
Identifying Features for Bluff Detection
in No-Limit Texas Hold’em

Razvan Ranca
School of Informatics, University of Edinburgh

10 Crichton Street, Edinburgh, Scotland, United Kingdom
ranca.razvan@gmail.com

Abstract

Abstract Poker is increasingly becoming an area of inter-
est in AI research, partly because of the complex qualities
it exhibits which are absent from more traditionally studied
games, such as chess. One of the most difficult but also most
important aspects of poker is the need to infer information
about your opponent while also handling his attempts at dis-
information. This problem of “opponent modelling” is a cen-
tral aspect of poker agent design and has been approached in
many different ways. In this paper we focus on one subset
of the opponent modelling problem, namely that of bluff de-
tection. We explore the effectiveness of different feature sets
towards this task and test the ease with which the bluffs of
various poker agents can be detected.

Introduction
Poker is a partially observable, dynamic, stochastic, muti-
agent game, and therefore a challenging and interesting do-
main for artificial intelligence research. The large number of
possible dealt cards and the large number of possible player
actions gives poker a search space with a very large branch-
ing factor, the exploration of which is infeasible for clas-
sic AI techniques. The new approaches that must be devel-
oped to handle these issues promise to prove useful in a large
range of practical applications.

One possible technique for designing a poker agent is the
game theoretic approach which calculates an approxima-
tion to the Nash equilibrium strategy (Billings et al. 2003;
Koller and Pfeffer 1997). This method has previously
proved successful, for instance in the Annual Computer
Poker Competitions (ACPC)1. This approach, however, suf-
fers from a serious flaw. By trying to play an equilibrium
strategy, the agent is trying to minimize losses which, in
most poker scenarios, is the wrong thing to do. By trying
to minimize losses, the agent allows his opponents to play
to maximize gains, without any fear of repercussions. Some
consequences of this weakness have been observed in the
ACPC results, where equilibrium bots have managed to lose
the overall bankroll challenge despite defeating every single
opponent. In order to address this issue, agents have to play
exploitatively, meaning they have to capitalize on the weak-
nesses of their opponents. Any such exploitative approach

1ACPC website: http://www.computerpokercompetition.org/

will need a way to model the behavior of its opponents so
that it may try to understand their actions.

If we are to define an opponent model, we must first
make generalizing assumptions about the opponent’s behav-
ior. This necessity is caused by the huge search space of
poker, which makes it unlikely that we will encounter the
same exact situation twice. In order to make these assump-
tions, we must identify the most important aspects of the op-
ponent’s play, namely those aspects which can be best used
to predict his future behavior.

In the rest of this paper we will identify several possi-
ble features and look at their distribution over bluffs and
non-bluffs. We will then try to quantify both the informa-
tion gained from using individual features and the predictive
power of using combinations of them. Lastly we will look
at the convergence rates on our predictions, and see whether
the features could reasonably be used for bluff detection dur-
ing real play. First, however, we will take a look at previous
opponent modelling approaches.

Opponent Modelling Review
Exploitative agents can generally be classified as either static
or adaptive, both of which incorporate an opponent model,
which usually has a large impact on the overall effectiveness.
(Rubin and Watson 2011)

The static agents rely on a pre-computed exploitative
strategy that is stored and used when appropriate during
play. The simplest form of this agent uses an opponent
model called a “frequentist best response” which works by
analyzing a large history of games, and storing the statisti-
cal best response at every encountered situation. In order
to be tractable, the poker search space is mapped to a lower
dimensional equivalent using such methods as grouping the
possible starting hands into several buckets, based on the
probability of winning at showdown. (Shi and Littman 2001;
McCurley 2009). During play the bot will map the current
situation to the same lower dimensional space and play the
pre-computed best response stored there. When presented
with a static opponent and a large database of this oppo-
nent’s play history, the frequentist best response method
will achieve close to maximal possible exploitation.This
model, however, is quite brittle and if the opponent’s strat-
egy changes even slightly the performance can drop drasti-
cally (Johanson 2007). Robustness can be gained by mixing

42

Computer Poker and Imperfect Information: Papers from the AAAI 2013 Workshop

the above method with an e-Nash equilibrium bot. This can
be done by assuming the opponent will play according to
our model some percentage of the time, and that he will play
some unknown strategy the rest of the time. The equilibrium
strategy can be calculated for this new scenario, which will
be a compromise between the pure exploitative and the pure
equilibrium extremes (Johanson, Zinkevich, and Bowling
2007; Johanson 2007). A final refinement to the above so-
lution was explored in (Johanson and Bowling 2009), where
the probability that the opponent will or will not respect our
model is based on how confident we are of our model in the
current position in the game tree. This is an improvement
since we will have more confidence in our opponent model
in some situations than others.

