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Abstract

In pervasive environments, users are situated in rich
context and can interact with their surroundings through
various services. To improve user experience in such
environments, it is essential to find the services that
satisfies user preferences in certain context. Thus the
suitability of discovered services is highly dependent
on how much the context-aware system can understand
users’ current context and preferred activities. In this
paper, we propose an unsupervised learning solution for
mining user preferences from the user’s past context.
To cope with the high dimensionality and heterogeneity
of context data, we propose a subspace clustering ap-
proach that is able to find user preferences identified by
different feature sets. The results of our approach are
validated by a series of experiments.

Pervasive environments are rich in context information and
services. Users in such environments need services that suit
to their current context and preferred activities. As more
and more sensors are deployed to collect context informa-
tion, the task of interpreting context becomes increasingly
challenging (Lim and Dey 2010). Consequently, the use-
fulness of service discovery (Li, Sehic, and Dustdar 2010;
Rasch et al. 2011) or service recommendation (Adomavicius
et al. 2005) is largely limited by the ability to understand
user preference.

In the literature, context attributes used for learning
user preferences are chosen by either empirical assump-
tion (Munoz-Organero et al. 2010) or dimension reduc-
tion (Krause, Smailagic, and Siewiorek 2006) that renders
a small set of features. However, these approaches are infea-
sible in a broad and ever-growing spectrum of context infor-
mation. They fail to acknowledge the large variety of fea-
tures needed to describe different user preferences. There-
fore, they often struggle to find services that fulfill user re-
quirements accurately.

Context modeling (Baldauf, Dustdar, and Rosenberg
2007; Strang and Linnhoff-Popien 2004) can define context
in an extensible and dynamic way. These models are useful
when reasoning based on a priori knowledge, but fall short
in acquiring implicit knowledge from past context. For iden-
tifying user preferences, most previous work applies super-
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vised learning approaches that are targeted at identifying a
set of known classes, usually activities (Ferscha et al. 2004).
These approaches, however, are also challenged in a service-
rich environment. Because of the highly diverse service in-
vocation possibilities, they require a large amount of training
data and a long learning process.

This paper addresses the aforementioned challenges by
modeling and analyzing context and services in a high-
dimensional data space. Our main contribution is a subspace
clustering approach that is specialized to work on high-
dimensional context data. In the clustering process, we ac-
commodate for different data types, different densities and
context attributes of varying importance. Different to most
known solutions for learning from context, our solution is an
unsupervised learning process that requires minimal a priori
knowledge. The output of clustering is a set of user pref-
erences presented as subspace clusters, which can then be
used for service discovery. Our experimental results demon-
strate that the proposed approach is able to achieve very
good clustering results, and in turn, provide highly reliable
understanding of users’ preferred context and activities.

The paper is organized as follows: We first give a back-
ground introduction to modeling services and preferences in
high dimensional context spaces. Next, we discuss the chal-
lenges of applying subspace clustering to context data, fol-
lowed by a detailed presentation of our preference mining
approach. Afterwards, the proposed approach is evaluated
by series of experiments. The paper concludes with discus-
sions and future work.

1 Background
1.1 Service in Hyperspace Analogue to Context
Hyperspace Analogue to Context (HAC)(Li, Sehic, and
Dustdar 2010; Rasch et al. 2011) is a concept to model
context as multidimensional space. It effectively captures
continuously changing information from various context
sources. We first give a short introduction to core concepts
in HAC.

• HAC is a space H =< d1, d2...dn >, where each dimen-
sion di denotes a type of context. In HAC, a dimension is
the meta data to describe the data type and value set for a
specific type of context, e.g. location, time, and status of
a device.
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• The context of an object o is a point co =< v1, v2...vn >.
A change of co is considered as the object moving in H .

• A scope S =< D,V >, where D ⊂ H is the dimension
set that characterizes the scope, and V is the value set al-
lowed for dimensions in D. In a hyperspace of continuous
real dimensions, a scope is a hypercube projected on D.
We define a context c to be in a scope S as: c ∈ S, when
the projection of c on D belongs to V .

Using the concept of scope, we can describe two impor-
tant aspects in user preference mining: user preference and
context-aware service.

