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Abstract
We propose the use of causality-based formal representation
and automated reasoning methods to endow multiple teams
of robots in a factory, with high-level cognitive capabilities,
such as, optimal planning and diagnostic reasoning. We intro-
duce algorithms for finding optimal decoupled plans and di-
agnosing the cause of a failure/discrepancy (e.g., robots may
get broken or tasks may get reassigned to teams). We discuss
how these algorithms can be embedded in an execution and
monitoring framework, and show their applicability on an in-
telligent painting factory scenario.

Introduction
As conventional manufacturing and assembly systems fall
short of responding to ever increasing market demands for
customized and variant-rich products in a cost effective
manner, new approaches for automated fabrication of cus-
tomized product become well-motivated. The cognitive fac-
tory concept (Zaeh et al. 2009; Beetz, Buss, and Wollherr
2007) is such a paradigm shift that promises significant ad-
vantages over conventional manufacturing by balancing the
flexibility and efficiency demands in automation, while si-
multaneously achieving a high-degree of reliability. In par-
ticular, cognitive factories aim to endow manufacturing sys-
tem with high-level reasoning capabilities in the style of
cognitive robotics, such that these systems become capa-
ble of planning their own actions, reconfiguring themselves
to allow fabrication of a wide range of parts and to re-
act to change in demands, detecting failures during exe-
cution, diagnosing the cause of these failures and recover-
ing from such failures. Since cognitive factories can plan
their own actions and self-reconfigure, they can rapidly re-
spond to changing customer needs and customization re-
quests, demonstrating the necessary flexibility while main-
taining cost-effectiveness compared to human workshops.
Moreover, thanks to fault-awareness, diagnostic reasoning
and failure recovery features of cognitive factories, these
systems enable a high-degree of reliability comparable to
those of mass production systems.

We present a generic and modular planning and execu-
tion framework for a cognitive factory that involves com-
plex tasks performed concurrently/cooperatively by multi-
ple teams of robots by efficiently using the shared resources.
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We focus on two crucial aspects of a cognitive factory set-
ting: planning and decision-making for reconfigurable net-
worked robots for efficient use of shared resources (e.g.,
workforce, time, product components) and diagnostic rea-
soning and monitoring for fault-tolerance (e.g., preventing
action failures and recovering from failures when they oc-
cur). We propose the use of causality-based formal represen-
tation (e.g., action language C+ (Giunchiglia et al. 2004))
and automated reasoning methods and tools (e.g., the causal
reasoner CCALC (McCain and Turner 1997)) to endow mul-
tiple teams of robots in a factory, with such high-level cogni-
tive capabilities. In particular, we introduce novel algorithms
for finding optimal decoupled plans and for diagnosing the
cause of a failure/discrepancy (e.g., robots may get broken
or tasks may get reassigned to teams). To be able to coordi-
nate networked robots and diagnose and handle failures in
a dynamic setting, we embed these algorithms modularly in
a generic execution and monitoring framework that allows
reusability of computed plans in case of failures. The pro-
posed generic framework is applied, in particular, to cogni-
tive factory scenarios.

Our cognitive factory framework possesses core charac-
teristics of a reconfigurable manufacturing system. In par-
ticular, the approach not only increases the speed of respon-
siveness of manufacturing systems to unpredicted events,
such as sudden market demand changes or unexpected ma-
chine failure, but also facilitates a quick production launch
of new products and flexible customization of existing prod-
ucts in product family. Reasoning about its resources, the
proposed approach adjusts itself to provide exactly the func-
tionality and production capacity needed, maximizing the
system productivity with the available resources. In that
sense, our work plays an important role towards Cognitive
Technical Systems (CTS)—systems “that know what they
are doing” (Brachman 2002).

This paper summarizes our work on cognitive facto-
ries (Erdem et al. 2012).

Related Work
There are contributions in the literature that are relevant to
some components of our framework. For instance, in (Ertelt
et al. 2009) a method is presented that integrates a global
planning system with the domain specific machining plan-
ning system of (Shea et al. 2010) and an ad-hoc perception
mechanism. In particular, the manufacturing domain is rep-
resented in PDDL and a classical planner is utilized to find
a sequence of actions to reach the goal. The main role of
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global planner is to augment the local machining plans with
transportation and handling operations. The perception sys-
tem is used for inspection of machined parts and triggers
re-planning of the global planner when faulty parts are de-
tected. Unlike our framework, this approach does not con-
sider optimal planning for multiple teams of robots, cooper-
ation of robots/teams, efficient use of resources, or diagnos-
tic reasoning.