The adaptive agents, instead, do an incomplete informa-
tion game tree search. This approach involves a key trade-
off between exploitation and exploration. It is tempting
to always pick the most exploitative option, but this may
lead to encountering fewer unique situations and therefore
having a weaker opponent model. Different solutions to
this problem have been attempted in (Billings et al. 2006)
and (Davidson 2002). Another issue involved in design-
ing adaptive models is that they must get decent results af-
ter dozens of hands rather than thousands. Because of this,
if the frequentist best response method is to be used, the
lower dimensionality space to which the world is mapped
needs to be exceedingly simple, which limits the effective-
ness of the agent. Relatively good results have been obtained
by using a series of successively simpler world models and
inter-linking them so they share information as to make op-
timal use of every observed hand. (Billings et al. 2006;
Schauenberg 2006). More traditional machine learning
methods have also been applied to this problem, such as re-
inforcement learning (Dahl 2001) and neural networks (Mc-
Curley 2009). For the latter, the author notes positive results
when evaluated against human players despite the fact that
the large computational cost meant he could only perform
the game tree search on the current betting round.

Finally, there are mixed approaches such as (Matrepierre,
Mary, and Munos 2008) which first pre-calculate several dis-
joint static exploitative strategies, each corresponding to a
class of players, and during play attempt to classify their op-
ponent into one of these classes.

These approaches all have the feature selection problem
in common. In the static case, the designer must select the
features on which to base his lower dimensional mapping,
and in the adaptive case the agent must decide which fea-
tures it will first expand in the incomplete game tree search.

Data Preparation and Features Used
Our data consists of the logs of the 2012 ACPC no-limit
hold’em competition (including both the instant run-off and
the total bankroll results). Since these logs contain a large
amount of hands, we take a conservative approach in identi-
fying bluffs and non-bluffs. Specifically, we look for hands
in which the flop contains 3 cards of the same suite and one
of the players makes a raise upon seeing the flop. This is a
classic bluff scenario, in which the player who raises may

genuinely have the flush or may try to convince his adver-
sary that he has the flush. We further filter these hands as to
disregard situations in which the player who raises has only
one matching card as, in that case, it’s unclear how much of
a bluff his raise is. This leaves us with two clear categories,
a bluff when the player who raises has no card of the right
suite, and a non-bluff when said player has already made the
flush. After the filtering we are left with ∼376,000 hands
played amongst the 11 players.

We next analyze 8 features which a human might use
when making a decision regarding the opponent’s hand
strength. These features are:

Position: whether the adversary plays first in this hand.
Pot amount: the amount of money currently on the table.
Raise/Pot: how large the opponent’s raise was in relation to

the pot at the time of his bet.
Flop strength: the strength of the flop cards. This is mea-

sured by making all possible 5 card hands containing the
flop cards and averaging their strength2.

Number of pre-flop raises: how many times the opponent
has raised pre-flop.

Average pre-flop raise/pot: on average, how aggressive
the opponent’s pre-flop raises were. This is 0 if there were
no pre-flop raises.

Number of hands played: how many hands have been
played in this match so far. Since the total number of
hands in a match is fixed, this indicates at what stage in
the match the agents are.

Proportion won in similar hands: how successful the ad-
versary has been in “similar” hands during the match.
Similar hands are defined as hands that fit the filtering
criteria described above. Success is measured as the
amount of money won by the adversary divided by the
total amount of money played in these hands.

The features’ distributions over the bluff and non-bluff
classes are shown next in Figures 1 to 8. Note that “all”
means the amalgamation of all filtered hands and is there-
fore a combination of the 11 bots. As such “all” can be
viewed as somewhat of a generic agent, incorporating sev-
eral strategies.

2The strength of a hand is calculated using the poker-eval
library (http://pokersource.sourceforge.net/)

43

Figure 1: Position is 0 if the adversary plays first and 1 otherwise. For hugh, spewy louie and neo poker lab the means of the
distributions vary between the two classes, which can be exploited.

Figure 2: We can see some discrepancies in the pot amounts. azure sky, for instance, seems to always be bluffing if the pot is
under a certain amount. This is probably because if the bot actually had a suited hand pre-flop he would have bet more.

Figure 3: Several other discrepancies here. It seems that azure sky almost always bets the same proportion when not bluffing.
Additionally, in general, the bots seem to bet more when not bluffing.

44

Figure 4: This measure appears to only work well on a couple of bots. We can see that, for instance, uni mb poker much prefers
to bluff when the flop is stronger, probably because the bot considers it easier to scare his opponent in these scenarios.

Figure 5: We can notice here that several bots are more likely to be bluffing if they played aggressively pre-flop. This is likely
because they believe their aggressive behavior can be exploited to scare the opponent.