Preferences are the scopes a user would like to be situ-
ated in. Preferences may describe common situations such
as the user’s preferred indoor temperature, but also less com-
mon ones, for example a user’s habit of watching a spe-
cific TV channel every Sunday evening. The goal of pref-
erence mining is to suggest relevant services that lead to
preferred scopes. In this process, some preferences may be
more important to the user than others; for example a ”no
fire” preference is obviously more important than another
preference concerned with comfortable lighting. The signif-
icance of a preference is decided by the dimensions involved
and the frequency of the described situation. In HAC, each
dimension is associated with a predefined weight wi, where∑

wi = 1.
A context-aware service can be invoked in a certain scope

and invoking it will change the user context. Thus, a ser-
vice s =< SPre, SEff > is characterized by two context
scopes.

• Precondition SPre =< DPre, V Pre > is the invocation
condition of service s. When user is in SPre, service s
becomes one possible choice.

• Effect SEff =< DEff , V Eff > is the possible context
after invoking a service.

If a service s is successfully executed, a transition of user
context c → c′ happens such that c ∈ SPre and c′ ∈ SEff .
An example service which turns on the oven and heats it up
to a desired temperature could be described as having input
context SPre =< doven = [off ] > and SEff =< doven =
[on], dovenTemp = [120 . . . 250] >.

1.2 Clustering and context data
Intuitively, a user is comfortable with a situation if he is fre-
quently in similar context. The narrow ranges of some con-
text attributes define the preferable situation. Clustering –
as a widely applied approach to partitioning data into sets
based on a certain similarity measure – seems to be a natu-
ral candidate to abstract user preference from large amounts
of context data. However, in the literature, clustering is not
a favorable approach to context data analysis (Lim and Dey
2010). One reason is that context data is intrinsically high
dimensional. Classic clustering approaches, e.g. kNN (k-
Nearest Neighbors), usually rely on various types of distance
measures, which are effective on low-dimensional data. But
on high-dimensional data the ”Curse of Dimensionality” be-
comes a significant problem because ”as dimensionality in-
creases, the distance to the nearest data point approaches the

distance to the farthest data point” (Beyer et al. 1999). Con-
sequently, distance measures become ineffective. Dimension
reduction techniques, such as Principle Component Analy-
sis (PCA) (Wold 1987), can derive a single reduced set of
dimensions for all objects, but at the same time they lose
information of locally correlated dimensions. The local re-
lationships between dimensions are of great importance in
context data analysis since user preferences are based on dif-
ferent sets of correlated context attributes.

Aimed at high-dimensional data, subspace clustering or
projected clustering (Kriegel, Kröger, and Zimek 2009;
Parsons, Haque, and Liu 2004) has gathered considerable
attention in the last years. The goal of subspace clustering
is to find a list of clusters, each a pair < D,O >, where D
is a set of data attributes1, and O is a set of data objects.
Compared to classic clustering methods, subspace cluster-
ing recognizes local feature correlations and finds similar-
ities of data with regard to different subsets of dimensions.
Subspace clustering is applied to gene expression analysis,
product recommendation, text document analysis, etc. We
can observe a high accordance between the context scope
in HAC and the goal of subspace clustering, prompting us
to investigate the potential to apply subspace clustering on
context data. However, most applications of subspace clus-
tering use data consisting of homogeneous dimensions, e.g.
gene data, which is not the case for context data. The het-
erogeneity of data poses a strong limitation on choosing an
effective clustering method — similarity calculation, essen-
tial in many clustering approaches (Ester et al. 1996) and
usually based on certain distance measures across multiple
dimensions, is not applicable. Context data is heterogeneous
in several ways:
• Dimension semantics. Each dimension in context data

presents unique semantics. The semantics decide the data
type of each dimension, which can be numerical or nom-
inal, continuous or discrete. It is not meaningful to mea-
sure the distance between two multidimensional points if
the dimensions are semantically different. Although we
can always define certain distance measure on each di-
mension, in many cases the measure is subjective and ar-
bitrary, and eventually results in a loss of information.

• Distribution. Context data on each dimension is in a spe-
cific value domain and of a specific distribution. Even just
for numerical dimensions, there is no single normalization
method applicable to all of them. Failing to recognize the
different distributions between dimensions may result in
bad clusters, or in our case, wrong preferences.

• Significance. Dimensions are not equally important. One
prominent example is that the dimensions indicating
emergency or security issues are more important than
a comfortable ambiance. The importance of dimensions
will directly influence the importance of preferences.
When clustering context data to find user preferences, di-
mensional significance must be taken into consideration.
A sample of context data is presented in Table 1. The sam-

ple is an excerpt of a user’s weekend life. Each dimension

1In this paper we use attribute and dimension interchangeably.

