-line and only later-on
“graduate” to the real world.

Fundamental to all on-line social networks is the goal to
effectively model the friendship patterns between users. Us-
ing these models OSN’s can facilitate link formation and
friendships among users and thus increase the value of the
site for it’s members. Users will subsequently spend more
time on the network and thus increase the site’s traffic and
the potential for monetization. Moreover more users will
recognize the value of the network and will join the site.
Typically friendship suggestion systems in OSN’s are re-
sponsible for a large fraction of the created edges in the so-
cial graph.

The task of friendship suggestion is cast as a link predic-
tion problem e.g. (Sarkar, Chakrabarti, and Jordan 2012),
(Backstrom and Leskovec 2011). That is given a snapshot
of a large social graph S and a user i find the users that i
has the biggest probability of forming a connection with.
This problem can also be seen as a ranking problem in that
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we are looking for an optimal ranking of the nodes (users)
in the graph with respect to connection formation potential
to user i.

Motivation While link formation is a well studied
problem it is particularly hard as OSN tend to exhibit very
heterogeneous behavior. The amount of friends among
users can differ by orders of magnitude and social graphs
tend to evolve very fast in fact the number of edges on the
Tuenti social graph increases by 0.5% a day. Moreover link
prediction in an OSN is particularly hard as even the most
connected users only have edges to a tiny fraction of the
network making the data extremely sparse.

Multigraph While the social graph created by the
friendship connections of the users is central to all link
prediction models, OSN’s allow for the interaction of
users in many diverse ways. Users post messages in their
friends wall’s or co-tag pictures with other users etc. These
interactions form a new set of graphs that exhibit different
properties to the social graph that is typically unweighted
and of binary nature (i.e. a user is a friend or not). Moreover
these activity graphs can provide information both about the
strength of a friendship between two users and subsequently
about the chance that they will be forming a friendship
e.g. it is safe to assume that users that co-tag a picture
or attend the same event have a significant probability of
meeting outside the OSN and thus also forming a friendship
in the OSN. The set of all these additional graphs form a
multigraph over the users, i.e., the users are connected with
more then one type of edges.

Target In summary, our aim is to model diverse user
interaction data along with the social graph in order to
create a link prediction model for the purpose of friendship
recommendation. We ultimately aim to have this system
serve recommendation on a real world OSN (Tuenti.com)
and thus strive to satisfy constrains imposed on such a
system by the requirements of an live on-line system under
heavy use e.g. training the model several times a day,
compact representation and fast prediction time in order to
serve several requests per second.
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Related Work
Link prediction The problem of link recommendation is a
well studied problem, with several methods developed over
the past years. For example, (Lü and Zhou 2011) provide
an excellent summary of many link prediction techniques.
One of the most well known techniques are the Random
Walks with Restart (Tong, Faloutsos, and Pan 2006) where
the probability to end up in a node after a random walk on
the graph is used for prediction. The scalable version of
this method requires a partitioning of the graph and this is
a notoriously difficult problem particularly with industry
scale social graphs. Moreover the methods deals with a
single graph. A supervised version of the algorithm was
recently introduced whereby features on the nodes and on
the edges can be used to guide the random walk (Backstrom
and Leskovec 2011). This work focuses on node features
though it might be possible to potentially use it for features
on edges. It does require a rather complex computation of
the affinity matrix within the optimization procedure.

Latent Factor Models Factor models have been used
before for link prediction, in (Miller, Griffiths, and Jordan
2010),(Zhu 2012) a probabilistic approaches are used to
optimize over the user factors U . A similar method is
introduced in (Menon and Elkan 2011) using a AUC loss
function along with a gradient descent optimization method.
Thought effective on a single graph these approaches do not
seem to adapt well to the large scale data that we are dealing
with (i.e. the Tuenti Multigraph 107 users, 109 edges). All
of these methods focus on a single graph.

