
Learning CP-net Preferences Online from User Queries∗

Joshua T. Guerin
The University of Tennessee at Martin
110 Business Administration Building

Martin, Tennessee 38238
jguerin@utm.edu

Thomas E. Allen
University of Kentucky

Department of Computer Science
Davis Marksbury Building

329 Rose Street
Lexington, Kentucky 40506-0633

thomas.allen@uky.edu

Judy Goldsmith
University of Kentucky

Department of Computer Science
311 Davis Marksbury Building

329 Rose Street
Lexington, Kentucky 40506-0633

goldsmit@cs.uky.edu

Introduction
CP-nets (Boutilier et al. 1999) offer a compact qualitative
representation of human preferences that operate under ce-
teris paribus (“with all else being equal”) semantics. In this
paper we present a novel algorithm through which an agent
learns the preferences of a user. CP-nets are used to repre-
sent such preferences and are learned online through a se-
ries of queries generated by the algorithm. Our algorithm
builds a CP-net for the user by creating nodes and initial-
izing CPTs, then gradually adding edges and forming more
complex CPTs consistent with responses to queries until a
confidence parameter is reached. Our algorithm does not al-
ways converge to the original CP-net, but our experiments
show that it can learn a CP-net that closely tracks with the
original for a series of outcome comparison queries. Our
work builds upon previous CP-net learning research, partic-
ularly that of (Lang and Mengin 2008; 2009) and (Dimopou-
los, Michael, and Athienitou 2009). Other CP-net learning
algorithms include (Eckhardt and Vojtás̆ 2009; 2010), (Eck-
hardt and Vojtás̆ 2009; 2010), (Koriche and Zanuttini 2009;
2010), and (Liu et al. 2012). Our algorithm differs in that in
is guaranteed to produce a CP-net in polynomial time given
a constant bound on the number of parents.

Modeling Preferences with CP-nets
By preference, we mean a strict partial order � over a set
of outcomes O. Such outcomes can be factored into vari-
ables V with associated (binary) domains Dom(V): O =
v1×v2×· · ·×vk. We define o[i] as the projection of outcome
o onto variable vi. Note that the number of outcomes and
orderings is exponential in the number of variables. Condi-
tional Preference networks (CP-nets) generally offer a more
compact representation.

Definition 1. A CP-net N is a directed graph. Each node
vi represents a preference over a finite domain. An edge
(vi, vj) indicates that the preference over vj depends on vi.
If a node has no incoming edges, the preference involving its
variable is not conditioned on other variables. A conditional
preference table (CPT) is associated with each node v and

∗This material is based upon work supported by the National
Science Foundation under Grants No. CCF-1215985 and CCF-
1049360. The content reflects the views of the authors and not
necessarily those of NSF.

specifies the preference over Dom(v) as a function of the
values assigned to its parent nodes Pa(v). A separable CP-
net is one with no edges—no variable depends on any other.

To guarantee tractability, we make some simplifying as-
sumptions: 1. Cycles are disallowed. 2. We restrict to binary
domains. 3. A maximum bound p is placed on the number
of parents a node may have: We conjecture that most hu-
man preferences are conditioned on 3–5 nodes and thus feel
justified in assuming such a bound.

Algorithm
Our algorithm consists of two phases. First, it constructs
a separable CP-net with default CPTs. Next, it successively
attempts to refine the model, adding edges and learning more
complex CPTs consistent with evidence drawn from the user
queries. (See LEARN-CP-NET and its subroutine FIND-
PARENTS [Alg. 1 and 2]).

Phase 1 constructs a separable CP-net basis by asking the
user to provide a default preference for each vi ∈ V .

Definition 2. Let vi be a variable in a CP-net with binary
domain Dom(vi) = {xi, yi}. An attribute comparison query
is one in which we present the user the values xi and yi and
ask whether xi � yi or yi � xi.
The result is a CP-net with no edges and only the default
values. However, we are unconfident that all preferences are
unconditional. Here we model confidence q as a parame-
ter in our algorithm, defining disjoint sets CONFIDENT and
UNCONFIDENT s.t. v ∈ CONFIDENT iff we are confident
that the preferences over v are conditioned only by its par-
ent variables in the graph of N .