37



Object ID Clock time Location In or out AC Indoor temperature (◦C) TV Door lock
o0 07:30 bedroom in on 22 off locked
o1 09:15 out out off 30 off locked
o2 10:30 out out off 30 off locked
o3 11:15 living room in on 22 on locked
o4 12:30 kitchen in on 21 off locked
o5 13:45 bedroom in on 22 off locked
o6 15:00 out out off 29 off locked
o7 17:00 living room in on 21 on locked
o8 18:30 kitchen in on 22 on locked
o9 20:00 living room in on 21 on locked
o10 22:00 bedroom in on 22 off locked

Table 1: Sample context data

presents different semantics, has a different data type and
value range. For example, temperature and time are discrete
and numerical, while all others are nominal. Some clusters
in one dimension can easily be observed. For example, on
temperature dimension, {o1, o2, o6} is a cluster with tem-
perature around 30◦C, and other objects form another clus-
ter around 21◦C. We can even observe two subspace clus-
ters. Objects {o1, o2, o6} on dimensions of location, AC and
temperature suggest that when user is out, the AC is of-
ten off. Other objects also suggest another cluster specify-
ing that when the AC is on, the temperature is usually set
to around 21◦C. We can also observe the association that
when the user is in the house, usually the AC is on and the
temperature is set to around 21◦C. This relationship is, how-
ever, not explicitly demonstrated in the sample data because
this subspace cluster is obscured by the three different rooms
in the location dimension. Some important pattern could be
missing if we use sensory data directly as input for subspace
clustering. This problem reveals the hierarchical nature of
some context, e.g. the three rooms are all indoor. We solve
this problem in data preparation by adding feature dimen-
sions. For location, we can add another dimension called in
or out and set all indoor rooms to value in. Similarly, we can
describe time by multiple dimensions such as day of a week
and time in a day.

2 Mining user preferences by subspace
clustering

Our goal of applying subspace clustering is to find user pref-
erences in large amounts of context data. Given the afore-
mentioned characters of context data, we adopt a framework
suggested by FIRES (FIlter REfinement Subspace cluster-
ing) (Kriegel et al. 2005), which distinguishes a step of
preclustering from generating subspace clusters. In each
step, we propose a method for processing heterogeneous
context data and the end result of the process are subspace
clusters representing user preferences. The most significant
advantage of this framework is that it allows to accommo-
date for dimensional heterogeneity.

In the first step, we need to find 1-dimensional (1D) clus-
ters in each dimension. To this end we propose an efficient,
density-based method to deal with highly differing densi-

ties among dimensions. In the subspace cluster generation
step, the basic idea is to merge 1D clusters from different di-
mensions based on the data objects they share. We transform
the clustering problem to frequent itemset mining. Thus the
data in each 1D cluster is regarded as the appearances of
one item. We modify the FP-Tree based FP-Growth algo-
rithm (Han, Pei, and Yin 2000) for frequent itemset mining.
Because the algorithm merges one item each time, we can
differentiate dimensions in the process. Furthermore, the al-
gorithm is efficient without costly candidate generation as in
the classical a priori approach (Agrawal and Srikant 1994).
In contrast to the second step in FIRES, which produces ap-
proximations of subspace clusters, our second step produces
subspace clusters in a deterministic manner.

2.1 Preclustering
The aim of preclustering is to find 1D clusters hidden in each
dimension. The quality of the found 1D clusters has a major
influence on the quality of the overall clustering results: 1D
clusters that are not found in the preclustering step, will also
not be represented in the final clustering result.

Nominal dimensions are already discrete. Each value rep-
resented in the data is considered as 1D cluster containing all
data objects having that value. For numeric dimensions, fur-
ther processing is necessary. Each numeric dimension may
contain multiple 1D clusters of varying size and local densi-
ties plus various noise points that are not part of any clus-
ter. Popular density-based clustering algorithms, e.g. DB-
Scan (Ester et al. 1996), often struggle when clusters with
different densities are present in the data. In contrast, our
own density-based clustering algorithm Binmerge is able to
find clusters with highly varying local densities.