Local Methods Factor Models and Random Walks exploit
the global structure of the graph to provide a similarity
measure between nodes. Local methods such as Common
Neighbors (Newman 2001) are based on computing local
statistics and measures on the node of interest. To avoid
biases introduced by the power law distribution of edges in
social networks often local measures are discounted by a
factor proportional to the in-degree of the shared nodes.The
Adamic-Adar measure (Adamic and Adar 2003) discounts
common connections by the log of their in-degree, while
other similarity measures used in link prediction include the
Salton measure (Salton and McGill 1986) and the Jaccard
coefficient. The method introduced in this paper can be seen
as a local method and therefore enjoys benefits of these
methods, such as scalability.

A Game Theoretic Approach
In this section we describe the game introduced in (Erdem
and Pelillo 2011) for nodes classification on graphs. There
two main ideas behind the casting of our link-prediction
problem in this particular game:
• A social network is a group of (supposed rational) agents

those take decision for themself, exactly like in every non-
cooperative game

• Homophily is widespread in OSN from many points of
view, so we assume that users of the social network want
to behave exactly like their friends

Within this game we do not try to find the most influential
users or to introduce other complex models, we just expect
that users will be uniform to their friends. Roughly speak-
ing, we expect they will try to became friends to the users
that are friends of their friends (as in most of the heuristics
for friends recommendation).
We have to keep in mind that, since this game is non-
cooperative, each player maximizes its own payoff
disregarding what it can do to maximize the sum of utilities
of all the players (the so-called social welfare). We now
present the problem in a more formal way.

In the Graph Transduction Game (later called GTG),
the graph topology is known in advance and each node of
the graph is a player of the game. Each player interacts only
with its neighbors on the graph.

The game is defined as Γ = (I, S, π), where I =
{1, 2, ..., n} is the set of players, S = ×i∈ISi is the joint
strategy space, and π : S → Rn is the combined payoff
function which assigns a real valued payoff πi(s) ∈ R to
each pure strategy profile s ∈ S and player i ∈ I . In our
particular case each player has only two strategies: “friend”
or “non-friend” of a given user u.

A mixed strategy of player i ∈ I is a probability distribu-
tion x over the set of the pure strategies of i. Each pure strat-
egy k corresponds to a mixed strategy where all the strate-
gies but the k-th one have probability equals to zero.

We define the utility function of the player i as

ui(s) =
∑
s∈S

x(s)πi(s)

where x(s) is the probability of s.
We assume the payoff associated to each player is addi-

tively separable (this will be clear in the following lines).
This makes GTG a member of a subclass of the multi-player
games called polymatrix games (Howson 1972).

For a pure strategy profile s = (s1, s2, ...sn) ∈ S, the
payoff function of every player i ∈ I is:

πi(s) =
∑
j∼i

wijI{si=sj}

where i ∼ j means that i and j are neighbors, I is the
indicator function andwij is the weight on the edge between
i and j. Please note that we do not make any assumption on
the weights.
This can be re-written in matrix form as

πi(s) =
∑
j∼i

Aij(si, sj)

whereAij ∈ Rc×c is the partial payoff matrix between i and
j, defined as Aij = Ic × wij Here Ic is the identity matrix
of size c and Aij(x, y) represent the element of Aij at row
x and column y. The utility function of each player i ∈ IU
can be re-written as follows:

ui(s) =
∑

i∼j x
T
i Aijxj

=
∑

i∼j wijx
T
i xj

=
∑

i∼j wij

∑c
k=1 xikxjk
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where k is an action selected from the player’s set. Since
the utility function of each player is linear, it is easy to see
that players can achieve their maximum payoff using pure
strategies.

In a non-cooperative game, a vector of strategies SNE is
said to be a (pure strategies) Nash Equilibrium, if ∀i ∈ I ,
∀s′i ∈ Si : s′i 6= si ∈ SNE , we have that

ui(si, S
−i
NE) ≥ ui(s′i, S−iNE)

where ui(si, S−i) is the strategy configuration S except the
i-th one, that is replaced by si. In practice, no player i will
change its strategy si to an alternative strategy improving
its payoff.