In the second phase we refineN by discovering such con-
ditional relationships as may exist between variables by ask-
ing the user’s preference over pairs of outcomes.

Definition 3. In an outcome comparison query, we provide
the user a pair of outcomes, {o1, o2} ∈ O. The user re-
sponds with o1 � o2, o2 � o1 or o1 ∼ o2, indicating that
the user strictly prefers the first outcome to the second, the
second to the first, or is indifferent.

Definition 4. A random query is an outcome comparison
query in which all values of o1 and o2 are selected uniformly
randomly from their domains, with the requirement that the
query must be relevant to node vi: that is, o1[i] 6= o2[i]. A

38

Late-Breaking Developments in the Field of Artificial Intelligence 
Papers Presented at the Twenty-Seventh AAAI Conference on Artificial Intelligence



Algorithm 1 LEARN-CP-NET(V , p, q)
1: N ← ∅; comparisons← ∅
2: confident← ∅; unconfident← V
3: for vi ∈ V do
4: query user: do you prefer xi � yi or yi � xi?
5: vi.CPT← default CPT based on user response
6: insert vi intoN
7: end for
8: repeat
9: for r ← 0 to p do

10: for vi ∈ unconfident do
11: (P,C)← FIND-PARENTS(vi, r, q)
12: if C 6= FAIL then
13: vi.CPT← C
14: add edges from all P to vi
15: move vi from unconfident to confident
16: end if
17: end for
18: end for
19: until no parents added this iteration
20: return N

Algorithm 2 FIND-PARENTS(vi, r, q)

1: for P ∈ {all subsets of confident of size r} do
2: (C, evidCount)← CREATE-CPT(vi, P )
3: while (C 6= FAIL) and (evidCount < q) do
4: (o1, o2)← generate random query for vi
5: query user: do you prefer outcome o1 or o2?
6: add o1, o2 to comparisons in specified order
7: (C, evidCount)← CREATE-CPT(vi, P )
8: end while
9: if C 6= FAIL, return (C,P ), end if

10: end for
11: return (FAIL, ∅)

random adaptive query adds the additional requirement that
for all vj ∈ CONFIDENT, o1[j] = o2[j].

Random adaptive queries provide a heuristic that may re-
duce the search space for a CP-net by not continuing to ana-
lyze nodes once they are labeled CONFIDENT.

We search first for nodes that do not need parents. For
each node v ∈ V , we ask a series of outcome comparison
queries, then iterate over orderings provided by the user and
stored in COMPARISONS. If the user prefers xi � yi or yi �
xi in all instances, we conclude that the preferences over
vi are unconditional and move it from UNCONFIDENT to
CONFIDENT. If we have not accumulated enough evidence,
we continue querying the user. While UNCONFIDENT 6= ∅,
we continue trying to refine our model with new conditional
relationships, represented as edges and more complex CPTs.
For each unconfident node, we iterate over potential sets of
parent nodes of increasing size up to p. If, in an iteration, we
fail to add parents for any nodes, we stop. Our algorithm will
always output a CP-net, possibly with some CPTs in their
default state from Phase 1; however, this rarely occurred in
our tests, and only in overtrained CP-nets of minimal size.

For a given target node and set of possible parents, we
construct a 2-SAT instance such that (1) a satisfying assign-
ment tells us that the target node’s values are consistent with

the given set of parents and (2) the assignment to variables
gives us the entries of the target node’s CPT. Our method for
this closely follows (Dimopoulos, Michael, and Athienitou
2009), to which the reader is referred for specifics.

Analysis and Experiments
Theorem 1. LEARN-CP-NET is resolute—i.e., it is guar-
anteed to output a consistent CP-net N—and runs in time
polynomial in np and q in the worst case. (Proof omitted.)