Figure 6: The trend observed in Figure 5 is repeated here. The only bot to reverse the trend is lucky7 12 who seems to take a
more conservative approach.

45

Figure 7: The players don’t appear to take much account of the game stage. We can see some slight differences in a few bots,
such as tartanian5, who seems to make his bluffs slightly earlier in the game.

Figure 8: Here we see some interesting results. It looks like, almost universally, the bots are less likely to bluff if they’ve
previously won similar hands. A possible explanation would be that when the bots are losing they are willing to take more risks
and bluff more.

Figure 9: The information gained by splitting the hands into two categories based on one feature.

46

Feature evaluation
The results shown in Figures 1 to 8 give us some insight
into which features might be useful for which bots and why
this is so. However, just looking at the distribution of the
features does not allow us to quantify the comparative pre-
dictive power offered by any of them. One way to get a sense
of the value they offer is to look at the classification problem
from an information theoretic perspective. We can split the
dataset into two categories, based on the values of the fea-
ture we are considering. We can then calculate the entropy
of the initial distribution of bluff and non-bluff cases and the
entropy of the two categories we have obtained by splitting
the original dataset. By taking the weighted average of the
entropies of said 2 categories, we can compare the initial en-
tropy to the entropy obtained after splitting the hands and
thus calculate the information gain3 achieved by the split.

Formally, if X is a set of played hands and xf is a feature
of one of the hands, then we can split the set X into two
categories as follows:

Xa(div) = {x ∈ X|xf <= div}
Xb(div) = {x ∈ X|xf > div}

If we further define H(X) as the entropy of X over bluffs
and non-bluffs, then we can evaluate the information gain of
this split by saying:

IG(X, div) =H(X)− |Xa(div)|
|X|

H(Xa(div))

− |Xb(div)|
|X|

H(Xb(div))

The problem with the above formulation is that most fea-
tures are not binary and therefore it is unclear how to pick
the div value on which the split must be performed. We take
a heuristic solution to this problem, which proves to be ro-
bust. We define the “interesting range” of a feature’s values
as the range where the middle 80% of values lie. We then
do a uniform random sampling from this range, and keep the
sample with the largest information gain. Experimental re-
sults show that increasing the number of samples from 100
to 2000 does not noticeably improve the information gain of
any of the features on any of the bots, thus giving us some
assurance as to the robustness of the method. The resulting
observed information gains are shown in Figure 9. One of
the interesting take-aways from this figure is that the fea-
tures can have wildly different effectiveness levels on differ-
ent bots. Another take-away, and obvious problem, is that
on a few of the bots none of the features seem to have a
significant impact.

The issue here is that the information gain we have cal-
culated is a lower bound on the predictiveness of the fea-
tures. This is due to the fact that the features may have com-
plex distributions which would require more than 1 division
points to fully take advantage of. In order to get a better idea
of the total effectiveness of all these features, we apply a de-
cision tree algorithm to the task of classifying the hands into

3Information gain is also known as the Kullback-Leibler diver-
gence (Kullback and Leibler 1951)

bluffs and non-bluffs. We first perform a further filtering
step as to ensure that both bluffs and non-bluffs are equally
represented in the results. This should allow the prediction
results to be compared fairly across bots even if one of the
agents tends to bluff more than another. We performed the
classification task using 10-fold cross-validation, while en-
suring that the folds are made as to preserve the proportions
of the classes. The ROC curves are shown in Figure 10.

While the results presented in Figure 10 are quite good, a
question arises regarding the speed of convergence to these
results. If it takes us many thousands of hands of play to
reach the above accuracies, then the features are not actually
very useful when playing against a new opponent. In order
to get a sense of the behavior of the classifier as the amount
of data decreases, we analyze the change in the area under
the ROC curve (which we call AUC) as the amount of data
changes. Since we’re drastically reducing the size of our
datasets, we want to make sure the variance of the results
isn’t too large. We therefore repeat the experiments on dif-
ferent subsets of the original dataset and average the results.
As an example, for a test case containing 1% of the data,
we would run 100 simulations which would cover all of the
original data, 1% at a time. Additionally, each of these indi-
vidual simulations also uses 10-fold cross-validation. Figure
11 shows the results obtained when the amount of data varies
from 1% to 100% of the total.

In order to highlight the performance obtained on very
few training cases, Figure 12 shows the results when the
size of the training set goes from 5 data points to 1000. As
before, this data was generated by averaging repeated tests
on subsets of the original datasets. Since some of these data
subsets are very small, we use 3-fold cross-validation so that
the training sets can have sufficient samples.