In order to identify hidden clusters, Binmerge makes use
of the Local Outlier Factor (LOF) described by Breuning et
al. (Breunig et al. 2000) The LOF of a point p is a measure
of how likely p can be considered an outlier. If LOF (p) is
less than 1.0, then p lies within a cluster. For values higher
than 1.0, the likeliness that p is an outlier increases with in-
creasing LOF (p). Binmerge uses this information to iden-
tify potential cluster points. The local density of the points
in the hidden cluster around p can be approximated using the
k-distance(p), the distance of p to its k-nearest neighbors.
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Let U be the set of all data points that are not yet clus-
tered. In the first step of Binmerge, the k-distance(p) and
the LOF (p) for all p ∈ U are calculated. Let Uc be the set
of all points q ∈ U with LOF (q) < 1.0. Now the follow-
ing algorithm is performed until Uc is empty: First, select
from Uc the point q with the smallest k-distance(q). The
point q indicates a not yet found cluster whose density can be
approximated using k-distance(q). Second, in order to find
all points belonging to that cluster, the data interval covered
in U is divided into consecutive, non-overlapping bins with
width equal to k-distance(q) and all p ∈ U are sorted into
these bins. Third, the bins are then merged with each other;
two non-empty bins can be merged with each other if they
are either adjacent or are separated by maximum k empty
bins. Bins are merged until no further merging is possible.
Fourth, the remaining bin containing the highest number of
points is considered a 1D cluster and is added to the result
set. All points in this cluster are removed from U and Uc.

Through dividing and merging the data set using different
k-distances, clusters with highly varying densities can be
found. It is important to start by finding the cluster with the
highest local density, i.e. the lowest k-distance. Otherwise
it could happen that points from a high-density cluster are
wrongfully included in an adjacent low-density cluster. Even
though multiple iterations through the data set are necessary
in Binmerge, the data set will get increasingly smaller since
points contained in found clusters are removed.

2.2 Generating subspace clusters
Due to limited space, this section only introduces the gen-

eral idea of FP-Growth algorithm and details our modifica-
tion. For more detailed mechanism and rationale of the al-
gorithm, and the methods to create FP-Tree, readers should
refer to Han et al. (Han, Pei, and Yin 2000). The result
of preclustering is sorted in descending order of support,
which is the number of data objects in each cluster. The
sorted list is called header table, denoted as ht. From the
header table, an FP-Tree is generated. FP-Tree is an item
prefix tree preserving all the frequent itemset information in
a concise tree structure. The recursive FP-Growth algorithm
merges itemsets by pruning the FP-Tree. The algorithm re-
quires only one user input parameter, the minimal support
of the resulting itemset. The original FP-Growth algorithm
keeps all possible combinations of dimensions discovered
during the clustering process. This results in some redun-
dant clusters, whose information is contained in clusters of
higher dimensionality, making it difficult to interpret the re-
sults in application scenarios.

When merging 1D clusters into subspace clusters, we
generally prefer clusters of higher dimensionality, because
they can represent more associations between dimensions.
In context-aware applications, clusters of higher dimension-
ality can characterize user preference more accurately. On
the other hand, a cluster containing low number of objects,
even with high dimensionality, indicates the association is
not frequent enough. Therefore it should be considered a bad
cluster. A measure of cluster quality must take into consider-
ation both the number of dimensions as well as the number
of objects in the cluster. Since our clustering algorithm is

Algorithm 1 wTreeGrowth
1: initialize
2: create FP-Tree T from ht
3: initialize subspace cluster Cm = null
4: end initialize
5: procedure wTreeGrowth(T , ht, Cm)
6: result = Cm

7: if only one branch in T then
8: for i = ht.length to 1 do
9: Cm+1 = result.merge(ht[i].C1)

10: if Cm+1.quality > result.quality then
11: result = Cm+1

12: end if
13: end for
14: if |result.dimensions| >= minDim &

|result.support| >= minSupport then
15: add result
16: end if
17: else
18: for i = ht.length to 1 do
19: Cm+1 = Cm.merge(ht[i].C1)
20: if Cm+1.quality > Cm.quality then
21: Create new header table ht′ based on Cm+1

22: if ht′ is not null then
23: Create new tree T ′

24: wTreeGrowth(T ′, ht′, Cm+1)
25: else
26: result = Cm+1

27: end if
28: end if
29: if |result.dimensions| >= minDim &

|result.support| >= minSupport then
30: add result
31: end if
32: end for
33: end if
34: end procedure

specialized for context data, the weights of individual con-
text dimensions must also have a substantial influence when
calculating cluster quality. We propose a cluster quality de-
fined in (1) to meet all of the above requirements.

