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Abstract

We present an electricity demand forecasting algorithm
based on Gaussian processes. By introducing a task-
specific, custom covariance function kpower , which in-
corporates all available seasonal information as well
as weather data, we are able to make accurate predic-
tions of power consumption and renewable energy pro-
duction. The hyper-parameters of the Gaussian process
are optimized automatically using marginal likelihood
maximization. There are no parameters to be specified
by the user. We evaluate the prediction performance on
simulated data and get superior results compared to a
simple baseline method.

Introduction
Electricity demand forecasting is an important aspect of the
control and scheduling of power systems. Demand predic-
tions ensure the reliability of supply, but are also a vital tool
for retail brokers, buying and selling electricity on modern,
liberalized wholesale markets. Energy is typically traded on
future markets, allowing brokers to buy and sell quantities
of energy for future delivery. Therefore, the broker needs
to know in advance how much electricity will be needed at
a later point in time. In electricity markets, supply and de-
mand have to be perfectly balanced. If a broker fails to keep
a neutral net energy budget, the Distribution Utility (DU)
exercises capacity controls at prices that are normally much
less attractive than the prices in the wholesale market.

The electricity demand is mainly influenced by meteo-
rological conditions and daily and weekly seasonal effects.
Nevertheless, short term forecasting for timeframes of a day
or less, is often done using only univariate prediction mod-
els. This is justified with the fact that weather conditions
tend to change smoothly and therefore should already be re-
flected in the load data (Taylor 2003). A range of univari-
ate methods have been successfully applied to electricity
demand forecasting, such as ARIMA models, exponential
smoothing or neural networks. For an extensive review and
comparison see (Taylor, Menezes, and McSharry 2006).

Figure 1 shows the simulated electricity demand of differ-
ent consumers as well as renewable energy providers over a
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Figure 1: Two weeks of energy usage data for different cus-
tomer types in a simulated environment.

two week period. A daily seasonality is immediately appar-
ent in all of the energy profiles even the wind turbines. But
clearly not all effects can be explained using only this in-
formation. Less prominent, but still noticeable, is a weekly
seasonality in the consumers, which is obviously not present
in the producers. The producers mainly depend on current
weather conditions, like cloud cover or wind speed. Weather
information is widely available through weather reports and
weather predictions and an advanced prediction algorithm
should be able to utilize this information, in order to provide
the best forecasts possible.

In this paper, we present a prediction algorithm based on
Gaussian processes (GP), a powerful non-parametric ma-
chine learning method for regression. GPs have been suc-
cessfully applied to tasks like prediction of atmospheric
CO2 concentration (Rasmussen and Williams 2006) and
model learning in robotics (Nguyen-Tuong, Seeger, and Pe-
ters 2009). We adapt Gaussian processes to electricity de-
mand forecasting by formulating the task as a regression
problem: Fit a function f that approximates the electricity
demand dependent on time t and additional features z using
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observed data from the past:

f(t1 . . . tT , z1 . . . zT , f1 . . . fT−1) ≈ fT (1)

Our method is similar to the work of (Leith, Heidl, and Ring-
wood 2004), who have been using Gaussian processes for
electricity load forecasting before. However, our method is
able to incorporate additional available information and au-
tomatically adapt to specific customer profiles. No parame-
ters need to be specified, making the approach easily appli-
cable to more complex domains.

Gaussian Processes
The forecasting problem in Eq. 1 is modeled by a collec-
tion of jointly Gaussian distributed random variables, one
for each time-slot. The covariance of the random variables
is specified by a parametrized covariance function k(x,x′).
For notational simplicity the mean of the process is set to
zero. In order to make predictions about future time-slots,
the joint distribution of the training outputs f and the test
output f∗ (Eq. 2) is conditioned on the observations and the
expected value is obtained according to Eq. 3.[

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(2)

E [f∗|X,X∗,f ] = K(X∗, X)K(X,X)−1f (3)

X denotes the matrix of training inputs, X∗ is the ma-
trix of test inputs and K denotes the kernel matrix which
is obtained by pairwise evaluation of the covariance func-
tion for the given inputs. If we use the shorthand notation
k∗ = K(X∗, X) and assume that we are only able to ob-
serve noisy measurements y = f(x)+ ε of the true function
values f , we can write Eq. 3 as

f̄∗ = kT∗
(
K + σ2

nI
)−1

y = kT∗ α (4)

where σ2
n is the variance of iidGaussian noise ε (Rasmussen

and Williams 2006). The computation of the kernel matrix
inverse in Eq. 4 is anO(n3) operation, but once the inverse is
known, predictions can be made in linear time using a sim-
ple dot product. If more training data is added, the inverse
can be updated using the Woodbury matrix identity, which
is much faster than recomputing and inverting the entire ker-
nel matrix (Hager 1989). This is especially useful in a time
forecasting framework, where each data point is added to
the training data as it is observed in order to improve future
predictions.