There are also recent contributions in the literature that
are relevant to cognitive factories (Shea 2010; Bannat et al.
2011) that complements our framework. The approaches for
generative CNC machining planning using shape grammars
and for automated fixture design to enable autonomous fab-
rication of customized part geometries (Shea et al. 2010),
methods that enable human-robot cooperation in a cognitive
factory setting (Lenz et al. 2008), and the model-based ap-
proach that computes success probabilities of plans utilizing
online observations (Maier et al. 2010) can be listed as rep-
resentatives of these interesting contributions.

Finally, several alternative approaches have been pro-
posed for modeling of cognitive manufacturing systems. In
particular, in (Ruhr, Pangercic, and Beetz 2008) the use of
structured reactive controllers and transformational model-
ing are advocated, while in (Rungger et al. 2008) hierarchi-
cal hybrid modeling and control are proposed as a viable
solution. These approaches are not comparable to our sys-
tem, since they attack different challenges and emphasize
different aspects of modeling of cognitive factories.

A Cognitive Painting Factory Scenario
We consider a painting factory with multiple teams of
robots, where each team is located in a separate workspace
collectively working toward completion of an assigned task:
painting, waxing and stamping a given number of boxes.
Each workspace is depicted as a grid, contains an assem-
bly line along the north wall to move the boxes and a pit stop
area where the worker robots can change their end-effectors.

The teams are heterogenous. Each team is composed of
two types robots with different capabilities: worker robots
and a single charger robot. Worker robots operate on boxes,
they can configure themselves for different stages of pro-
cess, and they can be exchanged between teams; charger
robots maintain the batteries of workers and monitor teams
plan, and cannot be exchanged between teams. The robots
can move horizontally or vertically.

The teams act as autonomous cognitive agents; therefore,
each team makes its own plan to complete its own desig-
nated task. On the other hand, to make more efficient use of
shared resources (e.g., robots), teams can exchange robots:
at any step, a team can lend one of its worker robots through
their pit stop such that after a transportation delay the worker
robot shows up in the pit stop of a borrowing team. There-
fore, given the initial state of each workspace and the des-
ignated tasks for each team (e.g., how many boxes of which
colors to paint), the goal is for all the teams to complete
these tasks in a minimum number of steps. We propose to
reach this goal by means of an optimal decoupled planning
algorithm.

Once an optimal decoupled plan is computed, the teams
start executing it. However, during a plan execution, it is pos-
sible that a robot gets broken so that it can not dock to an-
other robot, or that tasks assigned to teams (e.g., the number
of orders) are modified. In such cases, the goal is to diagnose
the cause of the failure or discrepancy, and find an optimal
(decoupled) plan for recovery. We propose to reach this goal
by means of a diagnosis algorithm.

Both the optimal planning algorithm and the diagno-
sis algorithm we propose are based on a causality-based
approach. In this approach, for each team, we represent
the actions of its robots and the other changes in its
workspace in the high-level causality-based action language
C+ (Giunchiglia et al. 2004). With this high-level formu-
lation, each team can find answers to queries about the ex-
istence of plans or the causes of failures, using the causal
reasoner CCALC (McCain and Turner 1997). By utiliz-
ing such a causality-based approach for reasoning about
plans for each team and reasoning about failures in each
workspace/team, we introduce novel algorithms to compute
an optimal decoupled plan of actions for all the teams, and to
compute a minimal diagnosis for a failure. Moreover, in case
of failures/discrepancies, we show how these two algorithms
can be embedded in an execution and monitoring framework
to be able to respond robustly to failures/discrepancies. Note
that reasoning is performed in each team/workspace inde-
pendent from the others in a decentralized fashion. Thanks
to this decentralized approach, our algorithms are scalable
to domains with large number of workspaces.