Quality(Cm) = |C| × u−|D| ×
∏
di∈D

1

1− wi
(1)

In (1), C is the object set and D is the dimension set.
|C| × u−|D| stresses the importance of extending dimen-
sionality against reducing the support. u ∈ (0, 1) is a user
input parameter to regulate the importance of dimensional-
ity.

∏
1

1−wi
indicates that for context data, attributes are not

equal. Thus clusters of different dimension set, even with
same support and dimension number, could be valued differ-
ently in the process of generating further subspace clusters.

Our modified FP-Growth algorithm based on this quality
measure is called wTreeGrowth, illustrated in Algorithm 1.
In the algorithm, a 1D cluster is denoted as C1, and corre-
spondingly, a cluster of m dimensions is Cm.
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wTreeGrowth is a recursive algorithm that generates sub-
space clusters of good quality by selectively merging with
1D clusters. Cm+1 = Cm.merge(C1) means to add C1

to the current subspace cluster. The dimensionality of Cm is
extended, while the intersection of data objects from Cm and
C1 are kept in the new subspace cluster Cm+1. From Line 8
to Line 16, when there is only one branch left in the tree,
the algorithm tries to extend the current Cm with as many
dimensions as possible. A 1D cluster will be skipped only
when it decreases the quality of resulting subspace cluster
(Line 10). When multiple branches exist in the tree (Line 18
to Line 32), there are multiple possibilities to extend the cur-
rent Cm. If the subspace cluster, created by merging with
the next header table entry, has higher quality than the cur-
rent one, the merged cluster is kept and the header table is
reduced in the recursive invocation of the algorithm.

3 Experiments and discussion
3.1 Cluster evaluation measures
For evaluating effectiveness of subspace clustering, there is
so far no generally agreed metrics, particularly regarding
projected clusters on subspaces. In this paper, we adopt the
measures proposed recently by Mueller et al. (Müller et al.
2009) All of them are normalized to [0, 1] where 1 is consid-
ered the best. We explain shortly the meaning of each mea-
sure and our modifications on some of them with respect
to the character of context data. For more details, readers
should refer to the original publications.

The first two measures evaluate results with regard to data
objects, but do not consider the projection to subspaces.

Entropy: The entropy measures the homogeneity of found
clusters with respect to hidden clusters. The more similar
found and hidden clusters are, the better the entropy will be.

F1: This measure evaluates how well hidden clusters are
presented. A found cluster should cover as many objects as
possible in some hidden clusters, and as little as possible in
other clusters.

Following measures reveal clustering results at a finer
grain with considerations to dimensional projections. The
basic elements under inspection are subobjects, which are
the projection of each data object on each dimension, de-
noted as oij where i is the dimension id and j is the object
id.

Relative Nonintersecting Area (RNIA): RNIA measures
the overall coverage of hidden subobjects with respect to
found clusters. Let all hidden subobjects be SOh, and all
found subobjects be SOf . Let U be the union of these two
subobject sets and I be their intersection. RNIA = U−I

U

and since U ⊃ I , RNIA = |U |−|I|
|U | .

Clustering Error (CE): CE extends RNIA by consider-
ing one-to-one mappings between hidden and found clus-
ters. CE measures mapping of each found cluster to at most
one hidden cluster and vice versa. For each mapping the in-
tersection of subobjects is determined and the union of all
these intersections is Ī . We can calculate the CE value by
replacing I in RNIA with Ī .

Since RNIA and CE do not consider the dimensions of
subspace clusters, we modified them to incorporate weights

of dimensions in their evaluation. We call these modified
measures wRNIA and wCE. Each subobject is associated
with weight of its dimension. The modification has follow-
ing effect on measures: more precise clustering results w.r.t.
important dimensions is, better the measures are. Given a
set of subobjects SO, we define wsize(SO) in (2). wRNIA
and wCE measures are the result of replacing each |SO| in
RNIA and CE respectively with wsize.

wsize(SO) =
∑

oij∈SO

1

1− wi
(2)

3.2 Synthetic data generation
In order to test our algorithms, we generated synthetic data
following the method described in (Aggarwal et al. 1999).
Since the original method supports only fixed-size numeric
dimensions, small adaptions are necessary. We generate
nominal dimensions by creating a finite set between 5 and
20 random nominal values. Numeric dimensions are gener-
ated by choosing 0 as the minimum value of the dimension
and any value between 100 and 1000 as the maximum value.
Numeric cluster points are drawn from a Gaussian distribu-
tion as in the original method, whereas nominal values are
assigned a single nominal value set for this cluster.