Covariance Functions
The covariance function encodes prior beliefs about the
function to be learned. It is often defined in terms of the
distance r = |x− x′|22 between input points, since function
values are expected to be similar if their inputs are near to
each other. Every kernel function that gives rise to a positive
definite kernel matrix qualifies for modeling the covariance
of the Gaussian process. The most frequently used kernel
function is the squared exponential covariance function

kSE(r) = σ2
f exp

(
− r

2l2

)
(5)

with noise term σ2
f and characteristic length scale l. The

characteristic lengthscale controls the distance from which
on two points are uncorrelated and thereby influences the
impact of the input patterns. In order to incorporate infor-
mation about the periodicity of power usage, we do not use
the time index directly as input to the covariance function,
but a mapping to a two-dimensional input given by

x(t) =

[
cos(g(t))
sin(g(t))

]
, g(t) =

2πt

p
(6)

resulting in a covariance function for a periodic function
with period p (MacKay 1998).

We use the fact that the sum of two kernels is also a kernel,
to construct a special covariance function for power usage
forecasting:

kpower = kdaily + kweekly + kweather (7)

kdaily and kweekly are periodic squared exponential covari-
ance functions as defined in Eq. 5 and 6, with p1 = 24 =
168 and p2 = 7 · 24 respectively. They model the daily and
weekly correlations between power usages, that are present
in most customer characteristics.
kweather is a sum of four squared exponential covariance

functions (Eq. 5), which receive as an input the temperature,
wind speed, wind direction and cloud cover respectively.
It models the influence of different weather conditions on
power usage. This covariance function could be easily ex-
tended to more complex features, if more information was
available.

Hyper-parameter Optimization
With kpower we are able to integrate all available informa-
tion into the power usage model. Depending on the hyper-
parameters of this kernel function, we will obtain predic-
tions that are correlated with already observed values that
happened recently, at the same time on another day, at the
same time and day of another week or those with similar
weather conditions. However, there are different customer
characteristics and not all the data is informative for each of
them. The influence of different features on power usage is
defined by the hyper-parameters of the covariance function,
which can be learned by marginal likelihood optimization.
The log-marginal likelihood is defined as

log p(y|X, θ) = −1

2
yTK−1y− 1

2
log |K| − n

2
log 2π (8)

where the first term is the data-fit, the second term is a com-
plexity penalty and the last term is a normalizing constant
with n being the number of training samples.

Since the kernel kpower is differentiable the gradient of
the marginal likelihood with respect to the hyper-parameters
θ can be computed. We use Rprop, a fast and accurate
gradient-based optimization technique originally designed
for neural network learning, to maximize the objective func-
tion in Eq. 8 (Blum and Riedmiller 2013).

Besides providing a good trade-off between data-fit and
model complexity, the obtained hyper-parameters also al-
low for a straightforward interpretation of the data. For cus-
tomers that are not affected by wind speed for example,
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Algorithm 1: Prediction algorithm

Input: training data (X,y), time t, weather report zt,
weights α, hyper-parameters θ, σ2

n

Output: prediction f̄t

1 x∗ ← [t, zt];
2 k∗ ← Kpower(x∗, X);
3 f̄t ← k∗α;

the corresponding length scale parameter will go to infin-
ity, thereby effectively removing the influence of wind from
the prediction.

The Prediction Algorithm
The prediction procedure is summarized in Algorithm 1.
Given some initial training inputs X , corresponding ob-
served power usages y, the weights α =

(
K + σ2

nI
)−1

y,
hyper-parameters θ and σ2

n, Algorithm 1 predicts the power
usage for time t by first incorporating the time information
and weather information into one input vector x∗. Then the
kernel function kpower is evaluated between x∗ and all train-
ing inputs X and values are aggregated in k∗. Obviously,
when predicting power usage for a future time-slot, the real
weather conditions are not known yet and weather predic-
tions have to be used instead.

If a new data point is available, the real weather con-
ditions at that time are observed and the aggregated train-
ing pattern is appended to the training set. Afterwards(
K + σ2

nI
)−1

is updated accordingly. In regular intervals
the hyper-parameters are retrained using marginal likelihood
optimization. Note, that after changing the hyper-parameters
the entire kernel matrix has to be recomputed and inverted.