The algorithms introduced in this paper are not specific to
the painting factory scenario described above. They are ap-
plicable to various cognitive factory scenarios that involve
multiple teams of robots and single robot exchange between
these teams. The underlying reasoning methodology of our
approach, causality-based reasoning, is also generic and has
been successfully applied to cognitive robotics including
demonstrations on physical robots (Erdem et al. 2011; Aker
et al. 2011; Caldiran et al. 2009; Erdem and Patoglu 2012;
Havur et al. 2013).

Representation of a Cognitive Factory
We represent a cognitive factory in the high-level action lan-
guage C+ (Giunchiglia et al. 2004), which is a logic-based
formalism based on causality. Using this language, we can
describe preconditions and (conditional) effects of actions,
as well as indirect effects of actions and static/dynamic con-
straints. We can describe true concurrency (where actions
cannot be serialized) and nondeterministic effects of actions
(where we are not sure about the outcome of an action).

For instance, in the painting factory described above, the
action of a worker robot W working on a box B is formalized
in C+ by “causal laws” that describe direct effects of this
action (e.g., incrementing the work stage WS of a box B):
workOn(W,B) causes workDone(B)=WS

if workDone(B)=WS-1.

and its preconditions (e.g., a worker robot W cannot work on
a box B that still has wet paint):
nonexecutable workOn(W,B) if wetpaint(B).
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We can also describe change that does not directly involve
an action of a robot. For instance, we formalize that a box
with wet paint gets dry, by the causal law
caused -wetpaint(B) after wetpaint(B).

Similarly, we can express that a worker robot can work on
a box if it is right next to the assembly line and it is aligned
with the box, that a worker robot swaps its end-effector only
if it is in the pit area, and other preconditions of the worker’s
actions. We can also formalize the preconditions and effects
of a charger’s actions.

Concurrent actions are allowed unless specified other-
wise. For instance, we can express that a charger robot can-
not dock to a worker robot for charging while moving to
some location:
nonexecutable dock(C,W) & move(C,D).

Similarly, we prevent some other concurrent actions, e.g.,
a worker cannot work on a box while the assembly line is
shifting.

Causality-Based Reasoning for Finding
Optimal Decoupled Plans

Once an action domain is described by a set of causal laws as
shown above, we can present it to CCALC and ask CCALC
“queries” about the existence of plans or the causes of ob-
served failures. CCALC transforms the given domain de-
scription and the query into a set of propositional formulas,
calls a SAT solver (e.g., MANYSAT (Hamadi, Jabbour, and
Sais 2009)) to find a model of these formulas, and extracts
an answer to the given query from this model. For more de-
tailed information about CCALC, we refer the reader to (Mc-
Cain and Turner 1997; Giunchiglia et al. 2004).

For instance, the following query asks for a plan whose
length is at most 100, for a team with one worker (w1) and
one charger (c1):
:- query
maxstep :: 100;
0: % INITIAL STATE
% no charger robot is docked
% to a worker robot
[/\C /\W |-docked(C,W)],
% no block has wetpaint
[/\B | -wetpaint(B)=0],
% worker is at (1,3)
xpos(w1)=1, ypos(w1)=4,
% charger is at (1,1)
xpos(c1)=1, ypos(c1)=1,
% boxes are not yet processed
[/\B | linePos(B)=B+lineLength],
[/\B | workDone(B)=0];

maxstep: %GOAL
% boxes are painted
linePos(maxBox)=0,
[/\B | workDone(B)=3].

If we replace maxstep :: 100 with maxstep ::
18..100, then the query asks for a shortest plan whose
length is at least 18 and at most 100. In that case, with the
domain description whose some parts are briefly explained
above in the previous section, CCALC finds a shortest plan
of length 29 using the parallel SAT solver MANYSAT.

Suppose now that the goal is to complete all the assigned
tasks of all the teams in a minimum number of steps, under
the assumption that teams can exchange robots. For a plan
length k, a team is a lender if it can complete its task on
its own in k steps; a borrower if it can not complete its task
on its own in k steps. Assuming that a team can not lend
a robot and borrow a robot in a plan and that a team can
not lend or borrow more than one robot, we designed an
intelligent algorithm that finds an optimal decoupled plan by
efficiently using the shared resources. This algorithm relies
on the following two sorts of queries (asked to each team)
to decouple plans and to orchestrate robot exchanges among
the teams:

• Can the goal be achieved in k steps, while lending a robot
before step k0?