The problem of finding a Nash Equilibrium in the gen-
eral case is a PPAD-Complete (Daskalakis, Goldberg, and
Papadimitriou 2006). Clearly, we are not going to compute
a solution for an NP-Hard problem on a large scale dataset;
in order to rank the potential friends, we do not really need
to compute it.
Every time we select a user u, we have a strategy profile
given by past choices of the users in the social network
(being friend or not friend of somebody-else). Usually, this
strategy profile is not a Nash Equilibrium, so some users
should be able to improve their payoff just changing strategy
(i.e. becoming friend of another user). We use an algorithm
called GTG-Rank that ranks the users to suggest to the user
u according to how much a user i 6= u can improve his pay-
off by changing its strategy.
In practice, every time we consider a user u, we have a pro-
file of strategies (friend/non-friend) and we rank the user in
a certain set B using the improvement between their current
payoff and the payoff they will get changing their choice.
Since this is a local method, it is particularly efficient and
can be easily parallelized. Predictions for each node are in-
dependent and only information about a small portion of the
graph is needed. This is particularly suitable for computa-
tions on huge datasets those are often spread across multiple
machines.

In the case where we have to rank a set B ⊆ V of nodes,
considered a fixed node i; the expected running time is
O(|B|d + |B| log |B|), where d is the average degree. On
web-scale networks d is often in the order of log |V | and
|B| � |V |.

In the next section we will explain how to run GTG-
Rank on data from Tuenti.com and all the details about the
graph and the payoffs (those at the moment are completely
generic).

Experiments
In this section we present a collection of experiments that
evaluate the proposed algorithm. We first give a detailed de-
scription of the dataset and experimental setup that are used
in the experiments. Then, we investigate the impact of dif-
ferent graphs on the results for the friends recommendation
task. Finally, we evaluate the recommendation performance
of GTG − Rank compared with some well-known base-
lines. We want to emphasize that we focused out attention

on extremely scalable algorithms, such algorithms should
perform the prediction for all users in matter of hours on
a 16 cores and 64GB RAM machine. We tested also dif-
ferent alternatives such Random Walk with Restarts (Tong,
Faloutsos, and Pan 2006), but unfortunately we could not
include the results as the Pegasus (Kang, Tsourakakis, and
Faloutsos 2009) implementation took about 1h20m per user
to compute the predictions on an Hadoop cluster with 12
nodes.

The experiments were designed to address the following
research questions:

• Is additional information beyond social network on the
users’ behavior can be useful to predict friendships cre-
ation?

• What kind of information is more useful for the friendship
recommendation task?

• Does the presented algorithm scales equally good and per-
form better than then well known scalable heuristics such
e.g. the Adamic-Adar score?

Dataset
We ran our experiments on an on-line real-world commer-
cial social network: Tuenti.com. Tuenti, often referred as the
Spanish Facebook, is a Spanish social network with about
13M users. The platform includes all the common features
of modern on-line social networks: status updates, wall post-
ing, private messages, photo sharing, link sharing, events in-
vitations, etc...

The dataset was created with an anonymized dump of
database in July 2012, and includes four different graphs:

• Social graph: an unweighted undirected graph represent-
ing friendships among users. An edge of this graph is cre-
ated every time a user “add a friend” on the social net-
work. The total number of users in this graph (and in
the network) is 12,996,961 and the number of edges is
818,234,588. This graph was contains all the edges cre-
ated from the beginning of Tuenti.

• Co-tagging graph: an undirected weighted graph of users
those has been tagged in the same photo. If one user is in
this graph, it means that he has been tagged at least once
in one photo, and the weights on the edges are the count
of how many time two users have been tagged in the same
photos (it is a sum over photos). Due to the huge amount
of pictures uploaded each day on the website (it is in the
millions range), the graphs has been generated using all
the photo uploaded from the beginning of January 2012
to the end of June 2012. In order to reduce the noise we
discarded all the photos with more than 100 people tagged
in them. The number of nodes is 1,407,407 the number of
edges is 124,615,559.

• Wall-To-Wall graph: an undirected weighted graph of
user posting on other users’ wall. Wall posting is a generic
public communication from user to user, and it is also
used to share photo, video or link with a particular friend.
Users can post only on friends’ wall, so this is a subset
of the social graph. The number of users is 7,343,198 the
number of edges is 31,501,921.
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• Invitations graph: an undirected weighted graph of users
those attend to the same events (the invitation to the event
has been accepted). Also in this case, in order to reduce
the noise, we discarded all the events with more than 100
attending users. The number of users is 1,679,156 the
number of edges is 74,208,780.