The PowerTAC Competition
We evaluate our approach using data from the Power Trad-
ing Agent Competition (PowerTAC) (Ketter et al. 2012).
PowerTAC is a competitive simulation, where agents offer
energy services to customers through tariff contracts. Bal-
ancing the energy production and consumption of the sub-
scribed customers is achieved by placing orders on a whole-
sale market. In order to do this successfully, a trading agent
needs access to accurate predictions of future energy de-
mands.

Customer models include households and a variety of
commercial and industrial entities, which either produce or
consume energy. Each time step, the power consumption and
production of the customers is reported and brokers have the
chance to place orders to buy or sell electricity for future
delivery.

There is a sample implementation of a PowerTAC bro-
ker available for download, which already implements the
most important parts of a retail broker1. We use the pro-
vided electricity demand algorithm as a baseline algorithm

1https://github.com/powertac/

for our experiments. The PowerTAC default broker divides
a week into 168 time-slots, one for each hour and uses ex-
ponential smoothing of previously observed values from the
same time-slot for training the predictor. Forecasts for time
t are done by simply looking up the corresponding entry in
a table. While this prediction method, which will be denoted
baseline method for the remainder of this paper, is only able
to reflect weekly seasonality, its computation is efficient and
predictions can adapt to changing conditions.

Experiments
We simulated four weeks of a typical PowerTAC game to
evaluate our prediction algorithm. The tariff market was
completely ignored, i.e. we are making predictions for the
entire customer population. We trained one model for each
customer using the first two weeks of data, which is exactly
the same data accessible to agents before a tournament game
starts. For the remaining two weeks of data, we first perform
predictions from one up to 24 hours into the future and add
the observed data point to the training set before moving to
the next time-slot. We evaluated two different GP models,
one using all available information and one using only time
information while discarding weather information. Different
classes of customers are evaluated separately.

Figure 2 compares the R2 measures of the Gaussian pro-
cess models to the baseline method for the different pre-
diction horizons. Both GP methods perform better than the
baseline method for all customer profiles. As expected, the
differences in performance are most pronounced for the re-
newable energy producers, since solar and wind production
cannot be reliably predicted without using weather informa-
tion. For these scenarios the GP using kpower gives by far
the best results.

For the consumers weather information does not seem to
improve the prediction errors and both GP methods achieve
comparable performance. Furthermore, Figure 2 shows that
both Gaussian processes and the baseline method are able to
provide the same level of prediction accuracy over all differ-
ent prediction horizons. This enables a trading agent to buy
electricity early when prices are low. Table 1 summarizes the
results of one-step ahead predictions for the four evaluated
customer types. We report the average hourly load, as well
as the RMSE of the three prediction methods. Prediction us-
ing Gaussian processes with weather data performs best in
all categories.

Summary and Outlook
We presented a machine learning technique for electricity
demand forecasting based on Gaussian processes. By speci-
fying a suitable covariance function we obtain are very flex-
ible prediction model, that achieves very high accuracy on
simulated data for different types of customers. Our method
can incorporate arbitrary features describing weather condi-
tions and considers daily and weekly periodicity of the data.

Gaussian processes could also be used to obtain error-
bars for the predictions, which could help to improve the
buying and selling strategies on the wholesale market. The
agent could for example compute the lower bound of energy
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Figure 2: R2 measures of the Gaussian process models compared to the baseline method for the different customer types.

Power type average hourly load GP imbalance (MWh) GP imbalance (MWh) baseline imbalance
(MWh) (without weather) (with weather) (MWh)

Consumption -31.71 ± 8.23 2.96 ± 2.01 2.91 ± 2.08 4.08 ± 2.66
Interruptible consumption -12.22 ± 2.00 0.14 ± 0.09 0.14 ± 0.09 0.20 ± 0.13
Solar production 2.96 ± 2.57 0.71 ± 0.51 0.44 ± 0.25 1.06 ± 0.94
Wind production 4.51 ± 2.96 2.89 ± 1.70 0.33 ± 0.25 3.30 ± 2.42

Population -36.46 ± 8.36 4.10 ± 2.70 3.00 ± 2.17 5.13 ± 3.32

Table 1: Average hourly usage and root mean squared prediction errors for the different customer types.

that will be needed with a probability of 95% and buy this
amount early, when prices are low.

We also plan to use GP forecasting to predict energy
prices in the trading module of our agent. Solid price for-
casts allow the agent to buy low and sell high. Finally, we
are participating in the 2013 PowerTAC, where our methods
will have to prove themselves in a competitive environment.
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