From both of these figures we can see that the conver-
gence behavior of the AUC varies significantly from bot to
bot. On agents such as azure sky and sartre, we can achieve
highly reliable classification even with a very small number
of training points. Conversely, on dcubot and spewy louie,
even 1000 training cases only brings us up to an AUC of
∼0.6, whereas the full dataset takes us to over ∼0.8. This
behavior may be determined by the features that prove most
reliable for the respective agents, as the convergence rates
for the individual features will likely vary.

47

Figure 10: The ROC curves obtained by running a decision tree algorithm using the 8 aforementioned features.

Figure 11: The convergence rate of the Area Under Curve as the amount of data used grows from 1% to 100%.

Figure 12: A zoom in on the convergence rate on small amounts of training data, varying from 5 test cases to 1000. The
horizontal line shows the AUC score obtained on the full dataset.

48

Conclusions and Future Work
We have formulated and analyzed several features for the
purpose of bluff detection. This task was performed on the
11 agents that competed in the 2012 ACPC no-limit hold’em
competition, as well as on an aggregate agent combining the
previous 11. We looked at the way the distribution of fea-
tures varies over the bluffs and non-bluffs, for each agent,
and at how much information can be gained by classifying
the dataset according to one of the features. Combining all
the features in order to perform a classification gave us good
results, even when using a basic, out-of-the-box, decision
tree classifier. Finally, we have analyzed the robustness of
this classifier as the amount of training data decreases, which
has given us mixed results on the various agents.

From here. there are many potential avenues to explore.
One obvious question is what causes the discrepancy be-
tween the analyzed agents, both regarding classification er-
ror and, especially, regarding robustness. The performance
of the individual features should be evaluated as the amount
of training data decreases and we should see if this might
explain the different agent robustness levels.

A limitation of the current approach is that we only use
data directly related to our filtered hands in order to perform
the classification. A natural extension is to try to infer in-
formation about the agent’s bluffing habits from all played
hands. This would require the design of further features
which can capture aspects such as the opponent’s general
aggressivity and propensity for risk taking.

Other possible directions would include applying more
complex machine learning techniques to the classification
problem and extending the filtered hands to include more
situations than the current flop flush scenario. Finally, the
integration of these methods into the general opponent mod-
elling framework should be considered.

References
Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer,
J.; Schauenberg, T.; and Szafron, D. 2003. Approximating
game-theoretic optimal strategies for full-scale poker. In In-
ternational Joint Conference on Artificial Intelligence, vol-
ume 18, 661–668.
Billings, D.; Davidson, A.; Schauenberg, T.; Burch, N.;
Bowling, M.; Holte, R.; Schaeffer, J.; and Szafron, D. 2006.
Game-tree search with adaptation in stochastic imperfect-
information games. In Computers and Games. Springer. 21–
34.
Dahl, F. 2001. A reinforcement learning algorithm applied
to simplified two-player texas holdem poker. In Machine
Learning: ECML 2001. Springer. 85–96.
Davidson, A. 2002. Opponent modeling in poker: Learning
and acting in a hostile and uncertain environment. Master’s
thesis, University of Alberta, Canada.
Johanson, M., and Bowling, M. 2009. Data biased ro-
bust counter strategies. In Proceedings of the Twelfth Inter-
national Conference on Artificial Intelligence and Statistics
(AISTATS), 264–271.

Johanson, M.; Zinkevich, M.; and Bowling, M. 2007. Com-
puting robust counter-strategies. Advances in neural infor-
mation processing systems 20:721–728.
Johanson, M. 2007. Robust strategies and counter-
strategies: Building a champion level computer poker
player. In Masters Abstracts International, volume 46.
Koller, D., and Pfeffer, A. 1997. Representations and so-
lutions for game-theoretic problems. Artificial Intelligence
94(1):167–215.
Kullback, S., and Leibler, R. 1951. On information and
sufficiency. The Annals of Mathematical Statistics 22(1):79–
86.
Matrepierre, R.; Mary, J.; and Munos, R. 2008. Adaptive
play in texas holdem poker. In ECAI 2008: 18th European
Conference on Artificial Intelligence, July 21-25, 2008, Pa-
tras, Greece: Including Prestigious Applications of Intelli-
gent Systems (PAIS 2008): Proceedings, volume 178, 458.
IOS Press.
McCurley, P. 2009. An artificial intelligence agent for texas
holdem poker. Undergraduate dissertation, University of
Newcastle Upon Tyne, UK.
Rubin, J., and Watson, I. 2011. Computer poker: A review.
Artificial Intelligence 175(5):958–987.
Schauenberg, T. 2006. Opponent modelling and search in
poker. Master’s thesis, University of Alberta, Canada.
Shi, J., and Littman, M. 2001. Abstraction methods for
game theoretic poker. In Computers and Games. Springer.
333–345.

49