The number of users in the social network is much higher
than the number of users those are actively using advanced
functionality. We also computed the co-occurrence of users
in different graphs: 1,337,854 users are in both wall-to-wall
graph and co-tag graph, 1,480,431 users are in both invita-
tions graph and wall-to-wall, but only 435,412 users are in
both invitations graph and co-tag graph. Since our algorithm
works on a single weighted graph, we have to “merge” mul-
tiple graph in an undirected weighted one. What we did for
this preliminary experiments was a simple sum over a regu-
larized weights as follow 1:

w̄ij =
∑
G

wG
ij∑

(k,z)∈EG
wG

kz

where w̄ij is the weight used in our resulting graph and
wG

ij is the weight of the edge (i, j) in the graph G.
We would like to exploit all this information about the

“strength” of the connections in order to improve our predic-
tions, so these weights are used in the GTG’s payoff function
defined above.

Evaluation Protocol
We temporally order the data and split it in train and test set.
All the edges (friendships, wall posts, photo co-tag, etc.) cre-
ated before April 2012 (included) have been used as training
set, the friendships created in May and June 2012 have been
used as test set.

As reported before, Tuenti has more than 13M but the
total number of users in the dataset is 12,996,961 because
some of them has been created after April 2012, and each
graph in the dataset has a different number of users due to
different activity of the users in the network. All the data re-
ported in the previous descriptions are referred to the train
set and are summarized in Table 1.

We made a comparison with two different test sets:

• ALL USERS is a set containing edges created by
4,448,744 users, those have added at least one friend be-
tween May 1st and June 30th. Basically, this set contains
all the users we those consider “active” users. It is impor-
tant since we want to improve the experience for all the
users of our OSN.

• 250K ACTIVE is a set containing all the edges created
between May 1st and June 30th, by 250,000 randomly
picked users those have connections in all the graphs (so-
cial, wall-to-wall, co-tag and invitations). This is a subset
of ALL USERS, with rich extra information.

1We tested also more complicated methods, mostly involving
linear regression, but the final results of these (slower) approaches
are never better than those obtained in this way

Please note that now Tuenti’s registration is open to all,
but at the time this dataset has been created it was an
invitation-only social network.

For the testing procedure we adopt a similar strategy to
(Cremonesi, Koren, and Turrin 2010). As we do not have
negative feedback for the implicit data we have to emulate
it in order to produce a ranking. We first randomly select
100 Tuenti’s users those are not friend of the current one.
We predict the scores for the test users for user ui then we
form a ranked list by ordering all the items according to their
predicted scores.

We use the Average Precision evaluation measure given
by:

AP =
r∑
k

rel(κ)× P@κ

K
(1)

rel(κ) =

{
1 if item at position κ is relevant
0 if item at position κ is not relevant (2)

We compute the Mean Average Precision (MAP) by com-
puting the average precision over each user and average by
the number of users MAP =

∑n
i

AP (ui)
n . MAP is a list-

wise measure that emphasizes ranking relevant items higher.
This is particularly relevant in recommendation where users
tend to notice only the top 5-10 recommended items in a list.
This is particularly suitable for real-world applications.

We also report MRR (Mean Reciprocal Rank) values,
since most of the time the rank of the first relevant result is
extremely important, given that users typically pay attention
to the first 5-10 items in a recommendation list.

The notion of a relevant item clearly depends on the un-
derlying data. In our application domain, we denote a user to
be relevant for the current user if they are connected in the
social graph. Although this is a very simple approach and
one could use communication counts, tags, etc.. in a more
sophisticated manner. As such this is something we will re-
turn to in the future.

Algorithms
In our experiments we compare GTG − Rank with two
well-know algorithms for link prediction those can scale on
large scale data.

• Random: it’s a random predictor. This toy baseline is use-
ful in order to understand the absolute quality of our pre-
dictions.