We generate clusters containing on average 200 points,
which is the cluster size at which our algorithm stabilizes.
The noise ratio is set to 0.2, meaning that 20% of all points
are not contained in any cluster. In a typical pervasive envi-
ronment, e.g. smart home, we expect that the noise ratio will
be even smaller, since nearly every data point is indicative
of a user preference, even if it is just on one dimension like
indoor temperature. The number of overall dimensions is set
to 10, and the percentage of nominal dimensions is 60%.
We expect that in pervasive environments a majority of di-
mensions are nominal, e.g. dimensions describing the status
of devices, and only some dimensions, such as temperature,
are numerical. We hide 10 clusters, which is equivalent to
detecting 10 user preferences. Each cluster contains on av-
erage three dimensions, but as we will show later, the quality
of our results is not influenced by the number of cluster di-
mensions.

3.3 Estimating parameters
Different algorithm parameters have been introduced in the
previous sections. The minimum support of a cluster de-
scribes the number of data points constituting a minimal
cluster. We have achieved good results in all of our exper-
iments by setting minSupport to 0.025, which means that
only clusters that contain at least 2.5% of all data points are
considered. The minimum support is manually set to 10 if
it was calculated as a smaller value, in order to avoid that
arbitrary noise points create clusters.

The parameter k influences the behaviour of Binmerge; it
determines the number of neighbours that are included when
calculating the LOF of a point and controls the process of
merging bins. A very good approximation of k is the mini-
mal mimSupport of a cluster, in our case 10. When setting k
like this, the LOF calculation will take into account exactly
those neighbours that could constitute a minimal cluster.
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The third parameter is u, which regulates the importance
of the total number of dimensions when calculating the clus-
ter quality. We have found that u = 0.6 yields the best results
in our experiments.

3.4 Experimental results
All of the experiments were performed on a desktop PC with
an Intel Core 2 Duo CPU with 3 GHz and 4 GB RAM run-
ning Linux, and were run for 25 replications.

Figure 1 shows how the average size of clusters influ-
ences the results of our clustering algorithm. A steady in-
crease of the quality of the clustering results can be seen for
small cluster sizes with less than 200 points per cluster. From
200 points the results stabilize and high quality clusters are
found. A user’s comfort situations can thus be reliably found
if there were approximately 200 data points indicative of this
situation recorded. Since each change in the users context
constitutes a new data point, this limit is reached quickly,
especially for common user preferences such as indoor tem-
perature and lighting.

Figure 1: Influence of the average cluster size

It can also be seen from Figure 1 that the stabilized en-
tropy is constantly higher than 0.9, meaning that the hidden
clusters are found with minimal fragmentation into multi-
ple clusters. This assumption is further supported by the fact
that the values for wCE and wRNIA are very similar for all
results, suggesting that our algorithm is very successful in
finding exactly one cluster for each hidden cluster.

The values for wCE and wRNIA are however lower than
the entropy, indicating that some data objects are not as-
signed to the correct clusters. This is typically the case when
the 1D clustering of numeric dimensions fails to correctly
cluster some values. Figure 2 shows consequently, that the
wRNIA and wCE increase if there are less numerical and
more nominal dimensions present.

In pervasive environments, dozens or even hundreds of
different context dimensions may be present. Figure 3 shows
how our algorithm also fares well when the overall num-
ber of dimensions is increased. It can be seen, that the clus-
ter qualities are very stable even with increasing dimension
count. Especially for dimension numbers bigger than 30,
many dimensions will not be used in any clusters. The re-
sults prove that our algorithm is very successful in sepa-
rating these noise dimensions and correctly identifying the
cluster dimensions. We have also found that results for a

Figure 2: Influence of the percentage of nominal dimensions

varying average number of cluster dimensions is very stable;
high-quality clusters are found both for low and for high-
dimensional clusters.