• Can the goal be achieved in k steps, while borrowing a
robot after step k0?

In decoupled planning, once answers to such queries are
collected, the goal is to match each borrowing team with a
different lending team so that the matched teams agree on
lend/borrow times. Let lendi denote the time step at which
Team i can lend a robot (i.e., Team i answers the first query
above affirmatively for k = lendi). Let borrowi denote
the time step at which Team j can borrow a robot (i.e.,
Team j answers the second query above affirmatively for
k = borrowi). Let delay denote the transportation delay.
Then, there is a matching between the lending team and the
borrowing team, if lendi + delay ≤ borrowj . Based on this
observation, the optimal decoupled planning algorithm uses
binary search for each team to find valid lend/borrow times.

Diagnostic Reasoning in a Cognitive Factory
In the painting factory domain, a robot may get broken and
thus may not succeed docking to another robot or working
on the boxes. We assume that a global sensor can detect if
robots are docked/undocked (but cannot detect which robot
is broken), and the work stage. Once such discrepancies
(“exceptions”) are noticed, the goal is to find their possible
causes (i.e., which robots can be broken) so that an exter-
nal agent (e.g., human or some other robot) can inspect the
possibly broken robots and repair them. To take into account
such discrepancies, we modify the domain description, and
introduce an algorithm that computes minimal diagnoses by
means of asking CCALC prediction queries with temporal
constraints over the modified domain description.

In the domain description, we introduce a new fluent
broken(R) to describe that a robot R may get broken at
any step:

caused broken(R)
if broken(R) after -broken(R).

and modify the causal laws describing the effects of relevant
actions, e.g., a charger robot C docking to a worker robot W:

dock(C,W) causes docked(C,W)
if -broken(C) & -broken(W).

Suppose that after a sequence 〈A0, ..., An〉 of (concurrent)
actions is executed at a state S, a discrepancy is observed be-
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tween the expected state (with respect to the domain descrip-
tion) and the observed state S′ (obtained by sensors). In the
painting domain, the causes of such discrepancies are due to
broken robots; therefore, we can identify possible diagnoses
by sets of possibly broken robots. We can find the set C of
all minimal sets of at most k broken robots by Algorithm 1.
The outer while loop of Algorithm 1 considers cases where
only the first m = n, n− 1, ..., 1 actions are completely ex-
ecuted. Then, the inner while loop of Algorithm 1 checks
(through a query to CCALC) for every subset r of at most
i = 1, 2, ..., k robots whether the execution of A0, ..., Am

of actions at S leads to S′ where the robots in r are broken.
If CCALC returns a positive answer to the query, then two
important information becomes available: 1) an explanation
as to when the robots in r may have got broken during the
execution of these actions, 2) which actions in Am+1, ..., An

are executed.
For instance, consider the execution of a single concurrent

action dock(c1,w3), workOn(w3,2) at a state where c1
is not docked to w3 and Box 2 is waxed (i.e., stage is 2).
After this action is executed, we observe an unexpected state
where c1 is not docked to w3 and Box 2 is stamped (i.e.,
stage is 3). To find a minimal diagnosis, Algorithm 1 checks
whether a single robot might be broken (n = 1, k = 1), by
a CCALC query.

It is important to note here that, since broken robots are
viewed and formulated in the domain description as “ex-
ceptions”, specifying these exceptions in queries does not
lead to inconsistencies, due to the nonmonotonic semantics
of C+.

Once broken robots are identified by Algorithm 1 as part
of our execution and monitoring algorithm, an external agent
can repair them. For that, we modify the domain description
further by introducing a new action to repair broken robots.
We also add causal laws to ensure that a robot does not per-
form any other actions while being repaired, or when it is
broken. With the modified domain description, the execu-
tion and monitoring algorithm can ask CCALC to compute a
plan to reach the goal from the observed state S′ where dis-
crepancy is detected. Here, we also specify the broken robots
as part of S′ so that they get repaired as part of replanning.

Embedding Diagnostic Reasoning in an
Execution Monitoring Framework

Let us demonstrate how our diagnosis algorithm and optimal
decoupled planning algorithm can be embedded effectively
in an execution and monitoring framework.