• Common neighbors (CN): the similarity score assigned
to each couple of users by this algorithm is the count of
the common neighbors.

CNScore(i, j) =
∑

k∈Users

I{k ∼ j, k ∼ i}

This simply means that if we have a lot of friends in com-
mon, we are likely to be (or become) friends.

• Adamic-Adar (AA): is a variant of the common neighbor
count, where users are weighted using their degree.

48



Social graph Co-tag graph Wall-To-Wall graph Invitations graph
Users 12996961 1407407 7343198 1679156
Edges 818234588 124615559 31501921 74208780

Avg. Degree 62.96 88.54 18.76 44.19
Nodes in biggest CC 12909834 1398887 7028785 1656500

Time range start 10/9/2005 1/1/2012 3/17/2010 11/25/2007
Time range end 4/30/2012 4/30/2012 4/30/2012 4/30/2012
Number of days 2395 120 775 1618

Table 1: Graph’s information. Some of there values were calculated using WebGraph (Boldi and Vigna 2004).

SOCIAL RANDOM GTG-RANK AA CN
MAP MRR MAP MRR MAP MRR MAP MRR

ALL USERS 0.1172 0.1469 0.8107 0.6895 0.7875 0.6665 0.7863 0.6656
250k ACTIVE 0.5395 0.7644 0.5412 0.7670 0.5403 0.7663
SOCIAL+W2W RANDOM GTG-RANK AA CN

MAP MRR MAP MRR MAP MRR MAP MRR
ALL USERS 0.1172 0.1469 0.8123 0.6910 0.7869 0.6665 0.7863 0.6657
250k ACTIVE 0.5475 0.7745 0.5414 0.7717 0.5402 0.7664
SOCIAL+CO-TAG RANDOM GTG-RANK AA CN

MAP MRR MAP MRR MAP MRR MAP MRR
ALL USERS 0.1172 0.1469 0.8193 0.6967 0.7874 0.6665 0.7863 0.6656
250k ACTIVE 0.572 0.7887 0.5447 0.7706 0.5432 0.7692
SOCIAL+INV RANDOM GTG-RANK AA CN

MAP MRR MAP MRR MAP MRR MAP MRR
ALL USERS 0.1172 0.1469 0.8211 0.6977 0.7875 0.6665 0.7863 0.6657
250k ACTIVE 0.5590 0.7865 0.5437 0.7703 0.5425 0.7693
ALL GRAPHS RANDOM GTG-RANK AA CN

MAP MRR MAP MRR MAP MRR MAP MRR
ALL USERS 0.1172 0.1469 0.8204 0.6976 0.7846 0.6664 0.7835 0.6655
250k ACTIVE 0.5835 0.7937 0.5456 0.7717 0.5442 0.7705

Table 2: Results averaged on 10 runs, variance is not reported since it was insignificant in our experiments and did not influence our findings
nor our conclusions. In the first column on the left are reported the names of the graphs used for the experiments (in bold) and the test sets
used (not in bold). For each predictor we report MAP and MRR.

AAScore(i, j) =
∑

{k:k∼j,k∼i}

1

log(deg(k))

This means that connections to users with few friends
are more important that connections to users with a huge
amount of friends in the social network. This is particu-
larly true in practice: let suppose that a user is friend of
the famous Spanish chef Ferran Adrià. Since Adrià is a
VIP, he probably has thousands of friends in the social
network, but most of them do not are really in contact
with him, and probably do not know each other. So, the
friendship recommender should take into account this in-
formation.
These algorithms are not only intuitive, but they have also

a strong theoretical justification (Sarkar, Chakrabarti, and
Moore 2010).

Experimental results
Our experiments are not conclusive, but we can find some
interesting results:
• GTG−Rank almost always performs better than its com-

petitors

• Using extra information is useful for predictions and
GTG−Rank can exploit it

• Invitations graph and Co-tag graph seem to be the most
useful, this makes perfect sense since most of the people
those are “close” in the real world usually are also friends
in OSN

• We have to further investigate the relevance of the time-
component, since a small but recent graph (such the Co-
tag one) provides really useful information
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