Figure 3: Influence of the number of overall dimensions

Figure 4 shows that our algorithm is most successful if
between 4 and 10 clusters are hidden in the data. For higher
cluster numbers, all measures except for the entropy start
to decrease. This indicates that the clusters are still identi-
fied correctly, however the clustering algorithm is becoming
less effective in assigning all objects to their correct clusters.
This happens because the 1D numeric clustering algorithm
degrades with an increasing number of clusters on each di-
mension; and indeed we can see much more stable results
when the number of nominal dimensions is increased.

Figure 4: Influence of the number of clusters

We also looked at the influence of the ratio of unclus-
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tered noise points on the clustering results. Our algorithm
achieves very stable clustering results for up to 40% noise
points. With more noise points, the number of overall points
and thereby also the minimal support for each cluster has
increased so drastically, that the minimal support is big-
ger than many of the actual hidden clusters, so only some
clusters can be found. However, as pointed out earlier, the
expected noise ratio in the scenarios we envision is much
lower, since nearly all data points are indicative of a user
preferences

Finally we were interested in the execution time of our
algorithm. Figure 4 shows the execution times for the vary-
ing cluster sizes already represented in Figure 5. The total
number of data points to be clustered increases from 1250
points for a cluster size of 100 to 12500 points for a cluster
size of 1000. As expected, the total execution time increases
with the growing number of data points. Nevertheless, even
for 12500 points, the clustering finishes under 5 seconds. As
the clustering method is meant to be used offline, the perfor-
mance is acceptable.

Figure 5: Influence of cluster size on runtime

4 Related work
To the best of our knowledge, our work is the first to use sub-
space clustering to analyze context data. By exploiting sub-
space clustering on high-dimensional, heterogeneous data,
we can discover hidden preferences in context data with
minimal user input.

Our user preference mining approach distinguishes itself
substantially from other subspace clustering approaches.
FIRES (Kriegel et al. 2005) is a generic subspace mining
framework that features a 1D clustering step. We adopt this
framework but devised a completely different dimension
merging approach for context data. In addition, the cluster
quality in FIRES is

√
|C| ∗ |D|, which we found much less

effective on context data than our cluster quality. HSM (Het-
erogeneous Subspace Mining) (Müller, Assent, and Seidl
2009) is the first known approach that tackles heteroge-
neous data. HSM uses SCY-tree (Subspace Clusters with
in-process-removal of redundancY) (Assent et al. 2008) to
perform dimension merging. The approach mixes the steps
of 1D clustering and dimension merging, thus the clustering
algorithm is sensitive to the order of dimensions when build-
ing the SCY-tree, which is not the case in our FP-Tree based

approach. Furthermore, HSM only deals with data type het-
erogeneity. In contrast, our user preference mining approach
addresses the heterogeneity of attribute distribution using a
dedicated 1D clustering approach for data of differing densi-
ties. Also different to existing approaches, we incorporate a
quality measure in the mining process to emphasize impor-
tant dimensions.

Service discovery in pervasive environments usually
makes use of context to define a scope of search for suitable
services. Bellavista et al. (Bellavista et al. 2006) proposed
a user-centric service view, and Park et al. (Kyung-Lang
Park, Yoon, and Shin-Dug Kim 2009) uses the concept of
virtual personal space. Both of them resemble the scopes of
user preferences, but our user preferences can be much more
fined grained than their service discovery scopes and require
no pre-configured preference description. In Li et al. (Li, Se-
hic, and Dustdar 2010) and Rasch et al. (Rasch et al. 2011),
we have presented the concepts of HAC, and based on it, we
proposed a context-driven service discovery framework. In
that work, we assumed user preferences are predefined input
for service discovery algorithm. Our user preference mining
approach can be complementary to previous service discov-
ery work. But most importantly by modeling service in the
same data space, service discovery is transformed to evalu-
ating the spacial relationships between preferences, service
effects and user context.

5 Conclusion
In this paper, we introduced a model to associate service
and context coherently in one data space. Based on the
model, we propose a subspace clustering approach on high-
dimensional and heterogeneous context data to find mean-
ingful user preferences. The effectiveness of the proposed
approach is proved experiments on synthetic data.

Our future work will be mainly focused on improving and
validating our approach in field tests. More specifically, we
will carry out extensive experiments of the user preference
mining algorithm on real-world data. As pervasive comput-
ing becomes an essential technology paradigm in our daily
life, the potentials of our approach are beyond context-aware
activity recognition and service discovery. We will continue
to develop the data model and algorithm for sensory data,
which can be found in many application scenarios like e-
health, wearable computing and smart buildings.
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