Algorithm 2 presents the overall execution and monitor-
ing algorithm. First, for each team i, INIT tries to com-
pute a plan PX [i] of length at most kX ; if such a plan
is computed (i.e., the team may be able to spare a robot)
then the team is designated as a lender; otherwise, it is
designated as a borrower. After that, Algorithm 2 tries to
find an overall plan with minimum number of steps, call-
ing FIND OPTIMAL PLAN; if such a plan is found, then
it is executed by the teams. During the execution, if a dis-
crepancy is detected between the observed state of the world
and the expected state, then Algorithm 2 tries to diagnose

Algorithm 1 DIAGNOSE
Input: A state s, a sequence A0, ..., An of actions executed

at s, an observed state s′, a nonnegative integer k
Output: Current state for a team, potentially updated by

robot breakdown information
R← set of unbroken robots at state s;
C ← set of sets of at most k candidate robots to explain
the anomalies, empty initially;
m := n; holds := false;
while m ≥ 0 and C = ∅ do

// Find minimal sets of at most k possibly bro-
ken robots, assuming that actions A0, ..., Am are com-
pletely executed
i := 1;
while i ≤ k and C = ∅ do

for all set r of i robots in R do
sr ← modify s′ by making robots in r broken;
holds ← check if executing A0, ..., Am (and pos-
sibly a subset of each action in Am+1, ..., An) at s
results in sr;
if holds then
C := C ∪ {r};

i++;
m−−;

x ← inspect the sets of robots in C to find the broken
robots, and modify the state s′ by specifying the broken
robots;
return x;

the cause of the discrepancy in terms of minimum number
of broken robots, calling DIAGNOSE. If one of the robots
is found as broken, then Algorithm 2 asks CCALC for a new
plan that may include repair of the broken robot. Otherwise,
the algorithm asks CCALC for a new plan from the observed
state. Note that examples in which new orders arrive for
teams are also handled via replanning in Algorithm 2.

To show the applicability of this framework to vari-
ous kinds of robotic manipulators, we have experimented
with some scenarios (Erdem et al. 2012). We have also
implemented a cognitive factory scenario using dynamic
simulation of Kuka youBots. A video of this implemen-
tation is available at http://cogrobo.sabanciuniv.edu/demos/
cogfactory/youBot planning.flv.

Conclusion
We have introduced two algorithms utilizing the formalisms,
methods and tools of causal reasoning to endow multiple
teams of self-reconfigurable robots with high-level reason-
ing capabilities. One of the algorithms computes optimal de-
coupled plans for multiple teams of robots that can exchange
robots, and the other algorithm computes minimal diagnoses
for failures in terms of number of broken robots.

We have shown the applicability and usefulness of these
algorithms, embedded in a generic execution and monitoring
framework, in a cognitive painting factory scenario, which
provides a good case study towards future intelligent facto-
ries.
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Algorithm 2 EXECUTE&MONITOR
Input: An action domain description D, a nonnegative in-

teger k, n planning problems P1, P2, . . . ,Pn (one for
each team) with initial states s1, s2, . . . , sn and goal states
g1, g2, . . . , gn, and a transportation delay td

Output: Achieve the goals of all teams in minimum time
steps

// Let X be a tuple consisting of a plan length kX ; and,
for each team i, a plan PX [i] of length kX , team role
roleX [i], and lower and upper bounds, lX [i] and uX [i],
on the earliest/latest lend/borrow times.
kX := k;
for all teams i do
PX [i], roleX [i], lX [i], uX [i]← INIT(D, kX , PX [i]);

while kX > 0 do
X ← FIND OPTIMAL PLAN(D, P1, P2, . . . ,Pn,
td, X);
replan := false;
while ¬replan ∧ kX > 0 do
kX := kX − 1;
for all teams i do
Ai, ci, ei, oi ← extract from PX [i] the actions to
be executed, the current state, the expected state
after Ai and the observed state after Ai;
lX [i], uX [i], roleX [i] ← update the bounds and
roles;
updated := false;
if oi 6= ei then

updated := true;
si ← DIAGNOSE(D,Pi, ci, oi);

if new order of boxes then
updated := true;
Pi ← modify the planning problem;

if updated then
replan := true;
si ← obtain the current state
PX [i], roleX [i], lX [i], uX [i] ←
INIT(D, kX ,Pi);
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