We generated random CP-nets for given n and p, and used
them to generate responses to the queries for our learning al-
gorithms. We looked at computation time (as a function of
n, p, and q), and the accuracy of the learned CP-net, i.e., on
how many possible comparison queries do the generated and
learned CP-nets agree. The tables below show the metrics
of the learned CP-netNL compared with the training model
NT over a series of experiments.1 We set p = 5; since we
used δ = n, most nodes didn’t have p parents. However,
in trials with δ = cn for c = 2, 3, . . ., we saw very simi-
lar graphs. The metrics shown are averages over 10 trials.
Table 1 shows that agreement was generally 75–90%+ with
the proper q. As shown, disagreement between models was
rare, but as n increases, the learned model is more likely to
be indecisive about preferences on which the training model
decides. Increasing q sometimes has an adverse effect on
the agreement the models; if q is too high, the model can be
overtrained. We also found that for some q values, computa-
tional time did not grow monotonically. When we generate
queries to learn the CPT for vi, those queries may be relevant
to other nodes in UNCONFIDENT. It may be that, when we
come to vj , we already have q many relevant comparisons.

Table 1: Agreement of NL with NT

q n = 3 n = 5 n = 7 n = 10
4 0.9964 0.7996 0.6086 0.5118
6 0.9964 0.9221 0.7653 0.7677
8 1.0000 0.9667 0.8918 0.6990

10 0.9964 0.9735 0.8583 0.6760
12 0.9964 0.9621 0.9171 0.6597
14 1.0000 0.9816 0.8512 0.5518
16 0.9929 0.9434 0.9062 0.5539
18 1.0000 0.9646 0.9237 0.4367
20 0.9964 0.9731 0.8395 0.5886

Table 2: Disagreement of NL with NT

q n = 3 n = 5 n = 7 n = 10
4 0.0036 0.0696 0.0880 0.0426
6 0.0036 0.0430 0.0545 0.0389
8 0 0.0238 0.0375 0.0280

10 0.0036 0.0216 0.0257 0.0254
12 0.0036 0.0174 0.0188 0.0150
14 0 0.0184 0.0259 0.0118
16 0.0071 0.0309 0.0250 0.0127
18 0 0.0228 0.0186 0.0095
20 0.0036 0.0269 0.0236 0.0110

1Due to space constraints, indecision results have been omitted;
these values can be computed from Tables 1–2.

39



References
Boutilier, C.; Brafman, R. I.; Hoos, H. H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus preference
statements. In UAI-99, 71–80.
Dimopoulos, Y.; Michael, L.; and Athienitou, F. 2009. Ce-
teris paribus preference elicitation with predictive guaran-
tees. In IJCAI-09, 1890–1895. San Francisco, CA, USA:
Morgan Kaufmann.
Eckhardt, A., and Vojtás̆, P. 2009. How to learn fuzzy user
preferences with variable objectives. In IFSA/EUSFLAT,
938–943.
Eckhardt, A., and Vojtás̆, P. 2010. Learning user preferences
for 2CP-regression for a recommender system. In SOFSEM-
10, 346–357.
Koriche, F., and Zanuttini, B. 2009. Learning conditional
preference networks with queries. In IJCAI-09, 1930–1935.
Koriche, F., and Zanuttini, B. 2010. Learning conditional
preference networks. Artificial Intelligence 174:685–703.
Lang, J., and Mengin, J. 2008. Learning preference relations
over combinatorial domains. In NMR-08.
Lang, J., and Mengin, J. 2009. The complexity of learning
separable ceteris paribus preferences. In IJCAI-09, 848–853.
San Francisco, CA, USA: Morgan Kaufmann.
Liu, J.; Xiong, Y.; Wu, C.; Yao, Z.; and Liu, W. 2012.
Learning conditional preference networks from inconsistent
examples. TKDE PP(99):1.

40




